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VLIW, registers, CPUs with a large amount of instruction-level parallelism must
clustering, compilers, carry out many register accesses each cycle. Eventually this
EPIC, leads to severe hardware bottlenecks and a loss of cycle time. A
scheduling solution that has been proposed and implemented a few times

is ‘tlustering” Clustered ILP CPUs have several groups of
hardware each consisting of a register bank and one or more
functional units. Functional units may only access registers in
their associated bank. To access registers in other banks,
explicit or implicit intercluster moves must be made while a
program is running.

CPUs offer ILP in a great variety of ways, and thus there are
many different ways clustering may be carried out. However it
is done, clustering represents a tradeoff between cycle speed
and cycle count: it will take more cycles to execute a program
on a clustered CPU than a single clustered CPU with the same
functional units and total number of registers, but the clustered
CPU will have a faster clock. We measure here the cost of
clustering on multiple cluster VLIW architectures, particularly
using a new algorithm called Partial Component Clustering.

Remarkably, the experiments reported here suggest the same
ballpark results seen in very different environments. Indeed,
the results seem similar across strikingly different
architectures, layout algorithms, benchmarks, and degrees of
ILP. As a rule of thumb, breaking the CPU into two clusters
costs somewhere around 15-20% lost cycles; four clusters costs
around 25-30%. As feature sizes of microprocessors decrease in
relation to communication costs, these numbers are likely to
strongly favor the use of clustering, at least for CPUs which
execute applications with large amounts of ILP.
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1 Introduction

Instruction-level parallel (ILP) architectures using VLIW and superscalar design
styles achieve their high-performance by issuing multiple overlapped operations.
With the increased capability of overlapping operations comes the increased need to
supply register bandwidth, since a typical operation requires 3 register accesses.
Thus a 4-issue superscalar CPU might require 12 register accesses per cycle; a 12-
1ssue VLIW media processor might require 36 accesses per cycle.

Eventually the access time to and from a central register file becomes the critical
path in the cycle time of the processor. The bottlenecks are due to the combined
effects of:

> Register access time,
» Silicon area for address decoders and data routers,
> The additional instruction bits for register specifiers and

> The distance of a central register file to the numerous consumers and producers
of data.

» Bypassing logic, which grows with the square of the number of readers and
writers.

In today's technology, these bottlenecks are likely to become serious somewhere
between the register requirements of the two examples above: a 4-issue CPU and a
12-1ssue CPU.

1.1 “Clustered” Architectures

A very natural solution to these problems is “clustering”. A typical clustered
architecture's datapath has several groupings, identical in structure or possibly
somewhat different, each consisting of a register bank and one or more functional
units. Functional units most efficiently access registers in their associated bank. To
access registers in other banks, explicit or implicit intercluster moves must be made
while a program is running. Figure 1 (b) shows a 4-issue ILP datapath having a 8-
read, 4-write central register, while Figure 1 (a) shows a similar 4-issue ILP
datapath, but now having 2 clusters of 2 function units and one register bank each.
There 1s, additionally, an “intercluster bus” or some other form of communication,
used to move date between clusters.

Note that clusters neatly solve all of the problems listed above. By having smaller
register banks and fewer addresses to decode, we get faster access times. The
specification of which cluster is being addressed may be made once in the
mstruction, rather than in each reference, potentially saving instruction bits. (As



discussed below, a superscalar may or may not yield this particular savings, while a
VLIW is likely to implicitly specify the cluster in the placement of the operation
within an instruction, saving even more instruction bits.) Register files can be
located near to their consumers and producers of data. In short, we get potentially
greater parallelism in a more scalable manner. Clustered architectures also address
the bypassing problem, since the number of fully connected units (i.e. the pairs of
writers-readers that have to be bypassed) 1s reduced. This enormous advantage is
often overlooked in discussion of the desirability of clustering.
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Figure 1. Two possible organizations of a 4-unit machine: 4-unit 2-cluster (a)
or 4-unit 1 cluster (b). Configuration (a) requires building two register files,
each of them with 4 read ports and 2 write ports. Configuration (b) requires
building one register file with 8 read ports and 4 write ports. For the
clustered architectures, we assume to share one read port and one write
port per cluster for intercluster communication.



But things rarely come for free. The need for intercluster moves brings its own
potential problems. When the intercluster moves are architecturally visible, there
are systems issues, which we discuss below. But in any case there will be:

» Lost performance due to cycles devoted to intercluster moves, or due to the
unbalanced or poor use of the clusters.

> Hardware bus and port costs in supporting intercluster moves and

> Hardware or compile-time costs of algorithms that lay out data in order to
minimize intercluster moves and/or unbalanced use of the clusters.

1.2 Past Use of Clustering and Similar Techniques

Clustered instruction-level parallel implementations were first suggested and
named as such, as far as we know, in [1]. There have been implementations in the
form of a VLIW (the Multiflow Trace [13]) and, to a very limited extent, in at least
one superscalar processor (the DEC 21264, [2]). Several papers have investigated
the effects of clustering in VLIWs and similar architectures (see, for example, [3] [4]
[5] [6]), and in superscalars (the most thorough being [7]). We cover the
experimental results in some of these papers below, most notably [7], and compare
them with our own. Interestingly, the results seem far more consistent across
experiments than results usually are in computer systems work. Indeed, the results
seem 1nvariant across strikingly different architectures, layout algorithms,
benchmarks, and degrees of ILP. The results are consistent enough that we believe
some rules of thumb can characterize the number of extra cycles due to clustering,
and we do so below.

