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REDUCED IDEALS IN FUNCTION FIELDS

N.P. SMART

Abstract. Let F denote a function �eld of transcendence degree one over a

�nite �eld k. We assume that the �eld is tamely rami�ed at in�nity, that the

valuations at in�nity of a set of fundamental units are known and we have

gcd(f1; : : : ; fs) = 1, where fi denotes the degree of a place at in�nity. In such

a situation we describe a simple arithmetic in the divisor class group. One

draw back of this arithmetic is that we do not obtain a unique representative

for each divisor class. The method makes use of multiplication and reduction

of reduced fractional ideals.

In this paper we present a notion of reduced ideals for function �elds of arbi-
trary degree, thus generalizing the work of Buchmann, Scheidler, Stein, Thiel and
Williams, see [6], [26], [27] and [30]. We show how the notion of reduced ideals can
be used to de�ne an e�cient arithmetic in the divisor class group of certain function
�elds. We assume throughout that the functions �elds are de�ned over a �nite �eld
of constants. The ability to e�ciently compute in the divisor class group of a curve
is required in generalizations of discrete logarithm based cryptosystems, coding the-
ory based on algebraic geometric curves, primality testing and is of independent
theoretical interest in its own right.

The paper is organized as follows: In section 1 we present the arithmetic of
function �elds, this is given in enough detail so that the whole paper is mostly
self contained. Following this in section 2 we shall cover the basic ideas from the
`geometry of numbers' in the Puiseux expansion �elds which we shall require. Much
of these �rst two sections can be found in [29] and [25]. However we di�er slightly
in some of the notation and this all needs to be �xed for the following sections.
Indeed there is some disagreement in the literature about certain de�nitions, so it
is worth while spending some time �xing notation.

In section 3 we present the basics on reduced ideals in function �elds that we
will require. In section 4 we explain the reduction algorithm, analyze its complexity
and give an example of how an ideal is reduced. In section 5 we show how to use
this to perform e�cient arithmetic in the divisor class group of certain function
�elds. Finally in section 6 we outline how some of the ideas in this paper can be
used to solve other problems in function �elds.

Before we begin we comment on some historical notes. The lattice reduction
algorithm we shall use is essentially the method of [25], which is itself closely related
to the method of [16] and [21]. We shall give a complexity estimate for the number
of bit operations of the lattice reduction procedure for lattices in a vector space of
Puiseux expansions generated by an ideal of a function �eld.
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Lattice reduction techniques have been used before to de�ne discrete logarithm
based cryptographic schemes using the group law on the Jacobian of superellip-
tic curves [14]. Whilst ideal reduction techniques form the basis of the classical
methods for de�ning group laws in the divisor class group of imaginary quadratic
function �elds, see [8]. A similar approach can be taken in real quadratic function
�elds, see [22] and [23].

An algorithmic group law can be given in the divisor class group of a function
�eld using the standard compose and reduce method of imaginary quadratic func-
tion �elds once one has an e�ective algorithm for the Riemann-Roch problem, such
as that given in [9]. Other techniques to solve this problem, such as [31], also
use Puiseux expansions, or more generally Hamburger-Noether expansions. How-
ever such techniques do not appear very practical and they often require taking
extensions of the base �eld.

A link between the geometry of numbers in function �elds and the Riemann-Roch
theorem has been noticed before, see [5]. We shall focus on practical algorithmic
questions and want a method which is as e�cient and simple to implement as
possible.

Our approach is algebraic in 
avour rather than geometric, hence it is modeled
on the number �eld situation, rather than the geometry. The following problem
then arises: We are unable to mirror the exact treatment of reduced ideals in
number �elds and hence have found it impossible to present a notion of compact
representation. Such a representation, if it exists, would possibly allow us to show
that many problems in function �elds belong to the complexity class NP , see [30]
and [26].

The author would like to thank useful useful email correspondences between S.
Galbraith, S. Paulus, R. Scheidler and A. Stein which helped with the writing of
part of this paper.

1. Function Field Arithmetic

Let q = pr, for a prime number p and let k = Fq . We let C(x; y) 2 k[x; y] denote
some irreducible multinomial such that

� degy f = n.
� f is monic and separable in y.

We let d denote the degree of C, so if

C(x; y) = yn +

n�1X
i=0

ai(x)y
i; (1)

with ai(x) 2 k[x], then

d = max
i=0;::: ;n

fi+ deg ai(x)g;

where an(x) = 1. The genus g of C is related to d via,

g �
1

2
(d� 1)(d� 2):

We set F = k[x; y]=(C(x; y)) and interpret F as a �nite extension of the �eld k[x].

