
Secure Partitioned Access to Local
Network Resources over the Internet

Chris I. Dalton, D. A. Clarke
Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-98-202
December, 1998

multilevel security,
gateway, internet,
network

A common problem faced by many organizations
connected to the Internet is controlling precisely which
hosts and services on their local network a user can access
from outside the local network over the Internet.
 One solution would group the local hosts and services
into logical partitions (or segments), and allow users or
classes of users access to particular partitions based on
who they are or what functional group they belong to.
We have implemented such an approach using gateways
running Multilevel Secure Operating Systems, such as
HP-UX VVOS 10.24 or Trusted Solaris 2.5. The gateways
run trusted versions of SSH and SOCKS that have been
derived from publicly available sources.
This paper reviews the features of a Multilevel Secure
Operating System relevant to its use in the role of an
Internet gateway, describes our trusted implementations
of SSH and SOCKS and shows how they may be used in
combination to provide precise but transparent local
network partitioning and access control.
We end with a concrete example that shows secure access
over the Internet to file systems provided by WindowsNT
servers on a local network.
The trusted SSH server software is currently being used
by a number of banks in Scandinavia.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

1 Introduction

This paper looks at the problem of how to provide selective access on a per user basis to

hosts and services on an internal network from clients on the Internet.

We show how this problem can be addressed by using hosts running Multilevel Secure

operating systems as network partitioning gateways between the Internet and internal

networks. The gateways run versions of the freely available ssh and socks software that

we have adapted for multilevel operation.

First, we introduce multilevel secure operating systems theory and concepts and discuss

particular con�gurations that are suitable for use as network gateways. These con�gura-

tions form the foundation of the rest of the paper.

We then present an overview of the architecture of the network partitioning gateway. We

describe the theory of its operation and break down the key functionality the gateway

must provide. We briey analyze the security bene�ts we gain by basing the gateway on a

multilevel secure operating system.

We go on to describe in detail the two software components we use to provide the key gate-

way functionality. We use a Secure Shell Protocol server to provide a user authentication

service and a proxy service. Secondly, we describe our network access control mechanism

which is based on multilevel modi�cations to the server component of the standard socks

toolkit.

We �nish with an example of the network partitioning gateway in use. We show it being

used to allow partitioned access to internal WindowsNT shares from clients out on the

Internet. We discuss the advantages of using our network partitioning gateway.

1

2 Multilevel Secure Operating Systems

Hosts running a multilevel secure (mls) operating system form the basic building block of

our network partitioning gateways. In this section we de�ne what we mean by a multilevel

secure operating system by describing the functionality it must provide. We discuss suitable

con�gurations of such operating systems when used as network gateways and end by briey

discussing two commercial operating systems that �t our requirements.

2.1 Our requirements

To support our needs, the operating system running on the gateway must support two extra

features over and above the functionality found in general purpose multi{user operating

systems such as unix. Firstly, it must implement a Mandatory Access Control policy

based on the Bell{LaPadula formal model [1]. Secondly, it must support the idea of Least

Privilege. Operating systems that support such functionality are typically called multilevel

secure.

2.1.1 Mandatory Access Controls

The system should implement a Mandatory Access Control (mac) policy alongside the

more usual Discretionary Access Control (dac) policy for controlling access to system

resources such as �les, processes and network connections.

With standard dac schemes (such as the unix permission bits), a user who owns a par-

ticular resource can grant access to that resource to other users. On the other hand, mac

protection schemes enforce a particular policy of access control on the system. Users, even

if they own a resource, cannot grant access to that resource to other users if that access

would violate the mac policy of the system.

Formal models for mac were developed initially on behalf of military organizations in

an attempt to develop systems in which the ow of information around the system was

predictable based on a particular policy. A common policy adopted was that expressed in

the Bell-LaPadula model.

In this model all resources (objects) are given sensitivity labels. The sensitivity label

consists of two components: a classi�cation and a set of compartments. The classi�cation

is used to specify how secret or sensitive a resource is. The compartment set is used to

partition access to a resource at a particular classi�cation. Compartments allow data to

be partitioned according to project, department or organization, for example.

All users (subjects) are given clearances. Clearances have the same syntactic form as

sensitivity labels. Users also have a current level associated with them. The current level

also has the same syntactic form as sensitivity labels. The clearance a user holds and the

2

current level they are operating at dictates what access they have to resources based on the

policy. Simplifying, the Bell{LaPadula model consists of a state machine and the following

two rules for determining whether a particular state is secure:

{ If a user has read access to a resource then their clearance dominates the sensitivity

label of the resource, i.e. the classi�cation part of a user's clearance must be greater than or

equal to the classi�cation part of the resource's label. Additionally, the compartments set

of the resource's label must be a subset of the user's clearance. This is the Bell-LaPadula

simple security property.