The clustering technique is in some ways similar to several other tried-and-true
CPU techniques. A trick to improve cache performance is to divide it into two
caches, one for data and one for instructions. This technique, referred to as a
“Harvard Architecture”, allows not only the kinds of advantages listed above, but
allows also for asymmetric caches, built to handle the two different types of cached
objects. Similarly, several architectures divide the integer and floating point
register banks, yielding what may be thought of as a floating point cluster and an
mteger cluster. Finally, the concept of decoupled access/execute [8] again divides the
hardware, this time between memory oriented operations and non-memory
operations. These techniques do not suffer the potential problem of clustering. They
all deal with fundamentally different data types, thus they are taking a hardware
data structure and dividing it into two structures containing distinct data. In
clustering we are taking a structure with a single data type and no major difference
in functionality and dividing it into several pieces.



1.3 Minimizing Performance Loss Due To Clusters

We have not yet discussed the different ways in which different systems cause data
to end up in a particular cluster's register bank, or how a particular function unit is
assigned to carry out an operation. It is intuitively clear, however, that if data is
laid out poorly, intercluster moves will ruin the performance advantages of
clustering, and will reduce instruction-level parallelism. Alternatively, if it is
possible to lay data out cleverly enough that few intercluster moves are required,
there might be an insignificant loss of cycles, and it might be possible to get by with
a minimal bus structure to support the few moves. But life isn't as simple as one
might wish: good schedules might require us to move data around far more than is
minimally required for correctness. One can see this easily by recognizing that code
could be laid out to occupy only a single cluster, eliminating the need for any
intercluster moves whatsoever. It is intuitively obvious (and measured below) that
this i1s a bad idea when the ILP gets even a little beyond the resources available in
the single cluster. Thus, as we explain in more detail below, laying out the code for
a clustered architecture is a subtle and potentially difficult process.

This paper, then, 1s an investigation into how one might get the advantages of
clustered architectures—and those are big advantages—while laying out the data to
produce a computation that runs as fast as possible. In the next section we describe
briefly architectural issues in clustered architectures. Following that, we report on
experiments that quantify, at least in one system, the greater need for registers as
ILP increases. Finally, we present a new clustering algorithm, “Partial Component
Clustering” (PCC) and compare its performance with another algorithm, that used
in the Multiflow commercial VLIW compiler. From these results, and others in the
literature, we deduce what we believe to be generally applicable principles.

2 Clustered Architectures and Intercluster Moves

2.1 Clustered VLIW Architectures

It 1s very straightforward to implement a VLIW-style architecture with clustering.
Hardware structures are usually exposed to the compiler, and code is typically
recompiled to match the hardware exactly. Thus it is easy to build in specific MOVE
instructions, and to ask the compiler's code generator to specify the moves whenever
it generates code for an operation whose operands and functional unit are not all in
the same cluster.

In a CPU with four clusters, numbered 0-3, each containing a 64 register bank and
two ALUs, the code generator might find it wants to add two values found in one
cluster, and add that sum to a value found in another cluster. The operations the
code generator might want to use to carry this out might be:



ADD2.1 R165 <- R160, R161
ADDO. 0 R5B9 <- R12, R165

where, for example, ADD2.1 means adder number 1 in cluster 2. Notice that the
second add requires a source value in cluster 2 and another source value in cluster
0, putting its result in cluster 0. Thus the compiler cannot simply issue this
sequence, since the adder in cluster O cannot reference the value in R165. Instead,
the code generator might generate the instructions:

ADD2. 1 R165 <- R160, R161
MOVE R58 <- R165
ADDO. 0 R59 <- R12, R58

If the second add i1s not on the critical path of the computation, and there are
sufficient instruction-level parallel resources to carry out the move early enough,
then the move can often be done for “free”—i.e. without increasing the schedule
length.

2.2 Clustered Superscalar Architectures

Unlike VLIWSs, superscalar implementations usually have significant artifacts that
are not visible on the architectural level. Clustering can be one of those artifacts:
superscalar hardware typically has the ability to adjust the schedule at run time.
The ways in which schedules are rearranged varies significantly from
1mplementation to implementation, thus there are a great many variants on how a
superscalar-style processor could deal with clustering. We are not aware of any
clustered superscalar processors that have been built except for the Alpha 21264
(which keeps its register banks synchronized), nor designed in any detail, except for
the Multicluster Architecture. We believe, however, that if and when it is practical
to solve the other problems involved in building a superscalar with enough ILP to
warrant clusters, then clusters are probably the right choice.

The datapath of a clustered superscalar can be similar to that of a clustered VLIW.
Once again, we have functional units whose operands must come from the register
bank in the same cluster. And, once again, intercluster moves must support the
situation in which data must be moved to the proper cluster. In this case, however,
the code generator doesn't place an explicit move operation in the code. Instead the
runtime hardware detects the need for the move, and moves the data as and when
required. It doesn't have to do what is done in a VLIW: move the data to a register
in the proper cluster. More likely, the data would be moved to a register staging
area, similar to or perhaps shared with bypass queues in the proper cluster.

Thus the hardware can follow a very simple algorithm when decoding an operation:



1. For each source value found in a cluster different from the destination, issue a
move to place the value into the input queue of the destination’s cluster.

2. Dispatch the operation to a functional unit in the destination register's cluster .

To execute the same sequence just seen, the following would happen:

ADD R165 <- R160, RI161 /* Addition done on an adder in cluster 2 */
NOP /* R165 noved to cluster O input queue */
ADD R59 <-R12, ‘R165’ /* Addition done on an adder in cluster 0 */

Compared to the explicit register target of a VLIW, this lowers register pressure. As
with a VLIW, the hardware might be able to do the intercluster move in parallel
with other operations.