We de�ne the exact constant �eld ~k to be

~k = ff 2 F : f is algebraic over kg:
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For a �eld K (which you should think of as either k[x] or F ) we de�ne

P(K) = Set of all places of K:

Div(K) = Set of all divisors of K

=

8<
:
X

p2P(K)

cpp : cp 2 Z and cp = 0 for all but �nitely many p:

9=
; :

We write P(K) = Pf (K) [ P1(K) with an obvious notation. The degree of ~k will
be a number l which divides n, in fact l will divide the degree of all places in P(K).
Suppose p 2 P(k[x]) then we de�ne the following valuations on k[x], which can
easily be extended to k(x):

vp(�) :

8>><
>>:

k[x] �! Z[ f1g

� 7�!

8<
:

1 If � = 0
� deg(�) If p =1:
k If p = p(x) and p(x)k jj�:

Each valuation gives rise to an absolute value, which also extends to k(x):

j � jp :

�
k[x] �! R

�0

� 7�! q�deg(p)vp(�)

where q�1 = 0 and deg(1) = 1. Note that we have, for � 2 k(x),X
p2Pf(k[x])

deg(p)vp(�) = deg� = � deg(1)v1(�)

and so we obtain the product formulaY
p2P(k[x])

j�jp = 1;

for all � 2 k(x).
We write, for p 2 P(k[x]), Op = f� 2 k(x) : vp(�) � 0g and de�ne OF to be the

integral closure of k[x] in F . A basis for OF can be computed using an analogue
of the ROUND-2 algorithm from number �elds [10].

We now need to extend the valuations and absolute values de�ned above on k[x]
to OF (and hence to F ). Firstly we consider p 2 Pf(F ) which lies above a prime
p 2 Pf (k[x]). The ideal p will have rami�cation index ep and residue degree fp.
Such a p corresponds to an irreducible factor of degree np = epfp of C(x; y) when
considered as an element of Op[y]. Call this factor Cp(x; y) and de�ne Kp = k(x)p
and Fp = Kp[y]=(Cp(x; y)). We then de�ne, for � 2 F ,

vp(�) = vp
�
NFp=Kp

(�)
�
=fp

and

j�jp = q�fp deg(p)vp(�):

Note that if pOF = p1
e1 : : : pr

er then vpi(p) = vp
�
pepifpi

�
=fpi = epi . Also note

that if � 2 F we haveX
p2Pf(F )

deg(p)fpvp(�) =
X

p2Pf(k[x])

deg(p)vp
�
NF=k(x)(�)

�
= deg

�
NF=k(x)(�)

�
: (2)
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where in the �rst sum p is the element of Pf (k[x]) which lies below the element
p 2 Pf(F ).

We now consider the analogous concepts for p 2 P1(F ). These places will be
particularly important to the discussions which follow so we will go over this case
in some detail. Readers who are familiar with Puiseux expansions at in�nity should
skip to the next section.

We de�ne k by

k = min
i=0;::: ;n�1

fb(deg ai(x))=(i� n)c : ai(x) 6= 0g ;

where the ai(x) are as in equation (1), and then write

C1(x; y) = yn +

n�1X
i=0

ai(x)x
k(n�i)yi 2 O1[y]:

The splitting of this polynomial over k(1=x; y) gives the required splitting of the
place 1 in F .

As a simple example which follows from Dedekind theory we have the following:
Set z = x�1 and f(z; y) = C(1=z; y) 2 k[z; y]. We then compute the factorization

f(0; y) =

sY
i=1

gtii with gi 2 k[y]

of f(0; y) into irreducibles and set

f� =

"
1

z

 
f(z; y)�

sY
i=1

gtii

!#
z=0

:

If

gcd

 
f�;

Y
vi>1

gi

!
= 1

then k[x; y]=(C(x; y)) is already1-maximal and the primes at in�nity of F can be
read o� from the factorization of f(0; y). In particular we have s places at in�nity
11; : : : ;1s with rami�cation indices e1i

= ti and residue degrees f1i
= deg gi.

As an exercise for the reader one can show that for the elliptic curve y2 = x3 + 1
there is one rami�ed place at in�nity, whilst for the genus one curve y2 = x4 + 1
there are two unrami�ed places at in�nity.

We now return to the general case and write

1 =

sY
i=1

1ei
i ;

with1i having residue degree fi. We impose an order on the places of F at in�nity
so that for 1 � i < j � s we have ei � ej and if ei = ej we have fi � fj . The
signature of the �eld F=k[x] is then de�ned to be the ordered tuple

(e1; f1; e2; f2; : : : ; es; fs):

We put ni = eifi and e = lcm(e1; : : : ; es). The units of OF are denoted O�F and
by an analogue of Dirichlet's Units Theorem these have rank s� 1.
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We shall assume that the place1 of k[x] is tamely rami�ed in F . In other words
the characteristic, p, of k does not divide e. In this situation we obtain n Puiseux
expansions at in�nity:

(�1; : : : ; �n) = (�1;1; : : : ; �1;n1 ; �2;1; : : : ; �2;n2 ; : : : ; �s;1; : : : ; �s;ns);

with

�i;j 2 kdhx
1=ei i =

8<
:

mX
j=�1

ajx
j=ei : m 2 Z; aj 2 kd and am 6= 0

9=
;

and kd = Fqd for some positive integer d. Such Puiseux expansions can be computed
using the method of Newton-Puiseux, see for example [15, Section 7.2]. A word of
warning here on notation is probably in order, some authors use negative powers for
the above expansions. This should cause no problems to the reader who is aware of
it, but it means that some authors introduce various minus signs (or delete them)
in some of the formulae below.