{ If a user has read access to a resource then their current level dominates the sensitivity

level of the resource, i.e. the classi�cation part of a user's current level must be greater than

or equal to the classi�cation part of the resource's label. Additionally, the compartments

set of the resource's label must be a subset of the user's current level. If a user has write

access to a resource then their current level equals that of the resource they are trying to

write to. The classi�cation part of the current level must be equal to the classi�cation part

of the resource's label. Additionally, the compartments set of the resource's label must

be equal to the compartment set of the user's current level. This is the Bell-LaPadula

*{property.

Using mac labels to protect resources

In order to add some clarity to the above discussion we present the following labeling scheme

for handling data on an mls system used to hold business data for an organization. Our

example labeling scheme consists of three classi�cations, unclassified, confidential,

secret and a set of compartments, sales, accounting, engineering, marketing.

The classi�cation part of a user's clearance on the system is mapped to their grade within

the company, i.e. a director of the company has a clearance of secret, a manager has a

clearance of confidential and a normal worker has a clearance of unclassified.

The compartments within the system correspond to departmental groups within the or-

ganization. So, for example, the full clearance (classi�cation plus compartments) for a

manager in the accounts department would be confidential accounts.

Based on this scheme, we would then protect �les on the system as follows. Files that

should be readable by anyone should be labeled unclassified. Files that any manager

(or above) should be able to see are labeled confidential. Files that only managers

or directors within the accounts department should be able to read are labeled confi-

dential accounting. A manager with cross-department responsibilities may be given

several compartments as part of their clearance. For example, an engineering manager

with the clearance of confidential accounts marketing engineering could view

the management documents in both the accounts and marketing as well as the engineering

department.

3

As well as allowing us to restrict which users get to see what data, the mac policy also allows

us to control the way data ows around the system. For example, the mac policy restricts

users to being only able to write documents at their current level. It also ensures they

must be at the same or higher level to view documents. This prevents them from reading

a document at top secret accounting sales and then writing it to unclassified

sales, for example. Had this been possible, then somebody with a clearance of top

secret accounting sales would have been able to grant access to a �le at that level

to somebody with a lesser clearance. This would be a violation of the mac policy.

Network gateway mac con�gurations

Systems designed around the Bell{LaPadula model can be used outside their more usual

data classi�cation and protection role. Here we show how they can be pro�tably con�gured

as network gateways.

When used in its traditional role the mac policy is typically used to prevent the leakage

of sensitive information. For network gateways, we are more interested in using the mac

controls to provide a read{only environment for processes and users and in the strong data

partitioning between compartments that mac systems o�er.

The con�guration shown in �gure 1 below uses compartments to distinguish between data

and resources accessible from the Internet, and those accessible from a company's internal

lan. This is the con�guration used by Hewlett-Packard's VirtualVault product [2, 3]. The

labeling scheme consists of one classi�cation, system and two compartments, inside and

outside.

MULTILEVEL SECURE HOST

Internet

Local Area Network
SYSTEM INSIDE OUTSIDE

SYSTEM
OUTSIDE

SYSTEM
INSIDE

SYSTEM

Figure 1: Simple mac con�guration

This host has two network interface cards, one connected to the external Internet and the

other connected to an internal local area network (lan). The networking is con�gured

such that packets from the Internet are labeled system outside and packets from the

internal lan are labeled system inside.

In this con�guration, a connection from the Internet can communicate only with processes

4

labeled system outside. Only processes running at system inside can communicate

with hosts on our internal lan.

If an attacker from the Internet were to gain access to a shell on the gateway machine, the

current level of that shell process would be system outside. The Bell{LaPadula access

control rules guarantee us two things. Firstly, the attacker cannot write to �les labeled as

system. This in e�ect write-protects any �les labeled as system (such as the password

�le) as far as the attacker in the outside compartment is concerned. Secondly, the attacker

cannot launch an attack on the internal lan. The shell of the attacker's current level

does not equal that of the internal lan card so the attacker cannot write packets to that

network. Further, the attacker's current level does not dominate the level of the inside

network so the attacker cannot listen to packets on the internal network.

MULTILEVEL SECURE HOST

Local Area Network

Internet
SYSTEM

SYSTEM

...
SYSTEM

INSIDE

SYSTEM

MIDDLE1

SYSTEM

OUTSIDE MIDDLEn

SYSTEM INSIDE MIDDLE1 ... MIDDLEn OUTSIDE

Figure 2: Multi-compartment mac con�guration

Figure 2 shows an extension of this model and is the one adopted as the foundation for

our network partitioning gateways. A number of middle compartments have been added

to the system. The middle compartments are used to provide isolation between processes

and as we shall see later, so we can implement �ne grained access control to hosts on our

internal network from processes running in middle compartments. The use of this type of

mac con�guration for also hosting multiple independent applications is introduced in [4].

