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Abstract

We analyse a generalization of Huffman coding to the quantum case. In par-

ticular, we notice various difficulties in using instantaneous codes for quantum
communication. However, for the storage of quantum information, we have
succeeded in constructing a Huffman-coding inspired quantum scheme. The
number of computational steps in the encoding and decoding processes of N
quantum signals can be made to be polynomial in log N by a massively par-
allel implementation of a quantum gate array. This is to be compared with
the O(N3) computational steps required in the sequential implementation
by Cleve and DiVincenzo of the well-known quantum noiseless block coding
scheme by Schumacher. The powers and limitations in using this scheme in
communication are also discussed.

I. INTRODUCTION

This paper is an attempt to find a source coding scheme analogous to Huffman coding
in the classical source coding theory. Let us recapitulate the result in a classical theory.
Consider the simple example of a memoryless source that emits a sequence of independent,
identically distributed signals each of which is chosen from a list w;, ws, - - -, w, with prob-
abilities pi, pa, -+, pn. The task of source coding is to store such signals with a minimal
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amount of resources. In classical information theory, resources are measured in bits. The
standard coding scheme to use is the Huffman coding algorithm. Apart from being highly
efficient, it has the advantage of being instantaneous, i.e., unlike block coding schemes, the
encoding and decoding of each signal can be done immediately. Note also that codewords
of variable lengths are used to achieve efficiency. As we will see below, these two features—
instantaneousness and variable length—of Huffman coding are difficult to generalize to the
quantum case.

In the quantum case, we are given a quantum source which emits a time sequence of
independent identically distributed pure state quantum signals each of which is chosen from
|u1), [ug), - - - |um) with probabilities g1, gs - - -, gm respectively. Notice that |u;)’s are normal-
ized (i.e., unit vectors) but not necessarily orthogonal to each other.! The goal of quantum
source coding is to minimize the number of dimensions of the Hilbert space needed for the
faithful noiseless encoding of quantum signals. It is convenient to measure the dimensionality
of a Hilbert space in terms of the number of qubits (i.e., quantum bits).

II. DIFFICULTIES IN A QUANTUM GENERALIZATION

To illustrate the difficulties involved, we shall first attempt a naive generalization of
Huffman coding to the quantum case.? Consider the density matrix for each signal p =
> g;lu;)(u;| and diagonalize it into

p= szl¢z)<¢z| ) (1)

where |¢;) is an eigenstate and the eigenvalues p;’s are arranged in decreasing order. Huffman
coding of a corresponding classical source with the same probability distribution p;’s allows
one to construct a one-to-one correspondence between Huffman codewords h; and the eigen-
states |¢;). Any input quantum state |u;) may now be written as a sum over the complete
set |¢;). Remarkably, this means that the length of each signal is a quantum mechanical
variable with its value in a superposition of the length eigenstates. It is not clear what this
really means nor how to deal with such an object. If one performs a measurement on the
length variable, irreversible changes to the N signals will be introduced which disastrously
reduce the fidelity. For a pure input state |a;), the fidelity of the output B; is defined as the
probability for it to pass a yes/no test of being the state |a;). Mathematically, it is given by
(a;|Bila;) [6].

Therefore, to faithfully encode the signals, the sender and the receiver are forbidden to
measure the length of each signal. We emphasize that this difficulty—that the sender is

1Classical coding theory can be regarded as a special case when the signals |u;)’s are orthogonal.

2The most well-known quantum source coding scheme is a block coding scheme [1,2]. [The converse
of this coding theorem was proven rigorously in [3].] To encode N signals sequentially, it requires
O(N?) computational steps [4]. The encoding and decoding processes are far from instantaneous.
Moreover, the lengths of all the codewords are the same.



ignorant of the length of the signals to be sent—is, in fact, very general. It appears in any
distributed scheme of quantum computation. It is also highly analogous to the synchro-
nization problem [5] in the execution of subroutines in a quantum computer: A quantum
computer program runs various computational paths simultaneously. Different computa-
tional paths may take different numbers of computational steps. A quantum computer is,
therefore, generally unsure whether a subroutine has been completed or not. We do not have
a satisfactory resolution to those subtle issues in the general case. Of course, the sender can
always avoid this problem by adding redundancies. However, such a prescription is highly
inefficient and is self-defeating for our purpose of efficient quantum coding. For this reason,
we reject such a prescription in our current discussion.

