
3D Video Sprites

Stephen Pollard, Sean Hayes
Digital Media Department
HP Laboratories Bristol
HPL-98-25
February, 1998

image processing,
digital video
processing,
image based
rendering,
computer graphics

Here we introduce the concept of a 3D video sprite. We
outline an approach for their automatic creation and
manipulation. 3D sprites consists of a number of
synchronous video streams and mark up information
that allows virtual viewpoints with respect to a live
action video to be rendered and combined with
traditional 3D virtual environments. As such they
constitute a form of image based rendering.
Our generation method uses trinocular stereo matching
to provide a morphing channel. The matching of
corresponding locations in the images is edge-based and
relies on the extraction of suitable epipolar geometries.
The resulting edge correspondences are then
interpolated and used in an efficient morphing
algorithm that operates one scan-line at a time to
perform image synthesis.
Easily-obtained viewing geometry is used to combine
3D video sprites with computer generated 3D
environments.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

1

Contents

CONTENTS..1

1. 3D VIDEO SPRITES...2

2. IMAGE BASED RENDERING ..3

3. THE MORPHING CHANNEL...4

3.1 INTERPOLATING EDGES...5

4. THE GEOMETRY OF VIEW INTERPOLATION...8

5. EPIPOLAR GEOMETRY ..10

6. RASTER RENDERING ..12

7. FREQUENCY CONTROLLED BLENDING ..15

8. AUGMENTING VIRTUAL WORLDS ..16

9. SUMMARY ...18

REFERENCES ...20

2

1. 3D video sprites

3D video sprites are an extension of existing digital blue screen techniques to allow greater flexibility in

rendering video footage against computer generated three dimensional backdrops. In current systems

the location of the live action camera is either fixed or follows a precisely calibrated path during capture

and the rendered scene is required to be consistent with it.

3D video sprites, on the other hand, can dynamically combine blue screen footage captured

simultaneously from a number of viewpoints to create video sequences from novel viewing directions.

This allows the 3D video sprite to be treated more like a graphic object and allows the vantage with

respect to the video overlay, and the backdrop, to be determined after the fact.

Depending upon the availability of real-time capture and rendering hardware, a large number of

applications of 3D video sprites exist. Off line capture and rendering can be employed for the kind of

post production effects eluded to above that give greater flexibility to the film maker. Adding real-time

rendering creates a new digital video media, similar to computer graphic games, that allows truly

immersive interaction with respect to a viewer who changes their viewpoint either directly through a

sensed feed back loop or indirectly through a traditional pointing paradigm (e.g. the mouse/joystick).

Extended yet further to include automatic capture and image processing, allows us to consider the

presence in a rendered virtual world of real life avatars that present themselves with full three-

dimensionality and support the creation of natural meeting places in cyberspace.

3D video sprites are not true 3D objects; they consists of a number of synchronous video streams and

mark-up information that allows other views to be morphed (interpolated and blended) from the

original set. As such they constitute a form of image based rendering.

 The advantage of image based approaches is a naturalness that is very hard to achieve with graphic

objects, and the rendering time is not proportional to the complexity of a model, but only the number of

output pixels – a significant advantage for real time applications.

3

2. Image based rendering

 A growing number of researchers are exploring ways of constructing static and temporally varying

immersive scenes using real world image data alone.

One approach is to capture a large number of viewpoints and use these as an environment map [4] to be

applied as a texture on some imaging surface. New viewpoints can be generated by projecting the

texture back onto the imaging plane corresponding to the user’s current view. Environment maps can

be obtained as panoramas composed from multiple images [2] or based upon plenoptic capture by lens

and/or mirror arrangements [8]. See [12] for a good overview of image mosaic generation to capture

virtual environments.

It is possible to go beyond the exploration of 2D worlds (where the viewer is constrained to a single, or

predetermined set of discrete locations in the 3D environment) by recovering a dense depth map from

multiple discrete viewpoints and employing a standard texture mapping technique to view that surface

from an alternative viewpoint (e.g., see [6]). Chen and Williams [3] studied the interpolation of

intermediate views from 3D data. Laveau and Faugeras. [7] bypass the reconstruction-projection

paradigm, and use transfer with projective invariants to predict, from dense correspondences, where

pixels end up in virtual projectively distorted images. A more recent approach is to directly represent

the light field in the vicinity of an object [5].

