
SLA Management in Federated
Environments

Preeti Bhoj, Sharad Singhal, Sailesh Chutani
Internet Systems and Applications Laboratory
HPL-98-203
December, 1998

federated
management,
service level
agreements,
system monitoring

Increasingly, services such as E-commerce, web
hosting, application hosting, etc., are being deployed
over an infrastructure that spans multiple control
domains. These end-to-end services require cooperation
and internetworking between multiple organizations,
systems and entities. Currently, there are no standard
mechanisms to share selective management
information between the various service providers or
between service providers and their customers. Such
mechanisms are necessary for end-to-end service
management and diagnosis as well as for ensuring the
service level obligations between a service provider and
its customers or partners.

In this paper we describe an architecture that uses
contracts based on service level agreements (SLAs) to
share selective management information across
administrative boundaries. We also describe the design
of a prototype implementation of this architecture that
has been used by us for automatically measuring,
monitoring, and verifying service level agreements for
Internet services.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

1

1 Introduction
Increasingly, services such as E-commerce, web hosting, application hosting, etc., are being deployed over
an infrastructure that spans multiple control domains. These end-to-end services require cooperation and
internetworking between multiple organizations, systems and entities. As shown in Figure 1, even within a
single enterprise, multiple organizations (or geographically distributed sites) can maintain independent
management systems that need to share management information. Cross-domain management is especially
critical when outsourcing Information Technology (IT) services or when extending business applications to
systems in other enterprises in order to form extended enterprises.
Managing large-scale applications that cross such administrative boundaries is a problem because current
management solutions either allow partners access to all management information (e.g., by providing
remote consoles) or deny access to this information. Inter-domain management in competitive
environments places two fundamental requirements on the management system:
1. Service management and diagnosis require the knowledge and view of the end-to-end service. This

means that management information has to flow across administrative domain boundaries to provide
an end-to-end view.

2. Business requirements restrict information sharing across domains because the details of the service
implementation and much of the customer information is considered proprietary by each business.
Thus business policies restrict the sharing of details about components and infrastructure used in
delivering the service. These policies are particularly stringent if customer data needs to be shared
across domains.

Large Enterprise

IT Org. of Site 1

Email
Service

News
Service

Web
Service

WFH
Service

Print
Service

IT Org. of Site 2

Payroll
System

Expense
Accounting

Purchasing
System

Inventory
System

Corporate
Directory

Mgmt
System

Enterprise

Email
Service

Web
Service

Print
Service

Mgmt
System

Payroll
System

Expense
Accounting

Purchasing
SystemInventory

System

Helpdesk
System

Management
System Web Server

Farm

Content
Server

Disk
Farm

Outsourcer

Business
Applications

Exte
nd

ed
 Ente

rprise
IT Outsourcing

Mgmt
System

Figure 1. Internet Business Environment
Meeting these objectives requires that service management systems need to

• Selectively share information about the components of the overall service only to the extent necessary
to ensure overall operation of the service.

• Hide the details of the system components by abstracting information.
• Provide mechanisms to ensure that service level obligations provided by the administrative domain to

its customers and partners are being met.
Over the years, a number of solutions have been proposed for inter-domain management. The telecom
industry and the ATM/POS network providers have coordinated and shared information between multiple
entities. Unlike the Internet their environments are regulated and are typically designed to offer a single
service. Differences between these services and Internet-based services are discussed in [1].
Recently, work has also been done on inter-domain information sharing on the Internet. In [2], a trouble-
shooting methodology for coordinating network problem diagnosis among peer administrative domains and

2

untrusted observers is presented. Mechanisms to manage security in a heterogeneous multi-provider
environment are discussed in [3].
Inter-domain communication is discussed in TMN. There are a number of publications in the area of using
the TMN model to manage Virtual Private Networks (VPN). The design of a management service for a
VPN that addresses multiple domains and heterogeneous systems are discussed in [4]. In [5], approaches in
Internet services management are compared to those taken by the telecommunication industry (TMN). It is
pointed out that more effort is required to achieve a standard Internet service management strategy to
manage all types of internet services as well as non-internet based services such as voice services.
When describing service level management, one of the most commonly used service metric is availability.
[6] describes methods for testing the availability of distributed applications by constructing a service graph
for the description of functional dependencies and applying calculation rules on an instantiated graph to
determine the availability of applications.
Most published work in this area describes approaches to managing and trouble-shooting network services,
and managing security, in an inter-domain environment. A few products (e.g., InfoVista systems [7],
Netcool [8], Vital Analysis[9], Network Health Reporter[10], etc.) allow customers to monitor the quality
of service offered by providers.
While the research and products mentioned above offer a good start towards Internet service management,
there still remain unresolved problems:
• None of the research addresses how to selectively share management information across administrative

domain boundaries in a secure way. This capability is particularly important with the introduction of
extended enterprises where a service is composed of components from several service providers.