If � 2 F we obtain n-images of � in kdhx
1=ei via

�(i) = �(x; �i):

Since �i `is' a root of C(x; y) we obtain

NF=k[x](�) =

sY
i=1

�(i) and TrF=k[x](�) =

sX
i=1

�(i):

We set deg(�(i;j)) = mi;j=ei with an obvious notation. For �xed i the value of mi;j

is constant so we can write mi=ei with no ambiguity. We then de�ne j�(i)j = qmi=ei

and de�ne for 1i the valuation and absolute value

v1i
(�) = �

niX
i=1

mi=(eifi) = �mi;

j�j1i
=

niY
i=1

qmi=ei = qmifi = q�v1i
(�)fi :

We then note that

deg
�
NF=k[x](�)

�
=

sX
i=1

niX
j=1

deg�(i;j) =

sX
i=1

mifi = �

sX
i=1

fiv1i
(�):

Then, combining this with equation (2), we obtain the product formulaY
p2P(F )

j�jp = 1:

It is perhaps worth noting at this point that, unlike the number �eld situation,
there is a large degree of choice as to the possible behaviour at in�nity. One can
always take another de�ning equation for the function �eld, which could give rise to
a di�erent splitting behaviour at in�nity. One should of course choose the de�ning
equation to make the resulting computations as simple as possible. At present there
seems no systematic way of doing this.
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2. Geometry of Numbers of Laurent Series

In this section we review the details needed from the `geometry of numbers' in
�elds of Laurent series. This was work originally conducted by Mahler, [18], and has
found recent applications in determining reduced integral bases of function �elds,
[25].

Let L = kdhx
1=ei to be the �eld of Puiseux expansions considered above. Setting

z = x1=e, we can consider L to be the �eld of Laurent series in z, i.e. kd((z)). Using
the n Puiseux expansions at in�nity of our curve C(x; y) we obtain an embedding
of F into Ln,

` :

�
F �! Ln

� 7�! (�(1); : : : ; �(n))t

The map ` is analogous to the n embeddings of a number �eld of degree n into the
complex numbers. As before for an element � 2 kd((z)) of the form

Pm
i=�1 aiz

i

we de�ne j�j = qm=e.
A function G : Ln ! R

�0 is called a length function on Ln if for all � 2 L and
�; � 2 Ln we have

� G(�) = 0 if and only if � = 0.
� G(��) = j�jG(�).
� G(� � �) � max(G(�); G(�)).

Such functions are called special distance functions by Mahler, but we shall not be
concerned with non-special distance functions. We assume that G(�) for � 6= 0 is

always an integral power of q1=e. The convex body C(G) is de�ned to be

C(G) = f� 2 Ln : G(�) � 1g:

Just as in the case of the standard geometry of number we can de�ne the volume
of C(G), which we denote by V (G). In the case where

G(x1; : : : ; xn) = G1(x1; : : : ; xn) = max(jx1j; : : : ; jxnj)

we have V (G) = 1 and G(1; : : : ; 1) = 1.
Let R denote a subring of kd[z] and B 2 GLn(L) then we de�ne the R-lattice in

Ln generated by the columns of B to be the set

� = �(B;R) = fB� : � 2 Rng:

If �(B;R) is an R-lattice and G is a length function on Ln we can de�ne the
successive minima of � as

Mi = Mi(�; R;G)

= min

�
� 2 R : 9R� linearly independent a1; : : : ; ai 2 � such

that G(aj) � � for 1 � j � i

�
:

The lattice determinant of � we denote by � = det(B).
The main theorem we will require on successive minima is the following

Theorem 1 (Mahler, [18]). Let R = kd[z], B 2 GLn(L) and G a length function

on Ln. Then there exists a T 2 GLn(R) such that j det(T )j = 1 and if we set

(b1; : : : ; bn) = BT , i.e. bi are some new basis vectors of the lattice �(B;R), then

Mi(�; R;G) = G(bi)
6



and
nY
i=1

Mi = j�j=V (G) and M1 � (j�j=V (G))1=n:

3. Reduced Ideals in Function Fields

We assume an integral basis !1; : : : ; !n of OF has been computed. The discrim-
inant of OF is then de�ned to be

DF =
�
det(!