In the hope of saving resources, the natural next step to try is to stack the signals in
line in a single-tape during the transmission. To greatly simplify our discussion we shall
suppose that the read/write head of the machine is quantum mechanical with its location
given by an internal state of the machine (this head location could be thought of as being
specified on a separate tape). But then the second problem arises. Assuming a fixed speed
of transmission, the receiver can never be sure when a particular signal, say the seventh
signal, arrives. This is because the total length of the signals up to that point (from the first
to seventh signals) is a quantum mechanical variable (i.e., it is in a superposition of many
possible values). Therefore, Bob generally has a hard time in deciding when would be the
correct instant to decode the seventh signal in an instantaneous quantum code.

Let us suppose that the above problem can be solved. For example, Bob may wait “long
enough” before performing any measurements. We argue that there remains a third difficulty
which is fatal for instantaneous quantum codes—that the head location of the encoder is
entangled with the total length of the signals. If the decoder consumes the quantum signal
(i.e., performs measurements on the signals) before the encoding is completed, the record
of the total length of the signals in the encoder head will destroy quantum coherence. This
decoherence effect is physically the same as a “which path” measurement that destroys the
interference pattern in a double-slit experiment. One can also understand this effect simply
by considering an example of N copies of a state a|0) + b|1). It is easy to show that if the
encoder couples an encoder head to the system and keeps a record of the total number of
zeroes, the state of each signal will become impure. Consequently, the fidelity between the
input and the output is rather poor.

III. STORAGE OF QUANTUM SIGNALS

Notice that the above problem is due to the requirement of instantaneousness. It would
be helpful to have a general theorem to quantify the difficulties involved. Having failed that,
we simply drop the requirement of instantaneousness and consider a simpler problem—the
storage of quantum signals using a quantum analog of the Huffman coding algorithm. In
this case, the decoding does not start until the whole encoding process is done and the code
is not instantaneous in any sense. This immediately gets rid of the second (namely, when
to decode) and third (namely, the record in the encoder head) problems mentioned in the
last section. However, the first problem reappears in a new incarnation: The total length of
say N signals is unknown and the encoder is not sure about the number of qubits that he
should use.



A solution to this problem is to use essentially the law of large numbers. If IV is large, then
asymptotically the length variable of the IV signals has a probability amplitude concentrated
in the subspace of values between N(L — §) and N(L + §) for any 6 > 0 [1-3]. One can,
therefore, truncate the signal tape into one with a fized length say N(L + 6). [‘0’s can be
padded to the end of the tape to make up the number if necessary.] Of course, the whole tape
is not of variable length anymore. Nonetheless, we will now demonstrate that this tape can be
a useful component of a new coding scheme—which we shall call quantum Huffman coding—
that shares many of the advantages of Huffman coding over block coding. In particular,
assuming that quantum gates can be applied in parallel, the encoding and decoding of
quantum Huffman coding can be done efficiently. While a sequential implementation of
quantum source block coding [1-3] for N signals requires O(N?) computational steps [4], a
parallel implementation of quantum Huffman coding takes only O((log N)®) steps for some
positive integer a.

We will now describe our new coding scheme, quantum Huffman coding, for the stor-
age of quantum signals. As before, we consider a quantum source emitting a sequence of
independent identically distributed quantum signals with a density matrix for each signal
shown in Eq. (1) where p;’s are the eigenvalues. Considering Huffman coding for a classical
source with probabilities p;’s allows one to construct a one-to-one correspondence between
Huffman codewords h; and the eigenstates |¢;). For parallel implementation, we find it
useful to represent |¢;) by two pieces,® the first being the Huffman codeword, padded by
the appropriate number of zeroes to make it into constant length,* |0---0h;), the second
being the length of the Huffman codeword, |I;), where I; = length(h;). We also pad zeroes
to the second piece so that it becomes of fixed length [loglynax| Where lpay is the length of
the longest Huffman codeword. Therefore, |¢;) is mapped into |0- - - 0h;)|/;). Notice that the
length of the second tape is [log lyax| Which is generally small compared to n. The usage of
the second tape is a small price to pay for parallel implementation.

A. Encoding

In this Section, we use the model of a quantum gate array for quantum computation.
Now given N = 2" independent signals, the encoding can be done simply by divide-and-
conquer. The first step is the merging of two signals into a single message. Let us introduce
a message tape. For simplicity, we simply denote |0---0h;,) by |h1), etc.

|Ba)li1) o) |12)10) ape
)]0 )2 [0 O
= 10) 11 ha) i) [h10 - O)eape

3The second piece contains no new information. However, it is useful for a massively parallel
implementation of the shifting operations, which are an important component in our construction.