Figure 1 shows the datapath as we have described it. In the simplest case, the
superscalar's additional hardware control is minimal: it merely has to assure that
the need for an intercluster move is detected and the move is issued.

We discuss below the implications of such a simple system, in terms of how many
intercluster moves would be required, but there are two ways in which a
superscalar system could reduce the number of intercluster moves below the level
that this simplest case implies:

1. As is required with a VLIW, but optional with a superscalar, a compiler could
rearrange the code with that superscalar's topology in mind before it is handed
to the system. This flies somewhat in the face of superscalar philosophy,
however, in that a system with different clustering would require a different set
of register and functional unit assignments.

2. More compatible with superscalar philosophy, one could build a superscalar that
tries to minimize intercluster moves in its assignment of architectural registers
to physical registers, and in its selection of functional units. This would be done
at instruction dispatch time, and is described in more detail in the next section.

In the Multicluster Architecture, both of these are proposed.

2.3 A More Complex Clustered Superscalar

Superscalar processors have already been built with extremely complex control
units (see, for example, [9] and [2]). Given that complexity, there are very many
variants on how one might build a control unit which tries to minimize intercluster
moves. A satisfying discussion of adding clustering to a complex superscalar would
be well beyond the scope of this paper—such a discussion, for one set of choices,
appears in [7]. Instead, we will outline some of the considerations involved in one
particular aspect of superscalar design, namely “register renaming”, which could
enable more effective use of clustering than within a simple superscalar. A
superscalar utilizes register renaming when it maps an “architectural register”,



that 1s, one referenced in the object code, into a physical register. The physical
registers may differ in number and structure from the model given in the
architecture, as long as runtime hardware consistently keeps things straight.

Register renaming is used in ambitious superscalars to reduce false dependence
relationships caused when different logical data is mapped into the same register. It
1s particularly effective when there can be many more physical than architectural
registers. Similarly, a clustered superscalar could use register renaming to change
the clusters in which computations are done. In that case, runtime hardware could
examine the program as it’s being issued and could map architectural registers to
physical registers in such a way as to minimize computation time.

For example, suppose the lines of code shown above continued with a third
operation as follows:

ADD R165 <- R160, R161
ADD R59 <- R12, RI165
ADD R166 <- R161, R59

Unless the value put in R59 by the second operation is used extensively in cluster 0
soon after, it would make sense to do the second operation on cluster 2 rather than
cluster 0, which is what the simple algorithm above implies. To accomplish this, the
superscalar dispatch hardware might decide to map R12 into a physical register in
cluster 2. This might require the control hardware to issue a move, if the data in
R12 was created in cluster 0, but it could create a more balanced computation with
a shorter critical path and fewer moves.

Such a scheme 1s given in detail in [7]. We report below on experiments that
measure the effectiveness of more sophisticated register mapping algorithms to
shorten computations on clustered architectures. However, we did not attempt to
use our benchmarks, which are very different and contain far more ILP than those
in [7], to characterize algorithms that might be practical to implement in runtime
hardware.

3 Tools and Benchmarks

3.1 The Benchmark Suite

For our experiments we selected a set of six integer benchmarks representing
typical media-intensive processing task. The reason for the choice—as opposed to
more traditional workload like SPEC—is due to the fact that we are interested in
applications that show significant amount of ILP and are at the same time
interesting from an industrial perspective. So we decided to pick a set of important
applications that handle and transform multi-media data and we hand tuned the



sources to make them more suitable for our compiler technology. Hand tuning refers
simply to identifying the most important code segments (typically loops), and
annotating them with proper directives to guide the compiler optimizations.

In addition to computation intensive benchmark, we also include Dhrystone 2.1, to
measure clustering on an example of code with modest amounts of ILP.

Table 1 shows a collection of basic statistics for the individual benchmarks.

Benchmark me;dzf c Baseline Cycles Description

Typical color printer pipeline. Composed
of JPEG decompression, image scaling,
color conversion and correction, under-
color removal, and halftoning with error
bmark 6,700 377,680,815 diffusion. This is the type of computation
you can expect in a color laser or ink-jet
printer to rasterize a photographic-
guality picture.
Typical color copier pipeline.
Composed of color-space
conversion, scan filters, device
correction, interpolation, edge-
enhancement filters, and
halftoning. This is the type of
computation you can expect in a
high-end color copier.
Cryptography benchmark. Composed of
a digital file signature and authentication
pair using the ECC (Elliptic Curve
crypto 11,200 118,548,255 Cryptography) algorithm. This is the type
of computation involved in a secure
document transmission.
MPEG-2 motion picture decoding. This
is the type of computation involved in
mpeg2 8,300 959,947,540 playing digital motion pictures, such as
in a DVD player.
JPEG-like compression of a full 3-color
. 8-bit image. This is the type of
tipeg 2,900 44,472,146 computation you can expect, for
example, in a digital camera.
The Dhrystone 2.1 benchmark. Included
dhry 1,000 3,170,773 as a contrasting example of code not
containing interesting levels of ILP.

copymark 3,500 913,100,557

Table 1. Description and characteristics of the benchmarks used in the
experiments.



For all of our experiments, we ran the benchmarks with representative data inputs,
large enough to give significant results, but small enough to keep simulation time
within practical limits. A complete compilation and execution cycle of all the
benchmarks takes about 30 minutes on a Hewlett-Packard 9000/J200 workstation.