(j)
i )1�i;j�r

�2
:

The discriminant of the curve C is de�ned to be

DC =
�
det(y(j)i)1�i;j�r

�2
;

so DF divides DC and since C(x; y) has degree d we have

degDF < degDC � d(d� 1):

A fractional OF -ideal (hereafter just called an ideal), A, of OF can be presented as
a pair A = (d(A);Hnf(A)) where d(A) 2 k[x] is the `denominator' and Hnf(A) 2
Mn�n(k[x]) is a matrix in Hermite Normal Form. The basis of the ideal, as a
k[x]-module, is then given by

1

d(A)
(!1; : : : ; !n)Hnf(A):

The norm of the ideal is equal to

N(A) = [OF : d(A)A]=d(A)n = det(Hnf(A))=d(A)n:

If we look at the image in Ln of the ideal A then it forms a lattice of determinant

N(A)D
1=2
F .

Using algorithms similar to those in number �elds, see [10], one can add, multiply
and divide ideals of OF . The only problem comes with the reduction theory of
ideals. In number �elds the concept of reduced ideal uses the concept of ideal
minima. Many of the ideas in the number �eld setting can be found in [30].

In function �elds similar ideas have been used before in very special cases, see
[26], [27] and [28]. Indeed the reduction theory of ideals for elliptic function �elds
gives rise to the standard group law on elliptic curves. In [14] a similar approach
is taken for the case of super-elliptic function �elds. However the approach taken
below is slightly di�erent from that in [14].

For � 2 F let � denote its image in Ln under the map `. Let G1 denote the
length function on Ln given earlier by

G1(�) = max
1�i�n

j�(i)j:

As noted earlier we have V (G1) = 1 and G1(1) = 1. An element � of the OF -ideal
A will be called a minimum of A if there does not exist a non-zero � 2 A with

G1(�) < G1(�):

If 1 is a minimum of A then the ideal is said to be reduced. This is a di�erent
notion of minimum than is usually used in number �elds, however it appears more
suited to the function �eld situation due the theorem of Mahler above, we shall
return to this point at the end of this section.
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Proposition 2. Let A denote an ideal with minimum �. Then B = (1=�)A is a

reduced ideal equivalent to A.

Proof. Clearly 1 2 B and B is equivalent to A. We shall assume that B is not
reduced, hence there exists a non-zero � 2 B with max j�(i)j < 1. Let � = �� 2 A,
then we have

max j�(i)j � max j�(i)j �max j�(i)j < max j�(i)j:

Now since � 6= 0, we see that � could not have been a minimum of A. Which is
the desired contradiction.

The ideal OF is clearly reduced as it contains the element 1 and if it was not
reduced then it would contain an element � such that max j�(i)j < 1. But if this
was true then jNF=k[x](�)j < 1, which would imply that � was equal to zero, since
� 2 OF . Hence OF is reduced.

We now show that minima of ideals cannot be too large.

Lemma 3. If � is a minimum of the ideal A then

jN(�)j � G1(�)n � jN(A)jjDF j
1=2:

Proof. Note that the lattice determinant of the image of A under ` is N(A)D
1=2
F .

Suppose � is a minimum of the ideal A and

G1(�)n > jN(A)jjDF j
1=2

then, by Mahler's convex body theorem, Theorem 1, there is an element � 2 A
with

G1(�) < G1(�)

which contradicts the minimality of �. The result follows on noticing that

jN(�)j =

nY
i=1

j�(i)j � G1(�)n:

Using this lemma we can show that reduced ideals have upper and lower bounds
on their norms:

Lemma 4. If A is a reduced ideal then

jDF j
�1=2 � jN(A)j � 1:

Proof. For all ideals A and � 2 A we have jN(�)j � jN(A)j. Then, since 1 is a
minimum of A, we have 1 2 A and so

1 = jN(1)j � jN(A)j:

But by Lemma 3 we have

jDF j
�1=2 = G1(1)njDF j

�1=2 � jN(A)j:

Lemma 5. Let A denote a reduced ideal, given by A = (d(A);Hnf(A)) and Hnf(A) =
(ai;j) then

0 � jai;j j � jd(A)j � jDF j
1=2:
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Proof. Since A is reduced we have OF � A and [A : OF ]A � OF . Hence

jd(A)j � j[A : OF ]j � 1=N(A) � jDF j
1=2:

Since d(A)!i 2 d(A)A, as A is reduced, we then notice that ai;i divides d(A). The
result follows since jai;j j � jai;ij as (ai;j) is in Hermite Normal Form.

We can hence bound the number of bits needed to represent a reduced ideal.

Corollary 1. If A is a reduced ideal then we can represent A using

O
�
n2
�
logq jDF j

�
log q

�
= O(d4 log q):

bits.

Proof. The degree of d(A) and the ai;j needed to represent A is bounded by m =
1
2
logq jDF j. So we need to give at most O(n2) polynomials of degree at most m.

Clearly each polynomial requires O(m log2 q) bits. Now since n � d and logq jDF j =

degDF � d(d� 1) the result follows.

We now return to discussing the di�erence between our notion of minima of
ideals and the `standard' notion in number �elds. In number �elds an element � in
an ideal A is called a minimum (we shall call it an NF-minimum to avoid confusion)
if there does not exist a non-zero element � 2 A with

j�(i)j < j�(i)j:

Lemma 6. An ideal minimum, in our sense, is an NF-minimum.