An approach part way between the 2D and 3D paradigms is that proposed by Seitz and Dyer [10],

which uses image morphing techniques to synthesise viewpoints between two original images. They

observe that under fairly general assumptions, veridical virtual viewpoints can be constructed by linearly

interpolating corresponding uniform regions from the two images.

The method of constructing 3D video sprites [9] builds directly upon the earlier approach of Seitz and

Dyer. This method uses a different matching and morphing strategy that does not require the images to

be pre-warped and then post-warped for each viewpoint for more efficient rendering. More

importantly, we extend the approach beyond the two image case, thereby allowing the user to explore

the change of viewpoint in two dimensions, which considerably enhances the 3D experience.

4

Figure1: 3D Sprite Video Example

3. The morphing channel

Typically, as illustrated in figure 1, we represent 3D video sprites as 3 synchronous streams of video

data plus a morphing channel. Each video stream is a view of the same foreground subject against a

suitable blue or green screen background. Typically the subject will be a person or other unconstrained

animate object. The 3 cameras are best arranged at the corners of an approximate equal sided triangle

where 2 of the cameras form a horizontal baseline and the 3rd camera is either above or below it. Only

approximate geometry is required (i.e. that that can be estimated with a tape-measure) for integrating

3D video sprites with true 3D geometrical primitives

The translation between the cameras orthogonal to their principal axes induces an apparent 3D rotation

of the viewed object. The magnitude of the rotation is dependent upon the relationship between the

length of the baseline between the cameras and the viewing distance. By arranging our cameras at the

corners of an equal sided triangle with the principal axes of each camera roughly orthogonal to the

plane passing through the optic centres of each (the vantage plane) we induce rotations between the

images in the horizontal and vertical directions.

If we were to place a camera at an arbitrary point on the vantage plane within the extent of the original

camera triangle we would produce a particular view of our subject. Using 3D sprites we produce a

similar image by using the information in the morphing channel to interpolate approximate versions of

the views on the vantage plane.

Morphing Channel

5

The morphing channel relates the images of the subject in each of the 3 views. It must be extracted

automatically for effective 3D video sprite creation. A blue/green screening process is employed to

delimit background and subject regions of each image. Only the foreground subject needs to be

represented in the morphing channel.

A number of methods can be used to extract and represent the morphing channel. We have considered

mesh and edge based approaches. In the former a contiguous set of triangles (or other simple polygonal

mesh) is used to tessellate the active area of each view such that correspondences amongst the vertices

refer to the same physical locations in the scene. Morphing constitutes an interpolation of the vertices

of each individual triangle into a new virtual view. The contents of the triangles are then obtained by

texture mapping and alpha blending the originals.

Despite the suitability of the above approach to real-time rendering on state of the art graphic

processors we prefer to use an edge based approach, as this greatly simplifies the job of automatically

extracting correspondence information between the 3 views. Edges obtained from all 3 views are

matched using standard computer vision techniques (as described in [9]) to give strings of matched

edge points that correspond to the primary intensity discontinuities of the subject. Edge strings are

linked according to the local adjacency of edge points in each of the 3 views.

3D video sprite rendering is then based upon the linear interpolation of the matched edges to form a

virtual line sketch of the new view. The regions between the interpolated edges is then filled using the

texture data from each of the 3 views.

3.1 Interpolating edges

Figure 2 depicts how matched edges are interpolated to generate virtual viewpoints within the original

image triple. Each string of matched edge points is interpolated according to the parameter pair (α, β)

that specify the location V of the new view with respect to the original set. Physically, α specifies a

view between image 0 and image 1 and β specifies the location between that point and the location in

6

image 2. Thus, the ith edge point along the string has projection into the three views at p0i , p1i and p2i

and into the synthesised view at location pSi given by

pSi = (1-β)((1-α)p0i+αp1i) + βp2i

Figure 2: Interpolating Edges

When creating video sprites we are interested in producing a video object that can be rotated in a

virtual 3D world (or can match the rotation induced by motion of a point being tracked in another video

sequence). However, some degree of image plane translation of the subject may also be present

between the 3 views, unchecked this results in an unwanted translation of the video sprite across the

image as the edge geometry between the different views is interpolated. The solution is to absorb the

p0i p1i

p2i

α 1-α

β

1-β

pSi

V

Image 0 Image 1

Image 2

Virtual
Image

7

unwanted translation into the interpolation process itself by shifting the center of gravity of each set of

edges to a common image location. Thus the interpolation becomes:

pSi = (1-β)((1-α)p0i +α(t1+p1i) + β(t2+p2i)

where t1 and t2 are the translation of the centre of gravity of the matched edges in image 0 with respect

to images 1 and 2 respectively.