3.2 The Machine Model

In order to be able to present consistent results (and in some cases not compromise
confidential benchmark data), we present all results relative to a baseline
configuration. The baseline is a scalar architecture with a single cluster containing
32 registers and one unit that can issue one operation per cycle. All integer
operations are single-cycle, except multiplies that take 3 cycles, and memory load
operations that also take 3 cycles. All latencies are completely exposed to the
compiler. The memory operations are pipelined, so there is some ILP already in the
baseline case.

For the other machine configurations, we vary the following parameters:

> Units: the i1ssue width of the CPU. Any operation consumes an issue slot. For all
configurations, we assume that half of the computational units are capable of
executing a memory access. We never allow more than a single control-flow
operation per cycle.

> Registers: the number of general-purpose registers in the CPU. The compiler
uses general-purpose registers for all temporary data. The calling convention is
caller-saves and passes arguments and return values in registers.

> Clusters: the number of clusters in the CPU. A cluster contains a single register
file and multiple units that are fully connected with the register file.
Communication across clusters happens via intercluster copy operations that
consume one issue slot in the source cluster and one issue slot in the destination
cluster.

3.3 The Compiler and Simulation Framework

Our compiler is a descendant of the Multiflow compiler. The Multiflow compiler
uses region scheduling, specifically the trace-scheduling algorithm, to exploit
instruction level parallelism across multiple basic blocks. The compiler was
originally designed for the Multiflow Trace machine, the first supercomputer class
implementation of the VLIW design style.

The compiler includes C and FORTRAN front-ends and implements a set of
“traditional” high-level optimization (common-subexpression elimination, if-
conversion, loop unrolling, reductions, etc.). The analysis phases include loop



analysis, identification of induction variables, and “disambiguation” of memory
aliases.

The trace scheduler identifies “traces” (collections of basic blocks with multiple-
entries and multiple-exits) and generates compensation code to patch possible
motions of instructions below splits or above joins that may happen in the code
generator.

The code generator implements an integrated schedule and register-allocation
phase based on list-scheduling heuristics. The register-allocator is a region-based
allocator (where the regions are the traces), starts with everything in registers and
generates spills when necessary that are added to the DAG and scheduled during
the code generation phase itself.

The compiler is robust, generates efficient code, and is flexible enough to be a good
research platform. The remainder of our compiler toolchain includes assemblers,
linkers, simulators, and analysis tools that allow us to gather precise static and
dynamic information on various aspects of the benchmarks and the architecture
under evaluation.

4 The Need for Registers: Experiments

We first ran a set of experiments to quantitatively evaluate the performance
1mplications of the number of registers and the number of units on ILP.

We set up the experiments as follows.

> We compiled and simulated the benchmark suite for a set of machine
configurations with varying number of registers and units. We chose a range of
registers between 32 and 256 and a range of units between 2 and 16.

> To keep multiple units busy it is necessary to consider large enough compilation
regions. In our compiler technology this is mainly achieved by unrolling loops.
For the experiments, we established a threshold so that we unroll inner loops to
have approximately 100 operations per unit. This 1s unfortunately sub-optimal,
since the register requirements are not directly related to the number of
operations, but it is one of the constraints of using a real-life compiler.

Figure 2 represents the average performance increase for all benchmarks (but dhry)
as a function of the number of registers. From the graph we can observe that

> Machines with a larger number of units benefit more from an increase in the
number of registers. For example, while a 2-unit machine is at 90% of its
potential with 32 registers, a 16-unit machine is barely around 60%.
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Figure 2. Average performance increase for all benchmarks
(but dhy) as a function of the number of registers. The
vertical axis is normalized to the best measured performance
for the considered number of units.

There seems to be a clear threshold around 128 registers for the machine width
and benchmarks considered in the experiments. Even for a 16-unit machine, the
advantage of having more than 128 registers rapidly decreases below the 5%
range. We are not sure this result holds in general, since this depends on many
factors. As it 1s more evident from Figure 3, the amount of ILP in the benchmark
suite rarely goes above 10 (times the small amount already in our baseline). This
means that there is plenty of room for a 16-issue machine to hide spill and
restore operations in the otherwise idle units. Bear in mind that our 16-unit
machine is capable of operating 8 memory accesses in the same cycle, so the cost
of a spill/restore pair is definitely low. For machines with a more limited memory
access rate or a heavier spill/restore penalty, the register pressure is going to
grow and the need for more registers may arise.

Figure 3 shows the individual benchmark results in terms of performance relative
to the baseline configuration. We can see how the register requirements vary as a
function of the available ILP. If we look at the two extremes, at one extreme dhry
yields a very flat profile, meaning that additional registers would not increase
performance and probably even less than 32 would suffice. At the other extreme,
crypto yields levels of ILP in excess of 10, and does require a considerable amount of
registers to be able to exploit this potential. For example, doubling the number the
registers (from 64 to 128) improves performance of about 40% (from 9.8 to 14.0).
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5 Generating Code for Clustered Machines

As we have seen in the previous sections, many considerations suggest the
opportunity of building “clustered” architectures, where the register space 1is
physically separated in distinct register files with limited connectivity. This has
important consequences on the choice of the compiler algorithms for the code
generation phasel.

Traditionally, a compiler does not need to make a decision concerning where an
operation has to be executed, either because there are no choices (e.g., for a scalar
machine) or because the functional unit assignment is done transparently by the
hardware (e.g., for a completely connected superscalar machine).

When the connectivity is not complete and i1s exposed at the architectural level, the
association of operations to computational units becomes a compiler responsibility.
In other words, the compiler is presented with the non-trivial task of choosing one
particular functional unit for each operation.