Proof. Let A denote an ideal with minimum � and suppose that � is not an NF-
minimum. Then there exists a � 2 A such that

j�(i)j < j�(i)j

for all i. Hence max j�(i)j < max j�(i)j and so � could not have been a minimum of
A. This contradiction proves our assertion.

If the function �eld, F , has one place at in�nity then the two notions of minima
are clearly equivalent, and hence the two associated notions of reduced ideals are
also equivalent. However for general function �elds, where there is more than one
place at in�nity, the two notions can be di�erent. Hence in this paper we are using
a di�erent notion of minima and reduced ideals than that used in the case of pure
cubic function �elds in [27]. The notion of NF-minima seems to be required to �nd
compact representations, but it is unclear how to �nd such minima in the general
function �eld context using lattice basis reduction. The advantage of our notion of
minima is that it allows us to �nd minima and reduced ideals quite painlessly using
lattice basis reduction techniques, as we shall now show.

4. The Ideal Reduction Algorithm

In this section we give the algorithm for ideal reduction, based on the lattice
reduction techniques of [16], [21] and [25]. We let A = (d(A);Hnf(A)) denote a
fractional ideal of OF . We let a1; : : : ; an denote an Fq [x] basis of A and a1; : : : ; an
the basis of the associated lattice in Ln, where L = kdhx

1=ei.
9



We need to de�ne the following functions on Ln:

V :

8<
:

Ln �! Z[ f1g

� 7�!

�
emaxfdeg(�(i))g � 6= 0
�1 � = 0

and

�k :

(
Ln �! knd�Pm

j=�1 ai;jx
j=e
�
1�i�n

7�! (ai;k)1�i�n

The orthogonality defect of the basis of A is de�ned to be

OD(a1; : : : ; an) =
1

e

nX
j=1

V (ai)� deg(det(a1; : : : ; an)):

Lemma 7. For any basis a1; : : : ; an of A we have that eOD(a1; : : : ; an) 2 Z�0

and OD(a1; : : : ; an) = 0 if and only if the vectors a1; : : : ; an are the successive

minima of the lattice in Ln given by `(A).

Proof. Clearly eOD(a1; : : : ; an) 2 Z. Now since

det(a1; : : : ; an) =
X
�2Sn

�(�)a1
(�(1)) : : : an

(�(n))

we obtain

deg(det(a1; : : : ; an)) � max
�2Sn

8<
:

nX
j=1

deg(aj
(�(j)))

9=
;

�

nX
j=1

max
1�i�n

fdeg(aj
(i))g =

1

e

nX
j=1

V (aj):

Hence OD(a1; : : : ; an) � 0.
The orthogonality defect, OD(a1; : : : ; an), will achieve its minimal value when

the vectors a1; : : : ; an correspond to the successive minima of the lattice, since
logq G1(�) = V (�)=e. It follows that the minimal value of the orthogonality defect
will be zero for the successive minima as,

nY
i=1

Mi = j�j = j det(a1; : : : ; an)j

We can now give our reduction algorithm: On input of a basis a1; : : : ; an for
A the following algorithm outputs a reduced basis b1; : : : ; bn such that b1 is a
minimum of A.
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Reduction Algorithm for the ideal A

1. Set bi = ai for all i.

2. Repeat

3. Reorder b1; : : : ; bn such that V (bi) � V (bi+1) for all i.

4. Set b = 0.

5. For c = 0; : : : ; e� 1 do

6. Compute k = #
�
i 2 f1; : : : ; ng : V (bi) � c (mod e)

	
and

i1 < i2 < : : : < ik such that V (bij ) � c (mod e).

7. Compute S = f�V (bim )(bim) : 1 � m � kg.

8. If k > 1 and S is Fq-linearly dependent

9. Since S is Fq-linearly dependent we can find

j 2 f1; : : : ; k � 1g and (�1; : : : ; �j ; 0; : : : ; 0) 2 F
k
q

with �j = 1 and
Pj

m=0 �m�V (bim )(bim) = 0.

10. Set tm = V (bij )� V (bim) � 0 for 0 � m < j.

11. Replace bij by bij +
Pj�1

m=0 �mx
tm=ebim 2 A.

12. Set b = 1.

13. Until b = 0.

Lemma 8. The above algorithm is correct and terminates.

Proof. Clearly, since tm � 0 (mod e), the output of the above algorithm is another

basis of A. On passing through the main repeat loop one of two conditions can be

satis�ed either b = 0 or b = 1 and the value of OD(b1; : : : ; bn) has been decreased

by at least 1=e. Hence after at most eOD(b1; : : : ; bn) loops the algorithm must

terminate. If is also clear that if b = 0 at the end of the main loop then the value of

V (bi) for all i cannot be decreased any more. Hence OD(b1; : : : ; bn) has achieved its

minimal value. But we know that a basis of successive minima exists, by Mahler's

convex body theorem, so OD(b1; : : : ; bn) = 0 on termination.