Figure 3: Sketch Interpolation

Figure 3 gives an example of interpolating edge sketches obtained from a test image triple which have

have mock blue screen properties (the region around the subject was eliminated by hand). The 3 corner

2

0 1

8

images are shown along with their associated edge sketches plus those for a number of intermediate

locations.

Figure 4: Trinocular Geometry

4. The geometry of view interpolation

In this section we outline a simple physical interpretation of what interpolating in the image plane

means. Note that the arguments presented here for 3 cameras can be extended to any number of

cameras.

An important early work by Ullman and Basri [13] shows the conditions under which linearly

interpolating orthographic views produces other veridical views in the context of model recognition.

9

Chen and Williams [3] used interpolation between range data to synthesise intermediate views and

again found that valid views are produced only under some circumstances. More recently Seitz and

Dyer [10] demonstrated that interpolating parallel camera images always produces valid in-between

views.

If we assume that the viewing distance is reasonably large with respect to the depth in the scene, which

is typically the case for 3D video sprites. Then the cameras can be approximated with an affine model

(see, e.g., [11]). Let us refer to figure 4 and consider a point P=[X Y Z 1]T in the space imaged by

three affine, uncalibrated cameras defined by affine projection matrices A0, A1 and A2. Each matrix is of

the form

and is scaled, without loss of generality, so that 34a = 1

The projections of a point P onto the image planes of the three cameras are given by

p0=[x0 y0 1]T=A0P

 p1=[x1 y1 1]T=A1P

 p2=[x2 y2 1]T=A2P

Let the interpolation of these three points in image plane co-ordinates be given by:

PAp

PAPAPAp

pppp

0

0s

2

21

21

))1)((1(

))1)((1(

=
++−−=

++−−=

s

s βααβ
βααβ

where

210s AAAA βααβ ++−−=))1)((1(.
















=

34

24232221

14131211

000 a

aaaa

aaaa

A

10

Thus interpolation in the image plane produces the same effect as having an another interpolated affine

camera As.

Since we do not use parallel camera rectification as in [9], we have to understand what an interpolated

affine camera matrix represents.

An affine transformation can be seen as a parametric mapping from 23 ℜ→ℜ

() ()yxzyxiii SSSttt ,,,,,,,, ψϑθAvAA ==

function of the camera reference frame orientation and position, plus a shearing and two scaling

components, respectively.

Now, since the transformation is linear in translation, scaling and shearing, if no rotation between the

cameras A0 , A1 and A2 is involved, As represents a perfectly valid new viewpoint V.

On the other hand, when rotation is involved this is no longer true. However, provided the relative

rotations between the cameras are small, there is a near-linear relationship between changes in the

elements of the affine matrices and changes in the gaze angles. Hence, under these conditions, in

general we can write:

()() ()() ()() ()()210s vvvAA βααβ βααβ ffff ++−−≈ 110

where ()ααf ()ββf are non-linear functions of α and β . Thus the synthesised viewpoint, neglecting

second order effects, simulates the camera on the hyper-plane through v0, v1 and v2.

5. Epipolar geometry

Each pair of cameras are related by an epipolar geometry [15]. This determines for each point in one

image the single epipolar line along which corresponding points must lie in the other. This in effect

reduces the matching problem between the images from 2D to 1D. Intuitively, the epipolar geometry

results from the fact that each point in the world forms a plane through the optic centres of each camera

and that plane intersects the imaging planes of each camera as a pair of corresponding epipolar lines. In

fact the whole set of epipolar lines corresponds to the set of planes that includes the axis connecting the

optical centres of each camera.

11

The epipolar geometry can be computed from the intrinsic and extrinsic parameters of the cameras but

in practice this involves complex calibration processes. We prefer direct computation of the epipolar

geometry from image data alone using the property that the relationship between two corresponding

points p0 and p1, extracted from images 0 and 1 respectively, is given by p1
T F01 p0 = 0 where F01 is the

so called Fundamental Matrix from images 0 to 1. The matrix F01 is a 3x3 matrix of rank 2 and relates

features in one image to the corresponding epipolar lines in the other. It has the form:

Given the fundamental matrix F01 relating a pair of images, then a point p0 in image 0 defines an

epipolar line e10 in image 1 (the double subscript indicates the epipolar in image 1 based upon image 0)

according to e10 = F01 p0 (such that the components of the vector e10 are (a, b, c) and define the line by

way of the equation ax + by + c = 0). Each and every point pi on the epipolar line e10 in image 1 defines

the same corresponding epipolar line in image 0 according to e01 = F10
 pi = F01

T pi.