The nature of the problem to be solved depends on the sophistication of the
hardware support for the interconnection among register files and functional units:

> When the hardware provides transparent support to fetch the operands from a
“remote” register-file when needed (possibly with a dynamic penalty), the
compiler’s task i1s to apply heuristics to minimize the number of dynamic stalls.
In this case compiler choices have impact on performance degradation, but still
yield correct code.

> When functional units can only read and write certain locations and the
connectivity 1s completely exposed at the architectural level, the compiler’s task
becomes significantly harder, since it is now the compiler’s responsibility to issue
the “copy” operations to move data to appropriate locations. In this case,
compiler choices affect correctness on top of performance. We believe that this
fact has i1mportant consequences on the algorithms to be chosen for the
scheduling and the register allocation phases.

5.1 Previous Algorithmic Work

The problem we are trying to solve is the following:

IThe terms: “Iinstruction selection” and “code generation” are often used to describe different concepts
in literature. To avoid terminology confusion, we call “instruction selection” the phase that lowers the
intermediate representation to sequences of machine-specific operations. Conversely, we call “code
generation” the phase that produces the bindings between machine elements (such as register and
units) and machine-specific operations. Code generation includes assignment of units and registers
and scheduling of operations into machine-level cycles.

13



Given a direct acyclic graph (DAG) of operations, a set of heterogeneous
resources (computation and storage) with different latencies and
constraint, and a limited interconnection network between
computational and storage units.

Find a mapping between nodes and resources and a temporal ordering
of the operations that minimizes the time to complete the execution of
the DAG without violating latency, resources and communication
constraints

The problem of scheduling tasks on a set of resources with limited connectivity and
communication costs 1s well studied in many scientific areas, such as task
scheduling on multiprocessor systems, and so on [11]. Being an NP-complete
problem, many combined scheduling/assignment algorithms have been proposed
that try to sub-optimally solve the problem. Several of the existing studies on the
subject approached the problem of scheduling a computational DAG (Direct Acyclic
Graph) of tasks on a multiprocessor system [11][15][16][17][18][19][20].

However, it is hard to directly adopt these algorithms to solve the problem of
generating code for clustered architectures. The major limitations come from the
assumptions on the structure of the DAG [15], the assumptions on zero-delay
communication costs [16]; or from the requirements on the number and type of
processors [17][18]. Some techniques require the nodes of the DAG to have certain
properties (such as an execution time that decreases with the number of processors
applied to them [19]). Interesting work has been done in [19] for the scheduling of
DAGs for asynchronous execution on a multiprocessor system. However, their
results cannot be directly applied when communication and execution happen in
lock step, for VLIW architectures.

An alternative approach to solve the problem could be to view it as a multi-way-
patitioning problem. Much has been done on the multi-way-partitioning problem
where a graph has to be subdivided into k subsets by minimizing a given cost
function. Frequently used cost functions attempt to balance the number of nodes in
a cluster versus the number of edges (cuts) between clusters. Linear time
algorithms have been proposed for a given cost function [21], and many sub-optimal
ones for other types of cost functions.

Unfortunately, there is only a limited applicability of these approaches when the
cost to be minimized is the scheduling length of a DAG given limited resources and
many other complex interactions with issues like register allocation, register
spill/restore and so on. In addition, traditionally used cost functions have a very
small correlation (if any at all) with the overall schedule length, except when the
DAG has particular symmetries. This can be true when the DAG is composed of
separated components whose number i1s an integer multiple of the number of
clusters, but i1s not in general. For these reasons we discarded the k-way

14



partitioning approach for all cases but the highly symmetric ones, where we apply a
similar strategy in the selection of the starting configuration.

5.2 The Bottom-Up-Greedy Algorithm (BUG)

Probably the most exhaustively described algorithm for the cluster code generation
problem, BUG (for the Bottom-Up-Greedy), was originally designed within the
Bulldog compiler at Yale by John Ellis in the mid 80’s [22]. It then became part of
the Multiflow compiler [13], which i1s currently used as a research platform in
various industrial and academic institutions around the world.

BUG works in two phases:

1. In the first phase BUG traverses the DAG from the exit nodes (leaves) to the
entry nodes (roots), estimating the likely set of functional units to be assigned to
a node based on the location of previously assigned operands and destinations.
When it reaches the roots, it works its way back to the leaves, and selects the
final assignment for the nodes along the way. To reach a final assignment, BUG
estimates the cycle in which a functional unit can compute the operation based
on resource constraints, the location of the operands and the machine
connectivity. The available cycle of a node is computed differently, depending on
whether the operand nodes are already assigned or not:

» If any operand node is already assigned, then the available cycle 1s computed
as the sum of operand cycle and distance between the operand unit and the
current unit

~ If no operand node is assigned, then the available cycle is guessed on the
basis of the operand depth (the distance of the longest path from the roots)
and possibly the feasible locations of the operand destinations.

Once the cycle estimates for all the feasible units for a node are available, BUG
selects the unit producing the smallest output delay for each node.

2. In the second phase, BUG assigns initial and final locations to the variables that
are live in and out of the DAG. This phase is quite delicate, since it affects the
adjoining regions of code, and particular care has to be taken to avoid redundant
duplication of locations for critical values (such as induction variables in loops)
without sacrificing the parallelism opportunities. Various heuristics that can be
applied are well documented in [22].

In its operating mode, BUG makes a few simplifying assumptions:

1. Functional units are the only limiting resources in the machine, and conflicts
due to scarce register-bank ports or buses are ignored. The rationale behind this
assumption is the following: if the bandwidth of the register banks is not
adequate for the number of computational units that can access those banks,
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then the machine is probably not balanced and improperly designed. We can say
that such an assumption in general holds true for well-designed architectures.