• There are no tools available to derive measurable aspects from Service Level Agreements (SLAs). It is
unclear how a legal service level agreement document is translated into a measurable specification that
can be automatically monitored for compliance.

• There are no recommendations and policies to define metrics (what they are and how their values are
computed) and their bounds (thresholds, baselines, etc.) for service compliance.

Work is underway in the IPPM (Internet Protocol Performance Metrics) working group of the IETF, the
XIWT (Cross Industry Working Team) and ANSI T1A1 committee to identify Internet service related
metrics, and measurement methodologies. We have focussed our work on developing mechanisms to share
selective management information across federated domain boundaries, and measuring, monitoring,
verifying, and managing service level agreements for Internet services. We expect our solution to
complement and work side by side with traditional management solutions, such as HP OpenView, CA
Unicenter, and Tivoli TME. We assume that the measurements collected by the management and
measurement systems can be combined to service level metrics used in the service level agreements.
In section 2, we discuss our overall architecture for sharing information in federated systems. Section 3
describes contracts, which are used in our architecture for encapsulating measurable aspects of service level
agreements for the purposes of management. The design of Conformance, a prototype system to monitor
SLAs for compliance and provide selective sharing of management information is discussed in section 4.
Finally, we describe an example where we have used Conformance to monitor Internet services in section 5
and finish with conclusions in section 6.

2 Federation Architecture
A federated system is defined to be a system composed of components within different administrative
entities cooperating to provide a service. A service is an application with a well-defined interface and
functionality. Federated service management is the management of services that span multiple
heterogeneous control domains, and which rely on correct functioning of components across those
domains. A control domain is defined to be an administrative domain that is managed by a single
administrative entity, typically a business. [1] elaborates on these concepts in greater detail.
Service providers are increasingly using SLAs to define agreements for sharing resources with partners, as
well as for offering service quality guarantees to customers. These SLAs contain (along with other legal
obligations) details of information that is shared and service level guarantees that are offered by the

3

provider. Management systems should contain information about these SLAs, and should use this
information both to control access to system resources as well as to monitor the system for compliance with
the SLA. Ultimately, the management system should control resources to actively manage the services with
the objective of meeting these agreements.
We have developed an architecture to allow SLA monitoring and sharing of selective management
information across administrative domain boundaries in a secure way. In our architecture we assume that
all interactions between federated domains are based on bilateral agreements that can be implemented using
verifiable and consistent contracts. A contract is a specification (derived from the SLA) of the service
attributes that are meaningful and automatically measurable for correct service behavior. The contract
specification contains both the attributes and the bounds within which the attributes must stay in order for
the service to behave in a desired manner. Attributes have to be both quantifiable and measurable to be
included in a contract. Different domains are likely to contain heterogeneous systems, it is thus important
that there be agreement on how contracts will be invoked and how the systems will communicate. We
describe contracts in further detail in section 3.
Figure 2 shows a high level overview of our architecture. In this section we explain the diagram with
general descriptions of each of the components.

C
on

tra
ct

 V
er

ifi
ca

tio
n

In
te

rfa
ce

Contract
Repository

Service
Model

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

Domain 1

Domain 2

Service Level
Agreements

Domain 3

Service
Manager

Figure 2. Federation Architecture
The ovals represent administrative domains. All external interactions to a given domain happen through
one or more Contract Verification Interfaces provided by the domain. Service level agreements offered by
the domain define the nature of information provided at the interface and the security parameters needed
for the interaction. The smaller oval at the bottom represents another service domain, which might either be
self-contained within a single business entity, or might be federated. The architecture provides a recursive
and hierarchical model for communication in a federation, thus providing a scalable solution. It is assumed
in the architecture that each domain controls only the service aspects that are provided by it.
Inside the domain, the service manager directs the collection of management information using the service-
specific data contained in the service model. The data collection is guided by the contracts in the contract
repository.
The service model includes a description of the service that this administration is managing. It
• Identifies the various components that enable a service. For example, if the top level service being

managed is electronic mail, the service model would list the components as the email server host, the
networks connecting the email host to the internet, the email application itself, the name server used to
resolve hostnames to internet addresses, etc.