2.1.2 Least Privilege

In traditional unix based operating systems there is single account (root) that is privileged

to override the security policy of the system.

To use a program that must override the security policy to do its job, a user must either

assume the identity of root before running the program or alternatively the program must

have its suid bit set to root.

In the case of mac systems this is particularly worrying as the breach of the root account

or a process with root privileges could lead to all the mac controls being circumvented.

5

Typically then operating systems that implement mac controls also implement the concept

of least privilege. Here, the power to override the system security policies is broken into

a large number of individual privileges instead of the one root account. Processes (known

as trusted processes) that need to override part of the system security policy are given just

those privileges to do the job they are intended to. Users are given authorizations to use

these trusted processes. An example privilege would be the one that allows a process to

bind to a privileged network port (one less than 1024). Under unix, a process has to be

running as root to do this. On a system that supports least privilege it is possible to grant

that process only the privilege it requires.

2.2 Available implementations

The combination of mac controls and the principle of least privilege are most often found

in operating systems that are derived from the Compartmented Mode Workstation (cmw)

speci�cation [5, 6]. Two such operating systems are hp{ux vvos 10.24 from Hewlett-

Packard [3, 2] and Trusted Solaris 2.5 from Sun Microsystems [7]. They both provide a unix

type user and programming interface. Trusted Solaris 2.5 is a full cmw implementation.

Hewlett{Packard's hp{ux vvos 10.24 is a based upon their full cmw operating system

release (hp{ux 10.26) but has been streamlined for use on gateway systems. It forms the

foundation of the VirtualVault product line.

6

3 The Network Partitioning Gateway architecture

In this section we give an overview of the architecture of the Network Partitioning Gateway.

We explain the theory of its operation and identify the key services the gateway must

provide. Our aim is to be able to allow client users out on the Internet to be able to connect

to services running on our internal hosts. We wish to be able to strongly authenticate the

client users before allowing them to connect. We wish also to be able to vary which internal

hosts or groups of hosts (and hence their services) are visible to di�erent users or groups

of users.

3.1 Theory of operation

We proxy all connections through a mls gateway that sits between the internal network and

the Internet. No direct connections are allowed from the Internet to the internal network(s).

The gateway is a multilevel secure system con�gured as in �gure 2. This gateway provides

three major services. Firstly, it can authenticate at the user level clients who wish to

connect to internal services. Secondly, it provides a means of proxying connections from

the (authenticated) client users through the gateway to internal services. Thirdly, it can

control the visibility of internal hosts (and hence services) to external clients depending

upon their authenticated identity. Figure 3 shows the overall architecture.

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

MULTI-COMPARTMENT MLS HOST

Internet

SYSTEM

...

OUTSIDE MIDDLE1 MIDDLEn INSIDE

Access Control Server

Auth Server

User 1

User 2

Local Area Network

Internal service 1

Internal Service 2

Server
Proxy Proxy

Server

Figure 3: The Network Partitioning Gateway

3.1.1 Authenticating users

The only service exposed to the Internet is the authentication service of the gateway.

Clients must initially connect to this server. When authenticated, the users are mapped to a

particular sensitivity level. This corresponds to the level of one of the middle compartments

on the mls gateway. This is assigned to the user by the security administrator of the

7

system. Several users may be mapped to the same level in order to facilitate access on a

group basis.

3.1.2 Proxying access to internal services

The key to the approach taken here is that we have adopted the the ssh method of

forwarding connections to multiple tcp/ip ports over a single channel. Once authenticated,

the user is given a direct (encrypted) channel to a proxy server that runs in the user's

mapped middle compartment. Following the ssh model, the client sets up on their local

machine dummy listening ports for particular services. These dummy ports correspond to

the ports of services on the internal network that the client ultimately wishes to access.

The client then instructs the proxy server running in its middle compartment to set up

connections to the real services running on hosts on the internal network. To make use of

a service on the internal network, the client application is con�gured to use the dummy

service port on the local machine itself. TraÆc to this port is then relayed to the proxy

server in the user's middle compartment over the authenticated (and encrypted) channel.

The proxy server relays this traÆc to the real service on the internal network and passes any

traÆc from that service back to the local dummy service and hence back to the application

client.