In practice for subjects of limited depth with respect to viewing distance an affine form of the

fundamental matrix [11] is preferred.

In this case the epipolar lines are restricted to be parallel which is sufficient for the kind of image of

image geometries employed here (provided the overall depth variation is small).

Epipolar geometry need only be computed once for fixed geometry video sequences. We use the

method of Zhang & Deriche [16] to automatically extract epipolar information. The epipolar geometry

is used to allow us to match up the images properly rather than recover either 3D structure or

calibration parameters.
















=

13231

222221

131211

ff

fff

fff

F
















=

1

00

00

3231

22

13

ff

f

f

F

12

Figure 5: Blue Mask Rendering.

6. Raster rendering

Consider first just the edge around the blue screen mask. Matching and interpolating this corresponds,

approximately, to treating the viewed object as lying on a lamina surface. In the middle 2 images of

figure 5 consider the intersection of the red epipolar pair from images 0 and 1 with the outline masks. A

point p0 along the epipolar e01 on the boundary of the mask in image 0 will lie at the point along

epipolar line e10 in image 1 where it to intersects the boundary of the mask, call it p1. It follows that the

corresponding point in image 2 (at the top of figure 5) will lie at (or close to) the intersection of the

epipolar lines e20 and e21 that are defined by the points p0 and p1 respectively. In this way each point on

p0 p1

p2

e10e01

e12
e02

e21
e20

Image 0 Image 1

Image 2

13

the boundary in image 0 can be brought into correspondence with matching boundary points in each of

the other 2 images.

The viewpoint interpolation of boundary edge triples according to interpolation scheme outlined in

section 3.1 gives intermediate boundary representations such as the one shown at the bottom of figure 5

(obtained with interpolation parameters α=β=0.5). Also shown is a raster of a virtual image. The

interval of the raster within the boundary corresponds to a line in each of the primary images. The

respective locations of the start and end of this line are determined by the boundary locations whose

interpolation gave rise to the start and end of the raster interval itself. In general, these will be different

locations in each of the 3 images and will involve interpolation along the synthesised boundary to give

improved accuracy of location.

Rendering the virtual viewpoint based upon boundary information alone would introduce considerable

distortion. However internal edges tend to delimit regions of uniform intensity or slow intensity

variations. So provided that the order of edges is preserved along the raster of the virtual view (this is

the so-called monotonicity constraint of [9]) with respect to each of the original images then linear

interpolation between interpolated edges should be sufficient to preserve the intensity patterns of the

original.

Hence the interval between each successive pair of edge intersections within a raster in the virtual-

viewpoint sketch is filled using a combination of the image data obtained from corresponding intervals

in the primary images. A similar method was adopted by Seitz and Dyer [9] for binocular images

obtained from parallel camera geometries (obtained from more general viewing geometries by image

rectification), however it is not straightforward to extend their approach to situations involving more

than two cameras.

Figure 6 shows, in the bottom left image, a selected raster within a virtual viewpoint of which the

section between a pair of successive interpolated edges has been marked. In the top 3 images the

corresponding intervals in the primary images have also been marked. The algorithm uses an

intersection table to efficiently identify the projection of the raster interval with respect to the 3 original

14

views. This table is built incrementally during edge interpolation stage (Section 3.1). Each entry

consists of an edge intersection with respect to a raster of the virtual view and the co-ordinates of

corresponding points in each of the three views. The table is indexed spatially, ordered along the raster,

so that intervals are efficiently obtained from successive entries.

Figure 6: Edge Based Rendering.

Image 0 Image 1

Image 2

15

The rendered pixels in the raster interval are thus obtained by blending the pixels from the three

corresponding intervals in the primary images. As with standard image morphing techniques [14] the

blend of the pixel contributions from each of the three images is linearly weighted according to the

viewpoint parameter pair (α, β). Aliasing artefacts are reduced by using pixel-level bilinear interpolation

when sampling the primary images [14]. The rendered image is shown at the bottom right of figure 6.

7. Frequency controlled blending

It is possible for some small degree of matching and/or interpolation error to occur between the 3

views. This has the effect of blurring the virtual images as a result of image blending.