• Expresses interdependencies that exist among the different elements of the service. From the above
email example, all components identified in the service model should function properly for the email
service to work. The interdependencies capture the cause and effect between the components of a
service.

4

• Identifies the measurements that are available from each component. Thus, the email server could
identify the number of email transactions, and active measurements could be used to get an estimate of
the response time seen by email clients.

The contract repository contains a set of contracts, which this domain has with its providers and customers.
It contains information on how to validate an incoming contract verification request and places constraints
on what data may be accessed from outside the domain as well as how that data is computed. As mentioned
earlier, contracts consist of a specification of attributes and bounds within which the attributes must stay in
order for the service to behave correctly.
The service manager is the engine responsible for directing the verification task. It has the knowledge of
how to evaluate an incoming contract verification request. This would involve interfacing with the contract
repository to get the details of the contract, and interfacing with the local resources and local system and
service management modules to collect information needed to verify the contract. If evaluation of a
contract has dependencies on other external contracts then it uses the contract verification interfaces
provided by those external domains to collect the data.
Figure 3 shows how the local resources and management systems are coupled to the contract verification
interface to expose selected information. The local measurement and management systems collect data
from the local infrastructure and applications. Customizable plug-ins allow the service manager to
communicate with a variety of systems to extract information about the domain. The plug-ins provide an
abstract view of the system to the service manager that is independent of the underlying implementation.
The contract evaluation and notification handlers use this abstract view to compare the system behavior to
pre-set thresholds and conditions specified in the contracts to monitor the contracts for compliance.

Contract
Repository

Contract
Repository

Service
Model

Service
Model

Authentication &
Authorization

Authentication &
Authorization

Contract
Evaluation

&
Notification
Handlers

Customizable
plug-ins

Service Manager

Local
Mgmt.
System

Local
Mgmt.

System

Local
Meas.

System

Local
Meas.

System

Local
Resources

Local
Resources Local

Apps.

Local
Apps.C

on
tra

ct
 V

er
ifi

ca
tio

n
In

te
rfa

ce

C
on

tra
ct

 V
er

ifi
ca

tio
n

In
te

rfa
ce

Notify

Verify

Register

Data Collection from
Outside Domain(s)

Figure 3. Contract Verification Framework

3 Contracts
Contracts govern the details of which data can be exposed and to whom. In this section, we describe the
functionality offered by contracts in more detail.

3.1 Contract Definition

Formally, a contract C is defined by the triple (P, M, A), where P is the set of properties associated with the
contract, A is the set of assertions agreed upon by the parties, and M is the set of methods (or operations)
available on the contract.
Properties define information (needed for contract verification) that does not necessarily relate directly to
the specific service that is the subject of the contract. Examples of items in P are
P = {authentication mechanism, access control, invocation methodology, … }
Assertions contain service-related agreements or guarantees. The assertion set A consists of
A = { (v)}

5

where v is a vector of variables that reflect some aspect of the service and (v) is a relationship that
constrains those variables according to contract agreements. At any given time, (v) takes on the values
TRUE or FALSE depending on whether the constraint described in the relationship is being met or not.
Examples of assertions in A may be
A = {availability > 99.9%, packet loss < 2% ∧ round trip delay < 150 ms, … }
Methods describe the operations available on the contract at the contract verification interface. They permit
the invoker to query the truthfulness of the assertions in the contract, identify assertions that are FALSE,
and retrieve the values of associated variables in the assertions. For example, M may consist of
M = {verify contract, query variable values, register constraint, notify event, … }
Contracts are described by a Contract Definition Language (CDL) which gives a formal declaration of the
assertions in the contract, and allows the service manager to associate the contract with a number of
handlers, which hide the details of the service and the means of verification. Contract structure and
verification is discussed further in sections 4 and 5 using examples.