As an example, consider the case where we wish to allow external clients on the Internet

access to an internal imap mail service that is sitting behind a gateway. This service runs

on the well known imap port number (143) on a host within the internal network. The

ssh model of port forwarding achieves access in the following way. Firstly, the user runs a

client application (the ssh client program) that sets up a dummy listening daemon at the

well known imap port on the user's local machine. The client ssh program also makes a

connection to a ssh server process on the gateway. The ssh server authenticates the user

and sets up a proxy to the real imap service host on the internal network. The external

user con�gures their mail client to look for the imap service on their own machine instead

of on the remote internal machine behind the gateway. The client ssh program intercepts

any traÆc to this local port and forwards it over the authenticated and encrypted channel

to the ssh server. The ssh server simply proxies this traÆc to the real imap host and

passes any replies back.

3.1.3 Controlling access to internal services

The proxy server runs in a middle compartment that maps to a particular user. It is not

trusted with any privileges, therefore by default the mac controls prevent it communicating

with anything outside its compartment. So that the proxy server may be able to setup

proxy connections to services running on internal machines on behalf of the remote clients,

we provide an access control server that acts as tcp/ip relay. This relay consults a control

�le that lists permitted connections before allowing the proxy connection to be setup.

8

3.2 Summary and Analysis

The operating system mac controls on the gateway ensure that a user can only connect to

the services running in the outside compartment of the gateway. They cannot connect

directly to other compartments within the gateway or to internal hosts behind the gate-

way. We choose to run only the authentication server within the outside compartment.

This ensures that the only service on the gateway that external users can connect to is

the authentication service. The gateway authentication server maps users to a particular

middle compartment level. Should attackers somehow manage to exploit a bug in the au-

thentication server code, they are constrained within the outside compartment and cannot

launch attacks onto the internal network.

Further, we can label any information used by the authentication server in making authen-

tication decisions at the system level. This in e�ect write-protects it as far as an attacker

in the outside compartment is concerned. This protects against the attacker installing

their own authentication information and so being able to circumvent our authentication

controls.

The access control server dictates which hosts can be contacted on the internal network

from particular middle compartments. The mac controls ensure that the access control

server is the only path from the middle compartments to hosts on the internal network.

With a combination of our authenticated user to sensitivity level mapping and the ability

to control which hosts on the internal network are visible from which levels we can therefore

limit what internal hosts are visible to external users. This allows us to group internal hosts

into logical partitions and then allow access to these partitions based upon the identity of

the connecting user.

The following two sections describe in detail how we have modi�ed the standard ssh code

base to provide our gateway authentication and proxy servers and how we have modi�ed

the standard socks server code to provide the access control service functionality. We

have based our services around these implementations since they are already widely used

by the Internet community and thus well tested and likely to be free of any major aws.

9

4 The Secure Shell ssh protocol

Our architecture requires that we have a means of authenticating a user and then mapping

that authenticated user to a compartment on an mls system. We also require a port

forwarding server that runs on behalf of authenticated users and allows them access to

internal services. The Secure Shell Protocol (ssh) provides both these functions and we

have based the operation of the gateway around a ssh server front end. We establish the

identity of the connecting user via the ssh key exchange. We then allow access to internal

services via the built in port forwarding features of ssh. This section introduces the major

features of ssh and it then describes on how we have modi�ed it for multilevel operation.

We concentrate on how we achieve the user to compartment mapping using the multilevel

ssh. Further details of the multilevel ssh implementation and a description of using ssh

for remote administration of mls systems can be found in depth in [9].

4.1 The ssh protocol and implementation

4.1.1 Protocol

The ssh protocol [8] has been designed to enable secure remote access to hosts over an

insecure network. It uses rsa{based host and user authentication as well as channel

encryption using idea, 3des or something similar.

The basic steps involved in the protocol are as follows. Initially, a client connects to the

server ssh port1. A protocol exchange follows whereby the client system veri�es the iden-

tity of the server system via two public rsa keys belonging to the server. The client then

generates a random session key, encrypts it using the server keys and sends it to the server.

From now on the channel between client and server is encrypted using this session key. Fol-

lowing this the client authenticates itself to the server via one of several methods2including

rsa{based user authentication, rsa{based host authentication and simple password based

authentication.

After authentication, the client usually requests a login shell or command to be run on the

remote system. The protocol also supports x11 traÆc forwarding and indeed arbitrary

tcp/ip port forwarding both from client and server system over the encrypted channel.

It should be noted that the protocol has been designed so that it can be extended fairly

easily.

1port 22
2The authentication methods accepted are controlled by the server administrator.

10

4.1.2 A Sample implementation

A sample implementation of the ssh protocol is available from www.cs.hut.�. The imple-

mentation consists of two main parts: a client side program (ssh) and a server side daemon

(sshd).