2. The additional resource costs and delays involved in explicitly scheduling the
copies in machines that require them are ignored. This may degrade the
precision of BUG cycle estimates when copy resources are critical. However, this
1s not a fundamental limitation of the algorithm and the capability of tracking
copy resources could be easily added to BUG.

3. Register pressure 1s ignored. Under register pressure the topology of the DAG
can change significantly due to the presence of spill/restore operations. This i1s on
e of the major limitation of the algorithm, and i1s mainly due to the fact that the
scheduling model of BUG is very simple and not accurate in the presence of
serious register pressure.

4. If we view BUG as an optimization algorithm, we can say that the cost that it
tries to minimize is only driven by the delay of scheduling a node on a given
computational unit. In other words, the impact of the choice of a unit on the
global schedule i1s only taken into account by giving precedence to nodes on the
critical paths. This is a fundamental limitation of the algorithm, since it means
that choices are based on local criteria only and overlook “global” optimization
possibilities based on the overall DAG structure.

In some sense, we can say that the major weakness of BUG is the fact that it 1s
“short-sighted”. BUG assigns nodes in a greedy way without knowing what the
impact of a node assignment is on the global schedule length. On top of that, node
assignments are never changed and the effectiveness of previous choices is never
evaluated.

Given all these limitations, BUG still produces reasonable results (sometimes
excellent ones) with a quite low computational complexity.

6 Clustering through Iterative Improvement

If we step back and look at the problem from a system point of view, we can think of
clustering as a combinatorial optimization problem whose goal i1s to produce a set of
parameters that minimize the output of a strongly non-linear system. In our case
the parameters are the assignment of units to nodes, the output is the global
schedule length and the non-linear system is the block composed of the scheduler
and the register allocator.

From an optimization perspective, the target system (i.e., the scheduler and register
allocator) presents a contrasting set of features:

> The system 1is strongly non-linear and impossible to characterize in an analytic
form. Small changes in the parameters, such as an operation assigned to another
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unit, may cause dramatic changes in the final schedule length. This 1s mainly
due to the register allocation task, whose behavior is dominated by hard
thresholds (the number of physical registers) and causes the schedule length to
degrade ungracefully, mostly depending on the burden of spill/restore code.

The computational requirements of obtaining a single value of the cost function
for a given assignment is quite high, since it requires to complete scheduling and
register allocation on all the nodes of the DAG. On top of that, we should not
underestimate the engineering challenges of writing a real-life scheduler and
register allocator that could be invoked iteratively on the same region.

The dimensionality of the problem gets easily out of control for real-life cases.
For example, to be able to exploit ILP in the range of ten, we need to consider
compilation regions with at least thousands of nodes (typically achieved by
inlining procedures, predicating control flow and unrolling loops). For a 1,000
node DAG and a four-cluster machine, there are 41000 Jegal cluster assignments.
Even if we consider all the possible problem symmetries, it is easy to see that an
exhaustive search is probably not practical.

These consideration lead to the following dilemma.

V

The fact that it 1s very hard to characterize the cost function rules out any
traditional gradient-descent-like technique. Ideally, this seems to push in the
direction of explicit enumeration algorithm, such as branch-and-bound, or even
a non-deterministic system like simulated annealing, TABU or genetic search.
These algorithms have been proved to be very effective for “black-box” systems in
many other areas.

However, the cost of computing a data point for the cost function is quite high,
and this adversely affects the same iterative algorithms, that usually demand a
very large number of trials to converge to good minima.

To reach a reasonable compromise, we need to operate on two fronts.

1.

We need to approximate the behavior of the system. To do this we can use a
simplified form of the scheduler to get an estimate of the quality of a tentative
cluster assignment. The simplified scheduler needs to take into account resource
models and register pressure, but can only do a half-hearted job as long as its
behavior 1s more or less consistent (monotonic) with respect to the real
scheduler.

We need to reduce the dimensionality of the problem. Even with a simplified
scheduler, we cannot even think of exploring 41000 combinations within the time
frame of a compile job. A possible way of reducing the dimensionality is to
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construct “macro-nodes” for partially connected components of the original DAG
that are treated as indivisible units assigned to a single cluster.

The proposed algorithm (called PCC — Partial Component Clustering) works in
three phases:

1. Partial Component Growth.
2. Initial Assignment.

3. Iterative Improvement.

6.1 Partial Component Growth

In the first phase of the algorithm, we grow partial components starting from the
DAG’s leaves and following the longest path backward towards the DAG’s roots
until we hit a threshold (@n) of the maximum number of nodes in a partial
component. When the component growth reaches an entry point of the DAG or a
node already visited, recursion restarts along one of the pending paths originating
from one of predecessor nodes in the stack of recursive calls. Larger values of @ get
a smaller number of components and vice-versa.

In this way, we add paths to the partial components in a “critical path first” fashion.
Since one component is assigned to a single cluster, the rationale behind this is to
avoid inserting copies along the critical paths in the DAG. Figure 4 shows this
concept for a simple DAG of a code fragment representing a four-tap FIR filter
unrolled twice. By setting @unw= o we get four partial components, two of which
represent the unrolled iterations of the loop.

In general, for @n, = o, two different situations may arise:

1. When the DAG is fully connected, the growth process will produce one single
component containing the entire DAG.

2. When the DAG is made of several separated sub-graphs, the process produces a
larger number of components, each one containing an unconnected portion of the
DAG. Note that here we use the concept of separation in a loose sense, as we
only traverse the DAG following backward edges. A typical case of a separated
DAG arises from loop unrolling, especially in the absence of loop carried
dependencies across iterations.
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Figure 4: DAG for a three-tap FIR filter unrolled twice. We can see four
partial components (in different colors), two of which correspond to the two
unrolled loop iterations. According to our definition (see text), this DAG is
separated.