3.2 Contract Content
From an operational point of view the set of assertions in the contract defines its content. Each assertion is
an atomic group of statements that is agreed upon by the parties defining the contract. At any given time, an
assertion may be TRUE or FALSE depending on whether the party is meeting the obligations stated in the
assertion or not. Statements in an assertion are made up of logical predicates whose value can be uniquely
determined. The logical predicates are composed using variables as well as logical operators such as
{ ∧ ∨ ¬, , }, quantifiers { ∀ ∃, }, set operations {∈ ∪ ∩, , } and constraints such as {≤ ≥ ≠ =, , , } on those
variables. Variables may be simple variables (e.g., current network load), statistical variables (e.g.,
averages or variances), or trends (time dependent variables such as growth rates). They reflect measures
that are meaningful for the operation of the service.
A contract is said to be in compliance if all assertions within it are TRUE. This requires that all assertions
in the contract should be verifiable and consistent. We call an assertion verifiable if means exist to
programmatically compute whether it is true or not at any given time. For a set of assertions to be
consistent, we require that no dependencies exist within the set such that compliance of one assertion forces
non-compliance in another.

3.3 Contract Verification Interface
Contracts are verified using a Contract Verification Interface that describes the set of operations that may
be invoked across the domain boundary during system operation. Since contracts govern both the behavior
of the interaction between domains as well as the nature of information that is exchanged between domains,
the verification interface can potentially be very complex. However, the problem of specifying the interface
becomes simpler if we note that not all information in the contract is dynamic. Most of the contract content
mentioned in the earlier section is agreed upon ahead of time, and remains static (and known to both
domains) during operation. Typically this information includes:
• What are the service quality metrics and service guarantees and what thresholds will be met?
• What specific information will be shared across domains, i.e., what parameters will be passed and what

results will be returned?
• What are the methods for communications between systems and what authentication and access

control methods are acceptable?
• What are the arbitration policies and what information will be checked for audits?
Thus, this information does not need to be communicated across the domain boundary at run-time but can
be defined using an administration interface. A description of the requirements and desired features for
such administrative tools is beyond the scope of this paper.
At a high level, we believe that only two capabilities need to be supported at the contract verification
interface: contract verification and event notification. The interface is described in terms of an API

6

consisting of parameters and operations that are invoked across the domain boundary during the operation
of the system.

4 Conformance Prototype
In the previous sections we described an architecture for sharing information in federated environments
based on service level agreements. We also defined a contract-based mechanism to specify the information
needed to monitor the SLAs for compliance. Contract interfaces can also be used for sharing other
information between administrative domains. The architecture leaves open the exact communication and
security mechanisms to be used, as well as methods for specifying contracts and coupling them to local
management systems.
In this section, we describe Conformance, a prototype implementation of this architecture. Conformance is
specifically targeted to allow automatic verification of quality of service guarantees as described in a
contract. The implementation of Conformance is web-based, i.e., inter-domain communication uses the
HTTP protocol. This allows the use of existing facilities provided by web servers and clients for data
encryption using secure socket layers (SSL) and authentication using public key certificates. Conformance
is written in Java, and uses a Java-enabled web server as its front-end. The verification requests are
authenticated at the web server, and the request parameters are passed back to Conformance through a Java
API. Results from Conformance can be passed directly back to the client, or in the form of HTML reports.
We have tested our implementation on both NT and Unix platforms.

4.1 Conformance Process Flow
Figure 4 shows the process used to create the data necessary for contract verification using Conformance.

Service
Model

Customer
Dependent
Information

System
Dependent
Information

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine printSLA

Contract
Specification

Contract
RepositoryParser

Assertion
Graph

S
LA

C
om

pl
ia

nc
e

System Measurements

Conformance
Engine

Customer
SLA Data

System
Dictionary

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

fine print fine print

Figure 4. Conformance Process Flow
The service model describes the service implemented by the domain as well as the dependencies between
service components. The System Dictionary, which is a part of the service manager, contains the abstract
view of the service model in terms of high-level service attributes that are offered to customers. The
System Dictionary is used to identify the attributes as well as meta-information about the attributes such as
which measurement plug-in is used to obtain the attribute value, how often the measurement is made, what
parameters are necessary to measure it and so on. Thus, for example, for a packet loss measurement, the
attributes could specify that it has a TTL (Time-To-Live) of 15 minutes, that it requires a network segment
identification as a parameter, and that it should be obtained using the Network_Measures plug-in. This way
the System Dictionary isolates the Conformance Engine from the details of the underlying system
implementation.
For each customer SLA, information about the guarantees (thresholds and bounds on the attributes) as well
as information about the service components which impact the service offered to a given customer are

7

placed in the Customer SLA Database. An example of the former could be guaranteed availability =
99.9% while an example of the latter would be premises router address = 15.25.0.0.
A Contract Definition Language (see section 4.3) is used to specify the assertions in the form of a template
that uses the attributes and thresholds as parameters. The contract is compiled into a graph structure that is
then added to the Contract Repository.
When a contract is to be verified, the contract template is retrieved from the contract repository, and the
customer specific information is retrieved from the customer SLA database. This information is then passed
to Conformance. Conformance uses the information in the System Dictionary to make (or retrieve) the
appropriate system measures and computes the compliance with the contract.