4The encoding process to be discussed below will allow us to reduce the total length needed for
N signals.



Sw'a 10>|l1>|0>|l2> ’hlo"'0h2>tape
S 10)11)[0)]2) 1h1/20 - - O)cape - (2)

We remark that the swap operation between any two qubits can be done efficiently by
using an array of three XOR’s with the two qubits alternately used as the control and the
target. What is not entirely obvious to show is that the quantum shift operations in steps
2 and 4 can be efficiently implemented in parallel in a quantum gate array model. [We will
discuss this point in the Appendix.] Now the encoder keeps the original length tape for each
signal as well as the message tape for two messages, i.e., |l1)|l2)|h1h20 - - - 0)ape. Notice that
it is relatively fast to compute the length I; + 5 of the two messages from [; and l;. This
completes our discussion on how to merge two messages into one in polynomial time.

Without much loss of generality, we suppose that the total number of messages is N = 2"
for some positive integer 7. We propose to encode by divide and conquer. Firstly, we divide
the messages into pairs and apply the above merging procedure to each pair. The merging
effectively reduces the total number of messages to 2"~!. We can repeat the above process.
Therefore, after r applications of the merging procedure, we obtain a single tape containing
all the messages (in addition to the various length tapes containing the length information).

More concretely, at the end the encoder obtains |l3)|la) - - - [In)|h1hg - - - AnO - - - 0)tape In
only O((log N)*) computational steps for some positive integer a. Finally, the encoder
truncates the message tape: He keeps only say the first N(L +§) qubits in the message tape
|hiha -+ - hnO---0)tape for some 6 > 0 and throws away the other qubits. This truncation
minimizes the number of qubits needed. The only overhead cost compared to the classical
case is the storage of the length tapes of the individual signals. This takes only N [log lyax |
qubits.®

B. Decoding

Decoding can be done by adding an appropriate number of qubits in the zero state |0)
behind the truncated message tape and simply running the encoding process backwards
(again with only O((log N)*) computational steps).

What about fidelity? The key observation is the following: Just like the case of Schu-
macher’s noiseless quantum coding theorem [1-3], the “typical” space is contained in the
tensor product space of the stored qubits, (i.e., the first N(L + &) qubits) with a fized state
|0---0) for the remaining qubits. Therefore, the truncation and subsequent replacement of
the discarded portion by |0---0) still lead to a high fidelity in the decoding.

In conclusion, we have constructed an explicit parallel encoding and decoding scheme for
the storage of N independent and identically distributed quantum signals that asymptoti-
cally uses only O((log N)®) computational steps and N (L + 6 + [log lmax]) qubits for storage
where L is the average length of the Huffman coding for the classical coding problem for the

SFurther optimization may be possible. For instance, if loglnax is large, one can save storage
space by repeating the procedure, i.e., one can now use quantum Huffman coding for the problem
of storing the quantum signals |/;)s.



set of probabilities given by the eigenvalues of the density matrix of each signal. Here ¢ can
be any positive number and I,y is the length of the longest Huffman codeword.

IV. COMMUNICATION

We now attempt to use the quantum Huffman coding for communication rather than for
storage of quantum signals. By communication, we assume that Alice receives the signals
one by one from a source and is compelled to encode them one by one. As we will show
below, the number of qubits required is slightly more, namely N(L + § + 2[loglmax]). The
code that we will construct is not instantaneous, but Alice and Bob can pay a small penalty
in stopping the transmission any time.

A. Encoding

The encoding algorithm is similar to that of Section 3 except that the signals are encoded
one by one. More concretely, it is done through alternating applications of the swap and
shift operations.

)1 R2)|l2) -« - [hav) 1) 10 ape
== 10) 1) ha)lle) - - [Bn)In) [0 - - Oy Yyape
S 1011 A2 [12) -+ | )| in) [h10 - - O ape
=28 10)]1)[0)|12) < - - |[An)[In) |h10 - - - ORg)iape
B 10)[11)|0)|E2) - - - [hav)|Iw) [hrha0 - - 0)gape

3 10) 1[0} 1) -+ 0) 1) Vhsha- -0+ O)rape (3)

Even though the encoding of signals themselves are done one-by-one, the shifting op-
eration can be speeded up by parallel computation. Indeed, as shown in the Appendix, a
parallel implementation can achieve the shifting operation in O((log N)*) steps. If a sequen-
tial implementation is used instead, the shifting operation still requires only O(N (log N)?)
steps for the following reason. At each time step of a parallel implementation, only O(N)
steps are implemented. Since there are only O((logN)®) steps in a parallel implementa-
tion of the shifting operation, multiplying the two gives O(N (log N)*) steps for a sequential
implementation of a shifting operation.