Alternatively we can eliminate blending and simply use the closest of the primary images as texture

data. This introduces influence zones with hard edges, for example if α and β are both less than 0.5 we

always use image 0 for texture mapping, if only α exceeds 0.5 we use only image 1 and whenever β

exceeds 0.5 we use only image 2. Whilst sharp definition is maintained in any given image this method

introduces unsightly transitions in image sequences as the parameters move from one influence zone to

another.

A computationally more expensive but visually pleasing compromise is to introduce a form of frequency

controlled blending. This employs the same influence zones as the single image approach but uses the

distance to the transition between zones to determine the contribution of each frequency. The method

follows the spline based image registration approach of Burt and Adelson [1].

In the method each image is represented by a stack of 4 frequency component images. These are

created by gaussian smoothing the original and subtracting to give a high frequency component and a

lower frequency residual (the smooth image). We start with a gaussian convolution profile with

standard deviation 2.0 pixels. The residual is then smoothed at twice the standard deviation and the

process repeated to give 4 images with a doubling of the smoothing factor between each. Summation of

the frequency component images will return us to the original.

16

The lowest frequency component (the final smoothed image) is blended linearly across the whole range

of (α, β) as with standard morphing method. The highest frequency, on the other hand, uses the step

transition approach. The intermediate frequencies transition over intermediate intervals. The lower of

the intermediate frequencies transitions linearly over half the interval (α, β between 0.25 and 0.75) and

the higher intermediate frequency transitions linearly over one quarter the interval (α, β between 0.375

and 0.625).

Figure 7: Standard blending on the left; frequency controlled blending on the right

This approach maintains high frequency components (and hence reduces blurring) while not introducing

unsightly transitions (spatial or intensity). Figure 7 shows how face detail is preserved when using

frequency controlled blending. Both images were obtained using interpolation parameters α=β=0.4.

8. Augmenting virtual worlds

We have experimented at combining virtual reality and video sprites using the viewpoint parameters

extracted at the start to provide the glue between the geometry of the virtual world and the

interpolation parameters of the sprite. Essentially we scale the sprite and position it within our virtual

3D world (e.g. anchoring it to one or two points in the scene). As we update our viewpoint with

respect to the 3D world we scale the sprite to mirror simple motion in Z and interpret changes in

orientation according to the image interpolation parameters they imply.

17

Figure 8 shows the simple geometry used in our experiments to relate the morph parameters (α, β) of

the video sprite to the orientation parameters of the 3D world. Given the baseline A between the optical

centers of cameras 0 and 1 and a viewing distance of D then from simple trigonometry (assuming

symmetric viewing conditions) we approximate the overall rotation of the subject between these

cameras as

We then relate α as a proportion the rotation θ about the axis perpendicular to the horizontal base

plane.

Figure 8: Estimating Orientation Parameters.

We then are able to relate the parameter β as a proportion of the overall rotation about the axis

perpendicular to a plane that passes through the line between the optical centre of camera 2 and the

point on the baseline implied by α (this axis is simple to compute but is algebraicly messy). The

magnitude of the overall rotation about this axis is given by:

()DA 2tan2 1−=θ

α

β

D
A

B

C

θ

18

The results of a side to side motion with respect to a juggling sprite are shown in figures 9 and 10 for 9

successive frames extracted from a 14 second video sequence. The frames in figure 9 show views of the

sprite video at approximately 0.1 degree intervals reconstructed at approximately the mid point

between cameras 0 and 1. The congruent set in figure 10 show the same sprite sequence superimposed

against a computer generated 3D backdrop.

Figure 9: Synthesised Video Sprite Frames

9. Summary

Image-based rendering has become a viable alternative to both 3D graphic modelling and rendering on

the one hand and the extraction of full range data and associated texture maps on the other. Its

potential for application covers diverse areas such as photo-realistic immersive environment creation,

()DCBA 2221)1()1(tan ααααϕ +−+−= −

19

entertainment and even graphics HW architectures themselves. Against this background, this paper

presented a method for the automatic generation of a new type of image based graphic object, which

we call a 3D video sprite. It lies part way between the traditional video layer technology used in the

digital video post-production industry and a full 3D graphic object. As such it would seem to form a

natural component to be implemented within the emerging MPEG 4 standard. 3D video sprites raise the

potential to create video objects with which it is possible to interact more fruitfully and the myriad of

applications that this presents.