4.2 Design of Conformance
The overall structure of the Conformance Engine is shown in Figure 5.

System
Dictionary

System Variable Cache

Measurement Plug-Ins

Logs

Contract
Repository

Contract Templates

Visualization
TemplatesCustomer

SLA Data Verification Interface

Report Generator

Figure 5. Design of Conformance
Objects that contain contract templates form the core of the engine. Because the same contract could be
offered to multiple customers, customer-specific thresholds, bounds, and system parameters are filled in the
template at contract evaluation time. This allows the templates to be shared across multiple customers.
System measurements are accessed through system specific measurement plug-ins. Because the plug-ins
hide the details of the underlying system and the measurement protocols from Conformance, new
measurements are easy to add to the system. Conformance dynamically loads measurement plug-ins as
needed.
To minimize measurement traffic, the state of the system is cached in the system variable cache. The cache
uses a logical database view of the system, i.e., every system attribute is treated as an entry in a logical
database, with the attribute name being used as the key to retrieve its current value. Properties associated
with the attribute define how frequently the value is updated in the cache, which parameters are needed to
obtain the measurement value, and which measurement plug-in is responsible for obtaining the attribute
value. The cache can also store measurement history if needed to compute aggregate values (e.g., time
averages) if they are not directly available from the underlying measurement system.
When a customer request is received at the verification interface, the following steps occur:
1. The customer specific data is retrieved from the customer SLA database and inserted in the contract

templates.

8

2. The actual system attribute1 values are obtained from the system variable cache. If the cached values
are stale, measurement plug-ins are used to update the cache before the values are returned.

3. The contract is evaluated by computing the values of the assertions defined in the contract using the
attribute values and customer-specific parameters, thresholds and bounds.

4. The compliance results are logged and communicated either programmatically by the verification
interface, or through reports generated by the report generator. The reports are typically customized for
each customer. The report generator uses the Visualization Templates to create reports.

4.3 Contract Definition Language
Systems can be defined using a formal language such as UML [11]. Other system modeling languages used
in CIM [12] and Webm [13] can also be used to describe and collect management data using multiple
heterogeneous sources of data such as SNMP, CMIP, DMI, etc. In our implementation, we assume that
these data collection mechanisms can be captured in one or more measurement plug-ins and the system
attributes can be derived from those measurements.
Since we did not need the complexity enabled by UML, we used a declarative language with syntax similar
to the C language. A partial description of the grammar used is shown below:
Contract

: DeclarationList AssertionList [FilterList]
Declaration

: ContractName | ServiceName | Variable Type Declarations
Assertion

: PredicateList | AssertionLabel : Predicate
Predicate

: Assertion | expression
| if (expression) Predicate [else Predicate]

expression
: unary and binary C expressions; constants; and identifiers

identifier:
system attribute name, user variable, constant, AssertionLabel

Filter
Event EventName FilterDescription EventValue
Status StatusVariable FilterDescription

FilterDescription
: expression | if(expression) expression [else expression]

EventValue
: expression | if(expression) expression [else expression]

Declarations contain meta-information about the contract as well as type specifications for variables used in
the contract. The value of the contract is the logical AND of all assertion values. Assertions may optionally
be given a label. If an assertion is labeled, it may be verified (computed) independently of the contract
within which it resides. In addition, other assertions may refer to its value using its label. Assertions consist
of predicates, which are logical expressions formed using system attributes, customer dependent variables,
constants, and arithmetic and logical operators. System attributes and customer dependent variables are set
by the measurement plug-ins and the verification interface respectively, and are thus treated as read-only
within the language. Filters can be associated with a contract. Filters may be used to compute various kinds
of status information (e.g., expected time to repair, trouble ticket information, etc.) about the contract
and/or generate events (e.g., notify operators when a contract is not met) when certain conditions are met.
Filters and events are defined using a syntax similar to assertions, and can use any of the variables defined
as part of the contract.