Now the encoding of the IV signals in quantum communication is done sequentially,
implying O(N) applications of the shifting operation. Therefore, with a parallel imple-
mentation of the shifting operation, the whole process takes O(N(log N)?) steps. With a
sequential implementation, it takes O(N?(log N)?) steps.

B. Transmission

Notice that the message is written on the message tape from left to right. Moreover,
starting from left to right, the state of each qubit once written remains unchanged throughout
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the encoding process. This decoupling effect suggests that rather than waiting for the
completion of the whole encoding process, the sender, Alice, can start the transmission
immediately after the encoding. For instance, after encoding the first r signals, Alice is
absolutely sure that at least the first rLy, (where Lp;, is the minimal length of each
codeword) qubits on the tape have already been written. She is free to send those qubits
to Bob immediately. There is no penalty for such a transmission because it is easy to see
that the remaining encoding process requires no help from Bob at all. [Note that in the
asymptotic limit of large r, after encoding r signals, Alice can even send r(L — €) qubits for
any € > 0 to Bob without worrying about fidelity.]

In this scheme for communication, we propose that Alice makes a duplicate of the length

tape for each signal, i.e., she evolves

|Li) ® |0)
— |L) ® |li) (4)

and sends a copy to Bob immediately afterwards. Therefore, an additional number of
NTlog lmax| qubits are needed for communication in comparison to storage.

C. Decoding

With the length information of each signal and the received qubits, Bob can start the
decoding process before the whole transmission is complete provided that he does not perform
any measurement at this moment. For instance, having received r Ly, qubits in the message
tape from Alice, Bob is almost sure that at least s = |7 Lmin/Lmax| signals have already
arrived. He can decode those signals immediately using the length information of each
signal. This decoding process is rather straightforward and we will skip its description here.

D. Measurements

The important observation is, however, the following: If Bob were to perform a measure-
ment on his signals now, he would find that his signals are of poor fidelity. The reason behind
this has already been noted in Section 2. Even though the subsequent encoding process does
not involve Bob’s system, there is still entanglement between Alice and Bob’s systems. More
specifically, the shifting operations in the remaining encoding process by Alice require ex-
plicitly the information on the total length of decoded signals. Before Bob performs any
measurement on his decoded signals, it is, therefore, crucial for Alice to disentangle her
system first.

Suppose in the middle of their communication in which Bob has already received KL
qubits from Alice, Bob suddenly would like to perform a measurement on his signals. He
shall first inform Alice of his intention. Afterwards, one way to proceed is the following: They
choose some convenient point, say the m-th signal, to stop and consider quantum Huffman
coding for only the first m signals and complete the encoding and decoding processes.

We shall consider two subcases. In the first subcase, the number m is chosen such that
the m-th signal is most likely still in the sender (Alice)’s hands. [e.g. m > K + O(VK) in
the asymptotic limit.] The sender Alice now disentangles the remaining signal from the first

7



m quantum signals by applying a quantum shifting operation. She can now complete the
encoding process for quantum Huffman coding of the m signals and send any un-transmitted
qubits to Bob. In the asymptotic limit of large K, O(y/m) qubits of forward transmission
(from Alice to Bob) are needed. (The number of computational steps needed is polynomial
in logm if a parallel implementation of a quantum gate array is used.)

In the second subcase, the number m is chosen such that the m-th signal is most likely
already in the receiver (Bob)’s hands. [e.g. m < K — O(v/K) in the asymptotic limit.] The
receiver Bob now attempts to disentangle the remaining signals from the first m quantum
signals by applying a quantum shifting operation. Of course, he needs to shift some of his
qubits back to Alice. This asymptotically amounts to O(y/m) qubits of backward commu-
nication. This is a penalty one must pay for this method. We remark that the shifting
operation can be done rather easily in distributed quantum computation between Alice and
Bob. This is a non-trivial observation because the number of qubits to be shifted from
Alice to Bob is itself a quantum mechanical variable. This, however, does not create much
problem. Bob can always communicate with Alice using a bus of fixed length. For example,
he applies local operations to swap the desired quantum superposition of various numbers
of qubits from his tape to the bus, sends such a bus to Alice, etc.

In the above discussion, we have focused on the simple case when Bob would like to
perform a measurement on the whole set of the first m signals. Suppose Bob is interested
only in a particular signal say the m-th one, but not the others. There exists a more efficient
scheme for doing it. We shall skip the discussion here.