We shall now estimate the complexity of the above algorithm. Clearly we can

assume for this purpose that the ideal A is integral i.e. d(A) = 1. We write

Hnf(A) = (ai;j) and set h = degN(A). Clearly we have 0 � deg ai;j � h. Let V

denote

V =
n

max
i=1

V (ai);

and notice that throughout the algorithm, for all i, we have V (bi) � V . For the

integral basis !1; : : : ; !n of OF let W denote the value of maxfdeg!
(j)
i g.

By Mahler's theorem we know that we can choose an integral basis !i such that

1 = G(!1) � G(!2) � : : : � G(!n) = qW

and
nY
i=1

G(!i) = j�F j
1=2:

Hence W � 1
2
logq j�F j = m � d(d�1)=2. From now on we assume such a reduced

integral basis has been computed, using for instance the method in [25].
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We have

V � max
1�i;j�n

(
deg

 
nX

k=1

ak;i!
(j)
k

!)

� maxfdeg ak;ig+W � h+m:

Firstly we need to estimate the accuracy of the Puiseux expansions which will need

to be taken. Clearly this is bound up with the size of the �rst successive minima,

since a �rst successive minima will correspond to the vector of Puiseux expansions

which is closest to zero.

Lemma 9. Let A denote an integral ideal of F and let � 2 A be chosen such that

� is the �rst successive minima of the image of A under `. Then if G1(�) = qs=e,

i.e. V (�) = s, then

s �
eh

n
:

Proof. Let

�(i) =

siX
j=�1

ai;jx
j=e:

We then have, s = maxfsig, and so

s �
1

n

nX
i=1

si =
e

n

nX
i=1

deg(�(i)) =
e

n
deg(NF=k(x)(�))

�
e

n
degN(A) =

eh

n
:

Theorem 10. Let A denote an integral ideal of F , then to determine a reduced

basis of A we require

O(en2(h+m))

evaluations of Puiseux expansions and

O(n3(h+m)3)

operations in k.

Proof. Let �, as above, denote the �rst successive minimum of the lattice `(A). In

the above algorithm we have, by the previous lemma,

tm = V (bij )� V (bim) � V (bij )� V (�) � V �
eh

n
� V � h+m:

Notice that we also have

OD(a1; : : : ; an) �
n

e
V :

As we have noticed before the main repeat loop is executed at most eOD(a1; : : : ; an)

times, which means it is executed at most nV � n(h+m) times.

LetD denote the maximum of the degrees of the polynomials de�ning the basis as

we pass through the algorithm. These degrees increase by at most tm=e � (h+m)=e

on each replacement of bij by a new value. A maximum of nVe � n(h+m)e such

replacements are carried out. Hence D � h+ n(h+m)2.

Each loop requires O(en) evaluations of Puiseux expansions. The total number

of operations in k needed to detect a single linear dependency is O(n2) and the

12



number of operations in k needed to calculate a new value of bij is O(nD), which

is less than O(n(h+ n(h+m)2)) = O(n2(h+m)2).

Hence the total algorithm requires O(en2(h+m)) evaluations of Puiseux expan-

sions and O(n3(h+m)3 operations in k.

We now give the complexity of our method for multiplying and reducing two

reduced ideals.

Theorem 11. Let A and B denote two reduced ideals. Then a reduced ideal C

equivalent to A�B can be computed in O(d10) operations in k.

Proof. First note that e � n � d and logq jDF j � d(d� 1).

By Lemma 5 the polynomials needed to de�ne A and B are bounded in degree

by m = 1
2
logq jDF j. We �rst compute D = A � B by the usual Hermite Normal

Form technique. If we set D = (d(D);Hnf(D)) then d(D) is of degree 2m and is

computed in O(m2) operations.

To compute Hnf(D) we �rst compute the product �i�j where �i is a basis

element of A and �j is a basis element of B. This requires O(n2) multiplications

in F and so requires O(n4m2) operations in Fq .

The Hermite Normal Form of the resulting n � n2 matrix can be computed in

O(n3m2) operations in Fq . The resulting matrix Hnf(D) = (di;j) is in Hermite

normal form and consists of polynomials of degree at most 2m.

To �nd the reduced ideal equivalent to D we reduce the integral ideal given by

(1;Hnf(D)). Applying Theorem 10 we see, since we have h � 2m, that this requires

O(en2(h+m)) = O(d5)

evaluations of Puiseux series and

O(n3(h+m)3) = O(d9)

operations in k.

But each Puiseux expansion need only be computed to order O(x0). So we need

to compute at most V terms of each Puiseux expansion, with V de�ned as above.

But, also as above, we have V � h+m � 3m = O(d2). To compute each Puiseux

expansion we compute

nX
i=1

di;j(�
(k))i�1:

Since deg di;j � 2m = O(d2), this takes O(d5) operations in k. So evaluating all

the Puiseux expansions takes O(d10) operations in k.