Exec shell or command

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

fork

Encrypted Channel

fork

Dummy X server

accept

Main

slave SSHD
child

(run as user Y)

Slave SSHD
child

(run as user Y)

SSHD process

SSH client
process

Client Host Server Host

fork

SSHD
server_loop

Slave

user

files

as user Y

Figure 4: Client and server processes involved in an ssh invocation

The sample implementation works roughly as follows. When the server side process (sshd)

receives a connection from a client it �rst spawns a child process to handle this connection.

This spawned process begins the ssh protocol exchange with the client over the channel

(which is a bsd socket). Version strings are exchanged, followed by the server public rsa

keys and some random data to guard against ip spoo�ng. The client returns this random

data along with an encrypted session key. The server turns on encryption on the channel

using the session key and begins the client authentication stage. The client tells the server

which user it wishes to authenticate as on the remote system. The server forks a child

as this user and carries on with the authentication process. The spawned child is used to

provide the server with access to user owned �les (such as private rsa keys) as and when

needed as part of the authentication process.

If the authentication is successful, the server then enters a loop waiting for a shell or

11

command execution request from the client. At this point, the server may also set up any

x11 and tcp/ip forwarding asked for by the client (section 2.2.1).

When the server receives a shell or command request, it spawns another child. This child

has its input and output redirected to the server. The child execs the requested shell or

command.

The server itself sits in a loop listening for any output from the child. This output is

multiplexed onto the encrypted channel and sent back to the remote client. Similarly, any

output from the remote client is sent to the child process.

The server also listens for any x11 or other forwarded tcp/ip traÆc that needs sending

over the encrypted channel.

Figure 4 shows the client and server side processes involved in an ssh invocation where the

user on the client host wishes to login to the server as user Y.

x11 forwarding

The x11 forwarding is implemented by the server process creating a dummy x11 server.

When logging in using ssh, the user's DISPLAY environment variable is set to this dummy

x11 server. The server process listens for traÆc on the port that it creates and sends this

over the encrypted channel to the client host. The client then sends it to its real x11

server.

Arbitrary tcp/ip port forwarding

In section 3.1.2 we described the ssh model of proxying by client side port forwarding. ssh

supports both server side and client side tcp/ip port forwarding.

The ssh server side port forwarding is a generalization of their x11 forwarding scheme.

A dummy listening socket is set up on the server machine by the slave ssh daemon that

is run on behalf of the connecting user. The slave ssh daemon listens on this socket and

passes and traÆc directed at it down to the client over the encrypted ssh channel. The

client side ssh program then passes this to the real service that is running locally on the

clients machine.

The client side port forwarding functions in the manner described in section 3.1.2. The

client side ssh program sets up a dummy listening socket for a particular service on the

client's local machine. The ssh client program passes data from that dummy listening

socket over the encrypted ssh channel to the user's slave ssh daemon process. The slave

daemon then forwards this traÆc to the real service that is either running on the same

machine as the ssh or on another host on the network.

12

4.2 ssh extensions to support multilevel gateway operation

Here we discuss the changes we have made to the ssh server code so that we can reliably

map users to compartment levels within the gateway. For the purposes of this paper, we

are most interested in the port forwarding features of ssh rather than its ability to run a

shell or command on behalf of the user.

Exec shell or command

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

fork

fork

Dummy X server

socket

accept

Main

slave SSHD
child

(run as user Y)

Slave SSHD
child

(run as user Y)

SSHD process

SSH client
process

Client Host Server Host

fork

SSHD
server_loop

Slave

LEVEL S3

LEVEL S2

LEVEL S1

LEVEL S1

as user Y at level S3

user

files

Encrypted Channel

multi-level

Figure 5: Extended multilevel ssh

The key new component in the multilevel sshd is a server side authorization �le. This

�le associates a sensitivity level with each user. These levels correspond to middle com-

partments on the gateway machine. As with the non-multilevel version, when the user is

authenticated, the ssh server spawns a slave server on behalf of that user. This slave server

handles running a shell or command for the user and also dealing with port forwarding

for that user. The level of any shell or command that gets run for the user is dictated by

their entry in the server side authorization �le. Similarly, and importantly, any forwarded

connections the slave daemon is asked to make on behalf of the client are done so at the

level speci�ed for the user in the authorization �le. Any server side port forwarding sockets

are also set to listen only at the level speci�ed for that particular user in the server side

authorization �le. Figure 5 shows the processes involved in the operation of the multilevel

ssh server.