6.2 Initial Assignment

In this phase, the set ® of partial components is used to perform a simple mapping

to produce a k-way cluster assignment. We apply different heuristics for the
different classes of DAGs.

> For fully connected DAGs, the mapping simply scans @, reordered by decreasing
size of its elements, for all partial components and assigns them to the least
utilized cluster based. This simple mapping effectively achieves a good load
balancing between clusters, but it does not guarantee to produce a good initial
assignment for DAGs made by separated sub-graphs, since it does not take into
account inter-cluster copies in the mapping process.

> For separated DAGs, we empirically found that minimizing the number of inter-
cluster copies generally leads to good solutions. In addition, this greatly
1mproves the convergence process of the iterative phase. In this case, we assign
each component to a cluster by minimizing a cost function that takes copies into
account. This problem can be formulated in closed form and solved as a
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constrained integer linear programming problem. To simplify our approach, we
choose to produce a mapping by reducing the connection matrix and by
iteratively minimizing a compound cost that considers both load balancing and
intercluster copies.

Although sub-optimal, we found that this strategy produces a good initial
assignment provided an appropriate selection of the threshold @n. A smaller @n
produces a larger number of partial components, but it also increases the
computational requirements of the iterative phase. To select a reasonable value of
@h, we repeat the initialization phase for a few decreasing values of @ and we
choose the one that produces the shortest length according to our simplified
scheduler.

6.3 Iterative Improvement

In the final stage, the assignment produced by the initialization phase is improved
by an iterative descent algorithm that refines it by modifying the choice made for
every element in the set ® of partial components.

We investigated two different strategies:

»  The first strategy orders ® by decreasing size of its component and then tries to
keep the cluster’s loads balanced (assuming homogenous clusters) by swapping
two element @ and @, when the schedule length L produced by the swap is
smaller.

> The second strategy simply evaluates L for any possible assignment of ¢ J @ to a
cluster and retains the one that leads to the shortest schedule L.

Both algorithms are deterministic and always follow the direction of maximum local
descent. Thus they tend to get trapped into local minima.

As mentioned earlier, the descent is driven by the estimate on the schedule length
obtained through a simplified model of a real scheduler. The model is based on a
simple list instruction scheduler, which uses a queue of data-ready nodes ordered by
their respective priority. The model quantitatively keeps track of target resources,
allocated and de-allocated registers, copies, and register spill/restore pairs. The
accuracy of the estimate is on average within 10% of the “real” scheduler, while the
execution time is more than 10 times faster.

The schedule length L as a function of the clustering C presents many flat areas
(also known as “plateaux”). Since we are using a local cost function, when the
function gets stuck in a plateau we need an alternative criterion to drive the
descent. After some experiments, we decided to use the number of copies as
secondary heuristics to choose the descent direction in a plateau. It turns out that
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such a number is more sensitive to small changes of the cluster assignment C and it
1s relatively easy to compute.

6.4 Effectiveness of the PCC Clustering Algorithm

To measure how PCC compares versus BUG (and in general more traditional
“greedy”’-style techniques), we can look at static performance measurements. Table
2 shows a set of static measurements that demonstrate how PCC effectively reduces
the complexity of the problem. Section 7 reports dynamic measurements on the
effect of PCC on the overall performance.

Average
DAG number of

Benchmark Numher Nodes in Cplnponents DAG PCC
— .- 1n largest
largest loop 1 nodes per components
00p
loop per loop
bmark 85 1836 32 158.3 11.0
copymark 29 1438 32 565.1 10.5
crypto 177 1515 64 99.9 9.4
dhry 5 88 24 51.0 11.2
mpeg2 72 1656 95 338.5 15.7
tjpeg 43 1673 64 176.1 10.5
Average 58.71 1172.29 44.43 198.41 9.76

Table 2. Characteristics of the benchmark loops for a 16-unit
configuration where the unrolling limit was set to 1,600 nodes per loop.
From the table we can see the effectiveness of the PCC algorithm in
reducing the complexity of the problem through the identification of
the partial components. In average we get a reduction of about a factor
of 20 in complexity, that goes up to a factor of 30-50 for the largest
loops.

From an analysis of Table 4 (previous section), we can say that in average, the PCC
algorithm outperforms BUG by about 5% in the 2-cluster case and about 7% in the
4-cluster case. At the same time, the compile-time penalty due to computational
increase grows but remains within an acceptable range, considering that we limit
PCC to run only on the inner loop of the code. Finally, we have to say that PCC is
still in its infancy and we believe that there is still some significant headroom to
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mmprove the algorithm and further reduce the performance degradation due to
clustering.

7 Experiments and Results

To gather interesting statistics, we decided to pick two of the most significant
configurations (8 units and 16 units) with enough register to be able to achieve the
best performance (128 registers for 8 units and 256 registers for 16 units), and run
them for several combinations of clustering. The compiler heuristics were tuned so
that we limited unrolling to about 800 nodes per loop for an 8-unit machine and
about 1,600 nodes per loop for a 16-unit machine. Table 3 shows a summary of the
characteristics of the tested machine configurations.