The �nal division step needed to compute the reduced ideal and the associated

Hermite Normal Form computation to put the reduced ideal into the standard form

have negligible complexity in comparison to the rest of the computation.

Example. We end this section by giving an example of how an ideal is reduced:

Let k = F3 and let F be given by the curve

C(x; y) : y3 + (2x3 + x+ 1)y2 + (2x+ 1)y + 2 = 0:

13



The function �eld F has genus 3 and and the three Puiseux expansions of y at

in�nity are given by

�(1) = z6 + 2z2 + 2 + z�4 + 2z�6 + z�8 + z�12 + z�16 +O(z�18);

�(2) = w6z�3 + z�4 + w6z�5 + 2z�6 + w6z�7 + z�8 + w6z�9 +O(z�12);

�(3) = w2z�3 + z�4 + w2z�5 + 2z�6 + w2z�7 + z�8 + w2z�9 +O(z�12):

where w2 + w + 2 = 0 and z = x1=2. Consider the OF -ideal, I , of norm x3 + 1,

generated over k[x] by the elements

�1 = x3 + 1; �2 = 2 + y; �3 = 2 + y2:

The initial values of the function V for these elements is V (�1) = 6, V (�2) = 6

and V (�3) = 12, and the orthogonality defect is OD(�1; �2; �3) = 4:5. We shall

show that this ideal is principal by reducing it to the trivial ideal. If we apply our

method for ideal reduction we perform the following transformation of these basis

elements: First set �1 = �1, �2 = �2 and then

�3 = �3 � (x3 + 2x� 1)�2 � �1:

The value of V (�3) is 3, and no smaller element can be found in the ideal, since we

have OD(�1; �2; �3) = 0. Hence �3 is a minimum of the ideal and is given by

�3 = 2x+ (2x3 + x+ 1)y + y2:

So a reduced ideal equivalent to I is given by A = (1=�3)I . We have�
�1

�3

�
= 2 + (x3 + 2x+ 1)y + 2y2;�

�2

�3

�
= 2y:

So we have the following matrix representation of the reduced ideal,

A =

0
@ 1 0 2

0 2 x3 + 2x+ 1

0 0 2

1
A :

Putting this into Hermite Normal Form we see that it is equal to the identity

matrix. Hence the initial ideal was principal and generated by �3.

5. The divisor class group

We assume that the curve is such that there is at least one point, P0, on C(x; y)

which is de�ned over k. By Hasse's theorem if k is large enough there will always

be such a point. In addition the existence of P0 will imply that F will contain a

place of degree one and so ~k = k.

Following the proof of Lemma 1 and Theorem 2 of [14] we can prove.

Theorem 12. Let C be a non-singular curve over k of genus g with a given k-

rational point P0. Let D 2 Div0k(C). Then there is a unique e�ective divisor E

over k of minimal degree m � g such that E �1P0 is equivalent to D.

We let Pic0k(C) denote the group Div
0
k(C) modulo principal divisors. In the next

few paragraphs we shall give a method to compute in the divisor class group of

curves, however we shall lose the property of having a unique representative for
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divisor classes. However the representatives we shall use will be `reduced' in the

sense that a bounded number of bits are needed to represent such divisor classes.

We shall make use of the following result, also from [14]

Theorem 13. Let C be a curve and let S = f11; : : : ;1sg denote the set of places

of F lying above the place at in�nity of k[x]. Let Cl denote the ideal class group of

OF and Ker denote the subgroup of Pic0k(C) generated by all degree zero divisors

with support in S. If f = gcd(f1; : : : ; fs) = 1 then we have the following exact

sequence:

1! Ker! Pic0k(C)! Cl ! 1:

Proof. We de�ne the map

Pic0k(C) �! Cl;P
p
npp 7�!

Q
p62S pnp :

where we have associated the prime divisor p with the prime ideal p in a natural

way. This map is a surjective group homomorphism if f = 1 and has kernel equal

to Ker.

In the special case which was considered in [14] the group Ker was trivial and so

Pic0k(C) was isomorphic to the class group. In addition the notion of reduction in

the class group used in [14] produced a unique representative. Hence the group law

in [14] was from a set of unique reduced divisors to a set of unique reduced divisors.

For the rest of this paper we shall assume that f = gcd(f1; : : : ; fs) = 1. If we

let h denote the order of Cl and R denote the order of Ker in the lemma above, we

have

#Pic0k(C) = hR = H:

The number R is sometimes called the regulator of OF . The numbers h and H are

the ideal and divisor class numbers respectively.

As noted earlier we have that O�F is a group of rank r = s�1. A set of generators

of O�F is called a set of fundamental units. We let �1; : : : ; �r denote such a set of

fundamental units of O�F . If we consider the matrix

R =

0
B@

f1v11
(�1) : : : f1v11

(�r)
...

...

frv1r
(�1) : : : frv1r

(�r)

1
CA ;

the absolute value of the determinant of R is denoted Reg. There are r + 1 di�er-

ent matrices of the form R, depending on the ordering of the vi we have chosen.