V. CONCLUDING REMARKS

We have successfully constructed a Huffman-coding inspired scheme for the storage of
quantum information. Our scheme is highly efficient. The encoding and decoding processes
of N quantum signals can be done in parallel in computational steps polynomial in log N.
(If parallel machines are unavailable, as shown in subsection IV A our encoding scheme
will still take only O(N?(log N)®) computational steps for a sequential implementation. In
contrast, a naive implementation of Schumacher’s scheme will require O(N?) computational
steps.) This massive parallelism is possible because we explicitly use another tape to store
the length information of the individual signals. The storage space needed is asymptotically
N(L + 6 + [loglmax]) where L is the average length of the corresponding classical Huffman
coding problem for the density matrix in the diagonal form, § is an arbitrary small positive
number and [,,, is the length of the longest Huffman codeword.

We also considered the problem of using quantum Huffman coding for communication in
which case Alice encodes the signals one by one. N(L + d + 2[loglnax|) qubits are needed.
With a parallel implementation of the shifting operation, O(N (log N)*) computational steps
are needed. On the other hand, with a sequential implementation, O(N?(log N)?) compu-
tational steps are needed. In either case, the code is not instantaneous, but, by paying a
small penalty in terms of communication and computational costs, Alice and Bob has the
option of stopping the transmission and Bob may then start measuring his signals.

More specifically, while the receiver Bob is free to decode the signals, he is not allowed
to measure them until the sender Alice has completed the encoding process. This is because
Alice’s encoder head generally contains the information of the total length of the signals. In



other words, its state is entangled with Bob’s signals. Therefore, whenever Bob would like
to perform a measurement, he should first inform Alice and the two should proceed with
disentanglement. We present two alternative methods of achieving such disentanglement at
small penalties of communication and computational costs.

Since real communication channels are always noisy, in actual implementation source
coding is always followed by encoding into an error correcting code. Following the pioneering
work by Shor [7] and independently by Steane [8], various quantum error correcting codes
have been constructed. We remark that quantum Huffman coding algorithm (even the
version for communication) can be immediately combined with the encoding process of a
quantum error correcting code for efficient communication through a noisy channel.

As quantum information is fragile against noises in the environment, it may be useful
to work out a fault-tolerant procedure for quantum source coding. The generalizations
of other classical coding schemes to the quantum case are also interesting. According to
M. A. Nielsen, there exist universal quantum data compression schemes motivated by the
well-known Lempel-Ziv compression algorithm for classical information [9].

Notes Added: After the completion of this work, we were informed by A. M. Steane that
our work overlaps with some unpublished work by B. Schumacher [10]. We thank A. M.
Steane for bringing this to our attention and B. Schumacher for helpful conversations.
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APPENDIX: SHIFTING

The efficiency of the encoding and decoding processes of quantum Huffman coding pre-
sented in this paper relies heavily on an efficient algorithm for quantum shifting. Here we
will first demonstrate an efficient (i.e., polynomial in log N) classical algorithm for shifting
N = 2% objects in a circle by one position. Afterwards, we generalize it to a shift by an
arbitrary number of positions. Finally, we discuss its generalization to the quantum case.

First, consider a shift of 2¥ objects by one position. Our algorithm is best understood
by an example. Suppose eight objects (i.e., kK = 3) labelled by 1,2,---,8 arranged in a line.
The first step is a parallel implementation of the interchange operations of neighbouring
objects (1 2), (3 4), (5 6) and (7 8). This maps the line 12345678 — 21436587. The second
step is a parallel implementation of (1 3) and (5 7). This maps 21436587 — 23416785. The
final step is (1 5), which maps 23416785 — 23456781. Therefore, in log8 = 3 steps we have
succeeded in shifting 8 objects by one position. Now, it is simple to construct an algorithm
for shifting 2% objects by 2¢ positions using only k — i steps: One just divides the objects
into 2¢ subsets according to their values modulo 2¢ and applies the shifting by one step on
each of the individual 2 subsets containing 2¥~* objects.



Now, for a general shift by r positions, one simply expands r in binary. A sequence of
shifting operations by 2¢ is now applied for those non-zero entries in the binary expansion.
Hence, at most (log N)? parallel computational steps are needed.

One can generalize the classical shifting algorithm to a quantum one by adding a control
to each shifting (by 2¢) operation. We remark that, since the length tapes |l;) contain all the
information on the amount of shifting needed, a parallel implementation is feasible. This is
the key reason why we insist on retaining the length tapes in the first place.
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