13

Some implementation details

Modi�cation is required to the sshd code to permit a user's login shell to be run at a

di�erent level to the level that the user connects from. In our particular case, the client

users will be always connecting at the system outside level. The slave server process

is required to change levels between this level and the level that has been associated with

that particular user as it reads and writes data to and from the remote client and the users

shell process. It also has to switch levels when forwarding traÆc.

14

5 Access control using socks on the network parti-

tioning gateways

Our network partitioning gateway architecture requires a server that controls access to

internal hosts from processes (namely the proxy servers) within middle compartments.

Here we discuss how we have adapted socks [11] for this purpose. We do not look at how

it can be used in its more traditional role of provide external application service access

for internal clients that sit behind a �rewall where the �rewall is an mls machine. A

discussion of that can be found in [10].

First we give a brief overview of the socks protocol and standard toolkit. We then look at

the changes we have made to the standard implementation to support our requirements.

5.1 The socks protocol and toolkit

The socks protocol is a protocol for relaying tcp sessions through an intermediate host

such as a �rewall. It allows transparent proxying of application protocols such as telnet,

ftp and http.

The socks toolkit3is an implementation of the socks protocol. It consists of a relay server

process and a client library.

The socks server process runs on the intermediate host. Its role is to form a virtual circuit

between the client and the application server and to relay packets between them. Access

control mechanisms within the socks server process allow a policy of network access to be

established and enforced.

The client library provides direct plug in replacements for the standard tcp socket api

calls4. The socks protocol is carried out below the socket api layer and is therefore

transparent to the application.

Creating a socksi�ed client is usually only a two step process. First, the existing socket

calls are renamed to their socks equivalent. Secondly, the application is linked against the

socks library. Shared library versions of the client libraries are available for some unix

platforms; in this case there is no need to recompile client source code. Client libraries are

also available for Macintosh and Windows platforms.

Figure 6 shows a typical usage of socks in a �rewalled environment. Here the �rewall host

acts as a barrier between an external and internal network. The packet �ltering function

of the �rewall ensures that there is no direct access between systems on the external and

internal networks. A socks server is run on the �rewall host to allow (controlled) access

to external hosts from internal clients.

3Available from ftp://ftp.nec.com/pub/socks/
4connect, bind, accept, listen and select.

15

FIREWALL

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

SOCKS
EXTERNAL network

SERVER

Web
Server

remote
host

INTERNAL network

Browser
Web
Socksified

telnet
Socksified

Figure 6: Common socks con�guration

5.1.1 Logging

The socks server has the ability to log all connection requests and also the number of bytes

transferred across a connection. This allows activity across the �rewall to be monitored.

5.1.2 Access control in socks

It is possible to restrict what hosts and application services a client can connect to through a

socks server. Access control for a client using the socks protocol is enforced by the socks

server process. The access control policy that any particular socks server mandates is

de�ned by rules within a con�guration �le for that server. The access control rules allow a

policy based on a combination of user, requesting host, destination host and service port

to be established. Figure 7 shows an example control �le. This �le would allow the host

with ip address 147.143.2.2 to connect via the socks server to host 147.143.3.1. It would

also allow the host with address 147.143.2.10 to connect to any other host.

permit 147.143.2.2 255.255.255.255 147.143.3.1 255.255.255.255

permit 147.143.2.10 255.255.255.255

Figure 7: socks control �le

Further discussion on the use and con�guration of the socks toolkit can be found in [12, 13]

16

5.2 Adapting socks for multilevel operation on the gateway

In this section we describe how the standard socks server daemon can be modi�ed to

provide the access control and tcp relay function required of our gateway architecture.

Figure 8 shows the basic architecture.

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

client process

SYSTEM

...

OUTSIDE

Local Area NetworkMultilevel SOCKS server

INSIDE

client process
SOCKSified SOCKSified

Figure 8: Multilevel socks con�guration

5.2.1 The socks clients

In the case of our gateway, the socks clients are the proxying server daemons that run on

behalf of the users in middle compartments. We saw in section 4.1.2 that this proxying

service is provided as part of the sshd server daemon. An additional step we have taken

is to socksify the proxying code with the ssh daemon so that when it tries to set up a

connection to a remote machine on behalf of a client, it does so through our socks daemon

on the gateway, not directly. Any direct connection would in fact be blocked by the mac

controls of the gateway.

When the proxy server tries to set up a connection to a particular internal host, the socks

server decides whether it should be allowed or not. If it should then it makes the connection

to the requested service at the level of the internal network.

5.2.2 Multilevel Access control

As was seen in section 5.1.2, standard socks access control decisions are based on the ip

address of the client requesting a connection to a remote host and on the ip address of

that remote host. This method has been retained and extended to support the concept of

sensitivity levels.