However, the value of Reg does not depend on the choice of which valuations we

take in constructing the matrix R nor does it depend on the choice of fundamental

units we have made.

The number Reg is also sometimes called the regulator of OF . This is very

confusing since in general R 6= Reg, luckily they are related by the following lemma:

Lemma 14. With the notation above we have

Reg = R

r+1Y
i=1

fi:
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Proof. We have

div(�j) =

r+1X
i=1

v1i
(�j)1i;

but since �j has degree zero we also have

r+1X
i=1

fiv1i
(�j) = 0:

Putting these last two equations together we obtain

fr+1div(�j) =

rX
i=1

v1i
(�j) (fr+11i � fi1r+1) :

Now let � =
Pr+1

i=1 ai1i 2 Ker, since � also has degree zero we have

fr+1ar+1 = �

rX
i=1

fiai:

Hence we can write

fr+1� =

rX
i=1

ai (fr+11i � fi1r+1) :

So the order of Ker, which we have denoted by R, is given by

R = j det((v1i
(�j))1�i;j�r)j=fr+1:

But clearly, from the de�nition of Reg, we have

Reg = j det((v1i
(�j))1�i;j�r)j

rY
i=1

fi:

So the result follows.

We assume that a set of fundamental units for O�F have been computed and so

we can compute a unique set of coset representatives for the group Ker. We �x

such a unique set of coset representatives and, by abuse of notation, also refer to

this set as Ker. In fact all we actually require is the computation of the valuations

at in�nity of a set of fundamental units. This is often easier to compute than an

actual set of fundamental units. This is because, without a compact representation

of elements, a fundamental unit may not be representable in a polynomial amount

of time or space.

We can now present our method for computing in the divisor class group of F .

We represent each element of Pic0k(C) as a pair, (k; I), where k 2 Ker and I is a

reduced ideal of OF . We �rst note that such a representation may not be unique

since there may not be a unique reduced ideal in a given ideal class. To write such

an element down requires O(d4 log q) bits for the reduced ideal I and (logR)s bits

for k.

To add two such pairs, (k1; I1) and (k2; I2) we �rst compute J = I1 � I2, which

can be computed using the standard Hermite Normal Form style techniques. Using

the reduction algorithm we then determine a minimum, �, of J . Then we compute

the ideal I3 = J=(�), which will be reduced.

Finally we construct the element

k = (v11
(�); : : : ; v1r

(�)) 2 Zr;
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and then compute

k3 = (k1 + k2 � k) 2 Ker:

This reduction of k1+k2�k to an element in Ker is accomplished using the known

valuations of the fundamental units. The reduction is performed by computing the

nearest lattice point to k1 + k2 � k, for the lattice generated by the valuations of

the fundamental units. The nearest lattice point can be found either using the

Fincke-Pohst algorithm, [12], or heuristically using LLL, [17]. Hence we have

(k1; I1) + (k2; I2) = (k3; I3):

6. Applications

6.1. Cryptography. Using the above e�cient addition law one can implement all

the standard cryptographic protocols based on a discrete logarithm problem. These

all require a unique representative of elements in the underlying group. One can

use the above addition law to perform e�ciently the group exponentiation and then

use the slower Riemann-Roch techniques at the end to produce the �nal result.

This is rather like using projective representation in elliptic curve systems. There

are many representations in projective coordinates of a given elliptic curve point,

but addition is easier in projective coordinates. One only returns to a�ne (and

hence unique) coordinates at the end of the computation.

6.2. Group Structure and Discrete Logarithm Computation. Using the no-

tion of ideal reduction one can trivially generalize the method of Hafner-McCurley,

see [13] and [20], to the divisor class group of the curves in this paper. One can then

�nd the group structure of the divisor class group and solve discrete logarithms in

such groups.

Alternatively using the methods for computing valuations at in�nity we can

generalize the NFS type method, which is explained in [1], [2] and [14], to �nd the

group structure. Combining this technique with the ideal reduction method one

can solve discrete logarithms as in [14].

To make these methods work we require a factor base of `small' primes which

generate the ideal class group. The results of [14] and [19] show us that for the

Hafner-McCurley type method we can take all places of norm less than qd where d

is given by

2 log(4g � 2)

log q
;

while for the NFS type method we take all places of residue degree one and norm

less than qd where d is the smallest prime number greater than

max

�
n;

2 log(4g � 2)

log q

�
:

We note that in polynomial time one can compute the order of the divisor class

group, using one of the generalizations of Schoof's algorithm, see [4] and [24].

6.3. Unit Group Computation. Using the group structure algorithm one can

compute the unit group of OF and a set of fundamental units of OF . This can be

done in the usual way. However a major problem remains of actually writing down

the units, since no compact representation of elements of general function �elds is

currently available. However we note that for the method of addition in the divisor
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class group presented in this paper we only require the valuations at in�nity of a

set of fundamental units. This can be computed and presented in a compact way.
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