Figure 10: Composite Video Sprite and 3D Graphic

I While for some applications it would be possible to derive 3D video sprites from multiple video

streams by employing manual mark up methods, we feel that only through the availability of fully

automatic methods of image matching will 3D video sprite technology be really viable. Because of the

well-known problem with getting dense (even using edges as we did) correspondences, our method

20

works best if the baseline between the cameras is reasonably small with respect to the viewing distance,

as this improves the quality of stereo matching and reduces the number and degree of occlusions. While

this means that the degree of interaction with the video sprite is currently rather limited it has allowed

us to demonstrate the potential of the approach. Improvements in image matching technology and the

potential for increasing the number and coverage of the video data would both help to improve the

effectiveness of the approach.

The image interpolation technique we use has a number of advantages, notably it uses a sketch

interpolation and colouring technique that makes it possible to apply the method to three or more

images and achieve fast rendering (a key factor if special HW is not available). The method has been

successfully applied to video sequences of animated objects (people). Each triplet of corresponding

frames is processed afresh to recover matched edge strings. The whole sequence is then played and the

viewpoint with respect to it changed in conjunction with a computer generated 3D graphic backdrop.

We are currently investigating better edge matching strategies, in particular investigating ways of

exploiting temporal consistency constraints (edge tracking) that could be used to improve quality and

matching speed, and ways of smoothly switching between image triples to achieve extended navigable

areas. We also recognise the need to achieve improved compression of the multiple video streams by

exploiting the redundancy of image data that exists between matching image regions of corresponding

frames. It is also important to minimise the not inconsiderable overhead of the morphing channel

through a suitable representation of the matched edge strings.

References

1. Burt, P.J. & Adelson, E.H., “A Multiresolution Spline with Application to Image Mosaics”, ACM

Trans. Graphics, Vol 2, No. 4, 217-236, 1983.

2. Chen, S.E., “QuickTime VR- An Image-Based Approach to Virtual Environment Navigation”,

Proc. SIGGRAPH 95. In Computer Graphics, pp29-38, 1995.

3. Chen, S.E. and Williams, L. “View interpolation for image synthesis”, Proc. SIGGRAPH 93. In

Computer Graphics, 279-288, 1993.

21

4. Greene, N., “Environment Mapping and Other Applications of Word Projections”, IEEE Computer

Graphics and Applications, Vol 6, No 11, pp 21-29, 1986.

5. Gortler, S.J, Grzeszczuk, Szeliski, R. & Cohen, M.F., “The Lumigraph”, SIGGRAPH 96, In

Computer Graphics, pp 31-42, 1996.

6. Kanade, T., Narayanan, P.J. & Rander, P.W., “Virtualised Reality: Concepts and Early Results”,

Proc. IEEE Workshop on Representation of Visual Scenes, pp 69-76, 1995.

7. Laveau, S & Faugeras, O., “3D Scene Representation as a Collection of Images and Fundamental

Matrices”, INRIA Tech Report 2205, February 1994.

8. Nayer, S.K., “Catapiopetric Omnidirectional Camera”, Proceedings of Computer Vision and

Pattern Recognition (CVPR), pp 482-488, 1997

9. By the authors, “Automatically Synthesising Virtual Viewpoint by Trinocular Image Interpolation”,

Submitted to IEEE CVPR 1998.

10. Seitz, S.M. & Dyer, C.R., “Physically-valid view synthesis by image interpolation”, In Proc. IEEE

Workshop on Representation of Visual Scenes, pp 18-25, 1995

11. Shapiro, L.S., Affine Analysis of Image Sequences, Cambridge University Press, 1995.

12. Szeliski, R., “Video Mosaics for Virtual Environments”, IEEE Computer Graphics and

Applications, 22-30, March 1996.

13. Ullman, S. & Basri, R., “Recognition by Linear Combinations of Models”, IEEE Trans. PAMI, Vol

13, No 10, pp 992-1006, 1991.

14. Wolberg, G., Digital Image Warping, IEEE Computer Society Press, 1990.

15. Xu, G. & Zhang, Z., Epipolar Geometry in Stereo, Motion and Object Recognition (A Unified

Approach), Kluwer Academic Press, 1996.

16. Zhang, Z. & Deriche, R., “A Robust Technique for Matching Two Uncalibrated Images Through

the Recovery of the Unknown Epipolar Geometry”, INRIA Tech. Rep. 2273, 1994.