As part of the standard socks protocol, the client indicates to the server which host it

wishes to contact. The server then initiates a connection to the requested host. For a

multilevel operation socks service, the server must also know at which sensitivity level

17

it should try to contact the requested host. In our simple gateway con�guration we have

only one inside network connection (labeled system inside). However, we may have more

than one internal network connection, each at a di�erent level. We may also wish to allow

processes within one compartment to be able to communicate over tcp/ip with other

processes in di�erent compartments. Our multilevel socks service must be able to cope

with this situation. One way of ensuring this would be to add a sensitivity level �eld to the

socks protocol. A client socks protocol message would then include both the remote host

address and the level to contact that host at. However, this approach requires modi�cation

to the socks client library and the client side code itself. The approach we have adopted

instead uses the server side socks control �le to dictate what level connections requested

by the client get made at.

The socks con�guration �le has been extended to include two extra �elds at the end of

a permit or deny line. The two extra �elds both contain sensitivity labels. The �rst one

refers to the level a client is contacting the socks server at, the second one dictates which

level the socks server should make its connection to the real server at. When the socks

server receives a connection from a socks client5it checks that a client at that level is

permitted to connect the host that they are asking to. If so, then the socks server relays

the connection to the host, switching level where necessary.

Importantly, the socks client libraries need no modi�cation to work with the trusted

socks server and are not trusted themselves. To provide the socksi�ed proxying service,

all that is necessary is to socksify the portion of the ssh server code that deals with

forwarded connections and link it against the standard socks library.

MULTI_LEVEL socks config file - cid 97.

Allow connections from the middle1 compartment to the host 15.144.60.200

client1 -> internal server1

permit 127.0.0.1 255.255.255.255 15.144.60.200 255.255.255.255 system middle1 system inside

Allow connections from the middle2 compartment to the host 15.144.60.203

client2 -> internal server2

permit 127.0.0.1 255.255.255.255 15.144.60.203 255.255.255.255 system middle2 system inside

Figure 9: Multilevel socks control �le

5.2.3 Implementation details

The trusted socks server has been trusted with the ability to switch sensitivity levels. Its

clearance includes all classi�cations and compartments, so spans all compartment bound-

aries. It is trusted with enough privilege to listen and accept connections from clients at

5In our case when it gets a connection from the proxying portion of the ssh slave daemon running on
behalf of a user at the level of that user's compartment.

18

any level / from any compartment. The following code shows the main processing loop of

the socks server. The code that needs to be added to make it function as in �gure 8 is

contained within the

#ifdef MULTILEVEL

...

#endif

sections.

while (1) {

....

if ((s = select(fdsbits, &fds, NULL,NULL, &tout)) > 0) {

if (FD_ISSET(in, &fds)) {

if ((n = read(in, buf, sizeof buf)) > 0) {

from_in += n;

#ifdef MULTILEVEL

if(setslabel(dst->olevel) < 0){

...

exit(1);

}

#endif

if (write(out, buf, n) < 0){

goto bad;

}

#ifdef MULTILEVEL

if(setslabel(dst->ilevel) < 0) {

...

exit(1);

}

#endif

} else {

goto bad;

}

}

if (FD_ISSET(out, &fds)) {

#ifdef MULTILEVEL

if(setslabel(dst->olevel) < 0) {

...

exit(1);

}

#endif

if ((n = read(out, buf, sizeof buf)) > 0) {

from_out += n;

#ifdef MULTILEVEL

if(setslabel(dst->ilevel) < 0){

...

exit(1);

}

#endif

if (write(in, buf, n) < 0) {

goto bad;

}

} else {

goto bad;

}

}

} else

...

}

}

Modi�cations to the existing socks server code must also include calls to the general mls

initialisation routines and extensions to the control �le so that we can specify labels as

part of a rule. However, the total amount of additional code is small.

19

6 Using the Network Partitioning Gateway

In this section we give an example of how to give users on the Internet selective access to

WindowsNT �le system shares on internal machines.

6.1 The smb protocol and services

WindowsNT uses the Server Message Block protocol (smb) to share �le systems between

machines. The smb protocol implementation has three well known ports associated with

it. The two of primary interest are its name service on port 137 and its session service on

port 139.

6.2 Running smb over ssh

Some sites wish to allow access to �le system shares on their internal machines to client

users out on the Internet. One way of doing this is to allow direct connections to the internal

machines from the Internet. However, smb traÆc is not encrypted and its authentication

methods can be circumvented. An alternative approach taken by some sites is to run the

smb connections over an authenticated and encrypted ssh channel in the following manner.