1 We use system attributes and system measurements interchangeably. System attributes are abstract or derived measurements
computed from element level measurements. Examples are service availability, response time, thruput, utilization, etc.

9

5 Experience using Conformance
We have tested the Conformance prototype using live measurement data we are collecting from the various
XIWT member sites and a large ISP.
Figure 6 shows the experimental setup. The ISP (a large national ISP) monitors its network, the various
servers that compose its Email service, and the POP (Point of Presence) sites using active and passive
measurements. The measurement data is pushed by the ISP to a measurement station outside the HP
firewall. Available measurements include availability and response time measurements from DNS, POP
sites, mail servers, and NFS. In addition, measurement stations at HP and several partner sites make
periodic network delay and packet-loss measurements by pinging one another. Measurement data is pulled
through the HP firewall as shown by measurement-specific plug-ins. In our example scenario, we assumed
that the following metrics are specified in the service level agreement of interest:
• Availability –Email service is expected to be available 99% of the time as measured over any day. The

network is available 99.9% of the time between 8:00 AM and 5:00 PM.
• Performance – Email performance is characterized in terms of a) response time < 2.5 seconds when

an employee retrieves mail. Network performance is measured by a) round-trip delay < 150 ms and b)
packet loss rate < 5% when averaged over daily intervals.

• Utilization –The ISP is expected to reserve sufficient capacity at its POP (Point of Presence) so that
employees are not denied access to the email service.

The ISP is expected to create daily, weekly, and monthly reports on the overall service compliance and the
individual service level metric values.

POP
POPPOP

Measurement Station

NFS Servers
Mailfeps

Auth. Server

DNS Servers

Server Farm
POP3 Servers

POP

ISP Firewall

HP Firewall Measurement
Station
at HP

Conformance

Internet

Measurement Stations at Partner Sites

Web Browser

Figure 6. Example Scenario
We now discuss the details of how the email service is modeled and how the contract for email service is
monitored. We have constructed similar contracts for the network access services.

Performance

Availability

Response Time

Availability

Mail Service

MailFEPi
Service

RM MailFEPi
POP3
Server

MailFEPi NFS
Service

Mail Authentication
Service

Client authentication
measures for MailFEPi

(Availability, Performance)

MailFEPi
Authentication

ServicePOPm
Authentication

Service

POPm
Service

POPm
Dialup
Service

Terminal Serveri
Service

Utilization

Availability

Thruput

TACACi
Service

Availability

Delay

Response Time

Figure 7 Email Service Model

10

Figure 7. shows a part of the service model for the email service provided by the ISP. The model is
represented as a dependency graph with measurements (indicated by arrows) associated with each node in
the graph. The measurements may be made directly (using active tests or passive monitoring) or may be
derived from measurements made at other nodes. For example, mail service availability is derived using
availability measurements from the POPm Dialup Service and the MailFEPi Service. These in turn depend
on the availability of the Authentication Service, Terminal Serveri Service, MailFEPi Authentication
Service, and so on2.
The email service contract is comprised of two service components: the access component (describing the
POP and its associated components) and the mail subsystem (describing the mail server and its associated
components). A partial description of the contract written in CDL is shown below
/* Email Hosting contract template */
Contract Email_System;
Service Email_Service;
%%
/* POP metrics in SLA- availability, delay, thruput, utilization */
ISP_Access: {

%popAvailability($popName, …) > $minPopAvailability;
%popAvgDelay($popName, …) < $maxPopDelay;
%popThruput($popName, …) > $minPopThruput;
%popUtilization($dialinServer, …) < $maxPopUtilization;

}
/* Test Mail subsystem for availability and response times*/
Mail_System: {

%mailAvailability($mailServer, …) > $minMailAvailability;
%mailResponseTime($mailServer, …) < $maxMailResponseTime;