. Register file
: Registers per
Clustering ports per
cluster
cluster
. +
single cluster 128 registers 16 read 8
write
8 2 clusters, 4 64 registers / 8 read + 4
units units/cluster cluster write
4 clusters, 2 32 registers / 4 read + 2
units/cluster cluster write
. . +
single cluster 256 registers 32 read 16
write
16 2 clusters, 8 128 registers / 16 read + 8
units units/cluster cluster write
4 clusters, 4 64 registers / 8 read + 4
units/cluster cluster write

Table 3. Characteristics of the clustered configurations used for the
experiments.

The goals of our experiments are dual.

1. Demonstrate that clustered architectures are an effective solution to build wide
VLIW machines without putting too many burdens on register file ports and
bypass logic.
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2. Show that better clustering algorithms have a significant impact on performance
and that there is still quite a bit of headroom to exploit in software to make
clustering even more effective.

7.1 Effectiveness of Clustered Architectures

Figure 5 and Figure 6 show the results for the experiments. Table 4 summarizes the
statistics averaging all the benchmarks. In Figure 6 we present the detailed
performance measurements for the five individual benchmarks (except dhry, that
was not interesting for our purposes due to lack of ILP). The bars in the figure
represent performance relative to the baseline, where the single bars are for non-
clustered configurations and the overlapped bars are for clustered machines with
the two different scheduling algorithms (BUG and PCC). Figure 5 reports an
average of the same values, together with the performance of single cluster
machines at various widths.

From the graphs we can see that in average clustering is convenient but there are
cases where it can hurt performance. For example for tjpeg, a 16-unit / 4-cluster
machine performs definitely worse than an 8-unit / 1-cluster and slightly worse
than an 8-unit / 2-cluster configuration. While cost considerations may advise
against the single cluster solution, in this particular case the narrow 2-cluster
machine is a clear win versus the wider 4-cluster one.

The first observation is that, relative to the non-clustered machine, we lose 10-20%
performance when we go to a 2-cluster machine and 15-20% performance when we
go to a 4-cluster machine. It is beyond the purpose of this paper to decide what is
the best configuration, since this depends on the particular point in the technology
space, and on the impact of the number of register file ports and bypassing logic on
the overall cycle time.

The graphs show some clear winner and loser. According to the level of ILP and the
type of computation, indiscriminate clustering is not always beneficial. For
example, for benchmarks like bmark and crypto it is a clear win to build a 2-cluster,
or even a 4-cluster, machine. On the other side, for copymark, mpeg2 and tjpeg a 4-
cluster 16-unit machine performs worst than a single-cluster 8-unit machine, and
even worse than a 2-cluster 8-unit configuration for tjpeg. Obviously, a single-
cluster 8-unit machine will have a significant impact on the cycle time, so it is
unclear which is the best choice in this case.

In summary, we can conclude that a moderate amount of clustering is — in general —
a good compromise:

> Performance degrades gracefully (about 15% for two clusters)

> We get benefit from the increased ILP
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> The cycle penalty to build a single register file would very likely offset the

clustering overhead.

However, when we increase the number of clusters, the advantage starts to be less
clear and strongly depends on the amount of ILP available and on the nature of
computation. Our numbers show that the performance degradation of four clusters

1s in the 25-30% range.

performance / baseline

Average

Obase
= ] mPCC
OBUG

0 T T
16u  16u/2c 16ufdc  12u 8u 8u/2c  8uldc 6u 4u 2u

Figure 5. Average results for the five significant
benchmarks. From the graph we can see that clustering
costs you about one fourth of the machine functional units
in terms of performance. For example a 16-unit / 2-cluster
machine performs roughly like a 12-unit / 1-cluster and an
8-unit / 2-cluster like a 6-unit / 1-cluster.
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Figure 6. Detailed individual results for the five significant benchmarks
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2 clusters 2 clusters | 2 clusters

16 units 8 units average

PCC 86.6% 85.2% 85.9%

BUG 82.2% 81.3% 81.8%

4 clusters 4 clusters 4 clusters
16 units 8 units average

PCC 75.2% 67.5% 71.4%

BUG 69.9% 63.6% 66.7%

Table 4. Performance summary of the 2-cluster and 4-cluster
configurations. The numbers are expressed as a percentage of the
maximum performance achievable with a 1-cluster architecture. With
the PCC algorithm, a 2-cluster machine loses about 14% and a 4-
cluster machine about 29% against a 1-cluster version of the same
resources. Our experiments show that this relation is valid regardless
of the absolute number of units, in the considered range.

8 Conclusions

Table 4 suggests that as a rule of thumb, breaking the CPU into two clusters costs
somewhere around 15-20% lost cycles; four clusters costs around 25-30%. Similar
results have been seen before: [7] found slow- downs in virtually the same range,
even though they had a superscalar design, and were using a compiler, processor
and application suite with far less ILP. The other works we cited for VLIWs also
had results in a similar state, though they offered a far less sophisticated compiling
system then our, and didn't present industrial-strength codes. In all cases these
numbers must be increased due to the longer latencies of a memory system built for
the one cluster CPU, but we feel this is a small effect. An interesting open question
1s whether these numbers can be improved upon, or are generally at the theoretical
limit for the code and clustering involved. Obviously, we cannot compute the
optimal solution to answer this.



We found that the PCC algorithm performed quite well, getting noticeably better
results than BUG, almost always.

Finally we note that as feature sizes of microprocessors decrease in relation to
communication costs, clustering becomes more attractive. [7] points out that at
hardware feature sizes of .35, the cycle time loss due to too many register ports
might not be so bad, but at .18y and beyond--the point VLSI technology is now
reaching--the loss will be severe. The numbers presented here are likely to strongly
favor the use of clustering, at least for CPUs which execute applications with large
amounts of ILP.
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