A gateway machine running the ssh server daemon sits between the user on the Internet

and the internal �le system share. If the user has an ssh identity on the gateway machine

then they can connect to that and set up a forward to the internal host that is hosting

the �le system. The user sets up dummy listeners for the smb ports (137 and 139) on

their local machine. They also instruct their ssh server process on the gateway to forward

any traÆc passed to these ports to the real machine on the internal network. Instead of

mounting the share as:

net use g: \\internal-machine.some.domain\sharename

they redirect it to the local dummy smb ports with the command:

net use g: \\localhost\sharename

The client side ssh program then intercepts traÆc directed to the dummy ports and passes

it to the user's ssh process on the gateway which then passes it to the real services on

machine on the internal network.

20

Using ssh the smb connections are encrypted and before a user can get access to a ma-

chine on the internal network they are strongly authenticated. Although a fair amount of

plumbing is required to set up the service the advantages are very clear6.

6.3 Making use of the mls gateway

Using ssh on a standard gateway to facilitate access to internal machines is a de�nite im-

provement over allowing direct connections to internal machines from the Internet. How-

ever we can achieve security enhancements by using our mls gateway. Further, our network

partitioning gateway gives us the ability to easily, precisely and securely control exactly

which users get access to which internal shares.

The setup procedure as far as the client is concerned is the same as before. Now however

because we map a user to a compartment level and can restrict what internal machines

can be contacted from a particular compartment with guaranteed mac controls, we can

vary easily just what internal machines are visible to each user.

6The amount of plumbing required can be considerably reduced by using a network redirector that
automatically makes smb �le system connections over ssh. This is currently being implemented by the
authors.

21

7 Conclusion and Future Work

We have seen how we can pro�tably use suitable con�gurations of multilevel secure oper-

ating systems in the role of network partitioning gateways. This allows us to achieve our

aim of controlled access to internal systems at the user level from clients on the Internet.

We identi�ed the major components such a network gateway must have and showed how

we implemented those components using standard publicly available software packages.

Whilst we hope that the tried and trusted public sources are free of major aws, we showed

how the mandatory access controls of the operating system guard against vulnerabilities

in those software components.

Our experimental implementations have shown the potential value in using multilevel se-

cure hosts as network gateways. We believe there is further useful work that can be done

in this area. For example combining the concept of tcp/ip connection splicing [14] with

multilevel secure gateways and pushing cross{compartment access control decisions into

the kernel.

22

References

[1] BELL, D. and LAPADULA, L. (1975). Secure Commputer Systems: uni�ed Exposi-

tion and Multics Interpretation. MITRE Technical Report MTR-1997, The MITRE

Corporation.

[2] HEWLETT-PACKARD CO. (1996). Virtual Vault Transaction Server Concepts

Guide.

[3] HEWLETT-PACKARD CO. VirtualVault http://www.hp.com/security/.

[4] DALTON, C.I. and GRIFFIN, J.F. (1997). Applying Military Grade Security to the

Internet. Computer Networks and isdn systems, volume 29, number 15, November

1997.

[5] MILLEN, J.K. and BODEAU, D.J. (1990). A Dual-Label Model for the Compart-

mented Mode Workstation. MITRE Paper M90-51, The MITRE Corporation.

[6] DEFENSE INTELLIGENCE AGENCY (1991). Compartmented Mode Workstation

Evaluation Criteria. Report DDS{2600{6243{91.

[7] SUN MICROSYSTEMS INC. Trusted Solaris 2.5.1.

http://www.sun.com/trustedsolaris/.

[8] YLONEN, T., KIVINEN, T., SAARINEN, M., RINNE, T. and LEHTINEN, S. (1998).

SSH Protocol Architecture. Internet Draft, daft-ietf-secsh-architecture-02.txt.

[9] DALTON, C.I. (1998). Strongly authenticated and encrypted multi-level access to

CMW systems over insecure network using the SSH protocol. HP Laboratories Tech-

nical Report HPL-98-99.

[10] DALTON, C.I. (1998). A generic proxying facility for CMW based on the SOCKS

protocol. HP Laboratories Technical Report HPL-98-100.

[11] NEC USA, Inc. Introduction to SOCKS. http://www.socks.nec.com/introduction.html.

[12] CHAPMAN, D.B. and ZWICKY, E.D. (1995). Building Internet Firewalls, pp 278{

296. O'Reilly and Associates, Inc.

[13] CHESWICK, W.R. and BELLOVIN, S.M. (1994). Firewalls and Internet Security, pp

137{208. Addison Wesley.

[14] SPATSCHECK, O., HANSEN, J.S., HARTMAN, J.H. and PETERSON, L.L. (1998).

Optimizing TCP Forwarder Performance. Dept. of Computer Science, University of

Arizona Technical Report TR 98-01.

23