}
In the contract, %name is used as a notation to identify system attributes and $name is used to identify
customer-dependent parameters to be filled in from the SLA database at the time of the evaluation. The
customer parameters define both thresholds (e.g., $minPopThruput) as well as parameters necessary for the
measurement system (e.g., $mailServer). Thus, the ISP can check if the email service is meeting SLAs for
different customers by filling in the customer specific thresholds (e.g., $minMailAvailability = 99%) and
system parameters (e.g., $popName = “Atlanta”).
Figure 8 shows a sample report generated by Conformance for the email service contract on a day when
problems occurred in the service. This gives the status for the last 24 hours. The aggregate view pie chart
shows the percentage of time the contract was compliant vs. non-compliant over the last day. An hourly
behavior of the contract is shown in the bar chart, and the compliance percentage for each service
component is shown in the ISP Access, and Mail System pie charts. Following other history and detail links
gives a historical view of the service, and how the service components are behaving over time.
The report contents and frequencies can be customized depending on what has been agreed upon in the
SLA between the provider and the customer. We have generated similar reports for network access using
measurements of both inbound and outbound traffic.
In our experience, Conformance scales well. The hierarchical architecture allows domains to be loosely
coupled. In addition, because inter-domain interaction takes place using the web, it is easy to replicate
Conformance over multiple web servers and share measurement and compliance data using existing servers
in the different domains. Finally, because the details of the measurements are hidden from Conformance by
the measurement plug-ins, it is easy to add new measurements and couple to different management and
measurement systems.

2 Note that only a small part of the service model is shown in the figure. The leaf nodes on the graph are other services, which have
their own service models and associated measurements.

11

We have found our current implementation of the CDL be sufficient for most SLAs we have encountered.
Although the CDL only provides Boolean values for contract compliance, filters defined in contracts can
provide multi-valued status information (e.g., warning, critical etc.) prior to the contract being violated. Our
current CDL implementation does not support arrays. This causes the system specification in the System
Dictionary to become complex for large environments where multiple instances of the same component
exist. We are extending our CDL to support arrays to simplify system specification. We believe that both
arrays and database support are necessary for a large-scale system.

Figure 8: Example of a contract compliance report

6 Summary
Internet services such as e-commerce, web hosting, application hosting, etc., require cooperation and
internetworking between multiple organizations, systems and entities while maintaining the confidentiality
and privacy of management data considered proprietary by each organization. Currently there are no
standard mechanisms to share selective management information between the various service providers.
These mechanisms are needed to aid in management and diagnosis of end-to-end services. In particular,
service providers are using service level agreements as a means of specifying service level attributes that
are offered to their partners and customers. This implies that it is necessary to develop tools and techniques
to monitor whether providers are meeting their service level obligations, and to enable providers to manage
their infrastructure to those agreements.
In this paper we describe an architecture to share selective management information across multiple
business entities. The architecture can be used for automatically measuring, monitoring, verifying, and
managing service level agreements for Internet services. The architecture allows specification of attributes
that are quantifiable and measurable in a service contract. This allows a service provider to offer verifiable
and meaningful service behavior to their customers. Providers can offer customers the capability to
automatically verify the current service behavior against the guarantees, by exposing the values of service
parameters as agreed upon in the contract.

12

We also described the design and implementation of Conformance, a prototype implementation of this
architecture. Conformance is web-based, i.e., uses the standard HTTP protocol, to allow easy inter-domain
communication. It isolates the abstractions used in the service level agreements from the details of the
service implementation, thus allowing management information to be shared across domain boundaries
while hiding the system implementation details.
We have used our implementation to demonstrate how service providers can offer SLA monitoring
capabilities to their customers for a number of services including email and network access services.

7 References
1. Bhoj, P., Caswell, D., Chutani, S., Gopal, G., Kosarchyn, M. (1997) Management of new federated

services. Integrated Network Management V.
2. Thaler, D., Ravishankar, C. An Architecure for Inter-Domain Troubleshooting. ICCCN ’97.
3. Roscheisen, M., Winograd, Terry. (1997) The FIRM Framework for Interoperable Rights

Management. Forum on Technology-based Intellectual Property Management.
4. Lewis, D., Bjerring, L., Thorarensen, I. (1996) An Inter-domain Virtual Private Network Management

Service. IEEE/IFIP Network Operations and Management Symposium (NOMS) ‘96.
5. Kong, Q., Chen, G., Hussain, R. (1998) A Management Framework for Internet Services. IEEE.
6. Irodosek, G., Kaiser, T. (1997) Determining the Availability of Distributed Applications. Integrated

Network Management V.
7. Infovista&trade Corp., http://www.infovista.com
8. Micromuse, Inc. http://www.micromuse.com
9. VitalSigns Software, Inc. http://www.vitalsigns.com
10. Concord Corp. http://www.concord.com
11. Unified Modeling Language (UML) http://www.rational.com/uml/resources.html
12. Common Information Model (CIM) http://dmtf.org/cim/cimdoc20.PDF
13. Wbem http://wbem.freerange.com

