
Efficient Decoding Algorithms for
Generalised Reed-Muller Codes

Kenneth G. Paterson, Alan E. Jones
Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-98-195
November, 1998

OFDM, power,
Reed-Muller code,
decoding,
algorithms,
error correction

Recently a class of generalised Reed-Muller codes has
been suggested for use in power-controlled OFDM
modulation. A number of approaches to decoding these
codes have already been developed. Here we present
low complexity alternatives which are inspired by the
classical Reed decoding algorithm for binary
Reed-Muller codes. We evaluate the decoding
performance of these algorithms under realistic
channel conditions. We also simulate existing decoding
algorithms. We show that one of our new algorithms
offers close to maximum likelihood performance and
has substantially lower complexity than existing
approaches.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

1 Introduction

1.1 Power Controlled Coding for OFDM

A powerful class of codes for Orthogonal Frequency Division Multiplexing (OFDM) have been

described in [2, 9]. These codes are constructed from certain generalisations of the classical

Reed-Muller codes. As a consequence of this structure, they simultaneously bene�t from low

peak-to-mean power ratios and have e�cient encoding algorithms and good error-correcting

capability. This combination of power control and error correction makes the codes extremely

attractive for use in portable, low-cost wireless applications of OFDM.

As a means of establishing notation, we give a very brief description of the operation of an

OFDM system. An OFDM signal is comprised by adding together n modulated carrier signals

with frequencies f0 + jfs; (0 � j < n):

e�2�i(f0+jfs)t (0 � j < n)

Under q-PSK modulation, the modulation applied to each carrier is a phase-shift of some

integer multiple of 2�=q. Writing ! = e2�i=q, the transmitted OFDM signal for the codeword

c = [c0c1 : : : cn�1] (where cj 2 Zq) is the real part of the sum of phase-shifted carriers:

S(c)(t) =

n�1X

j=0

!cje�2�i(f0+jfs)t:

Typically, q is equal to 2,4 or 8 and n is a power of 2 (this allows the use of e�cient

FFT-based signal processing techniques). Other modulation schemes, notably QAM, have also

been proposed for OFDM, but we consider only constant-amplitude modulation schemes in this

paper. At the receiver, a noisy version of the signal Re(S(c)(t)) is received and sampled. The

samples are preprocessed to perform synchronisation, decimation and guard period removal.

Then demodulation is performed using a Fourier transform and a multipath-faded and noise-

corrupted version r of the vector !c = [!c0; !c1; : : : !cn�1] is recovered. Typically, it is assumed

that the noise on each component of r is Gaussian distributed. We refer to Section 6 for a more

detailed description of the multipath channel model that we have used in our simulations.

A key contribution of [2, 9] is to identify classes of codewords c for which the function

jS(c)(t)j2, called the instantaneous envelope power of the signal, is limited in maximum value.

This feature is essential for the practical use of OFDM in applications where electronic com-

ponents need to be of low cost or where tight control of the spectral power of the transmitted

signals is required [6]. The OFDM codes of [2, 9] are obtained as unions of cosets of a q-ary

generalisation of the �rst-order Reed-Muller code, denoted RMq(1; m), lying inside the gener-

alised second-order codes RMq(2; m) and ZRMq(2; m) (these families of codes will be de�ned

in Section 2.1 below). Work in [8, 11] also identi�ed a limited subset of these codes, but without

making explicit the link to Reed-Muller codes.

To exploit the error-correcting capability of these OFDM codes in low-cost wireless appli-

cations, low complexity, high performance decoding algorithms are needed. Already several

approaches to this problem have been developed [2, 3, 4, 5, 11]. But, in many situations of

practical interest, these algorithms either have prohibitive complexity or do not realise the full

potential of the generalised Reed-Muller codes. The problem is particularly acute for the high

rate codes of [9] which are formed from moderate to large numbers of cosets of the Reed-Muller

codes.

2

1.2 Our Contribution

This paper makes three main contributions to the decoding of generalised Reed-Muller codes

for OFDM.

Firstly, we present two new theoretical insights. The �rst insight enables us to develop

analogues of the classical Reed majority logic decoding algorithm [7, pp. 385{388] that are

suitable for generalised Reed-Muller codes. These algorithms signi�cantly advance on decoding

approaches contained in [11]. The second insight is an algorithmic step which e�ciently reduces

the decoding of the r-th order code RMq(r;m) to m decodings of the (r � 1)-st order code

RMq(r� 1; m� 1). This step appears to be new even for the classical binary codes. Applied to

the second-order code, it allows us to make repeated use of any �rst-order algorithm we please.

We prove theorems evaluating the decoding performance of the various algorithms, in terms of

the maximum weight of a correctable error.

Secondly, we develop two low complexity, soft-decision decoding algorithms that are specif-

ically applicable to OFDM codes formed from moderate to large numbers of cosets of the

�rst-order Reed-Muller codes of the type presented in [2, 9]. Algorithm 6 uses majority logic

decoding, while Algorithm 8 makes use of the new reduction step and of the q-ary generalisation

of the Fast Hadamard Transform (FHT) given in [4].

Thirdly, we make a comparison of our new algorithms with the previous approaches to

decoding generalised Reed-Muller codes given in [2, 3, 4, 5, 11]. We evaluate the complexities

of the various algorithms and simulate their performance in Gaussian noise and with a multipath

channel. This gives the �rst direct comparison of all the competing decoding strategies. For a

particular code and channel, we show that our Algorithm 8 out-performs every other algorithm

with the exception of the computationally intensive maximum likelihood approach, and comes

within 2dB of the performance of that algorithm. Algorithm 8 is also signi�cantly more e�cient

than previously proposed algorithms, both for this example code and many other codes of

practical interest.

1.3 Paper Organisation

In Section 2 we provide necessary background on generalised Reed-Muller codes and the pre-

vious approaches to decoding. Then in Section 3 we give a generalisation of the classical Reed

decoding algorithm for the code RM(1; m) to the q-ary case. Like its binary fore-bearer, the

algorithm has rather poor performance. However, it serves as a useful introduction to the ideas

behind our decoders for the full second-order code RMq(2; m) and codes formed from unions

of cosets of RMq(1; m) inside RMq(2; m) that we present in Section 4.

Our second strand of algorithms come from a new algorithmic step which reduces the

decoding of RMq(r;m) to m decodings of the code RMq(r�1; m�1). In Section 5, we describe

this step and the resulting decoders for the full second-order code and for codes formed from

unions of cosets of RMq(1; m) inside RMq(2; m).

In Section 6 we compare the implementation complexities of the various decoding strategies,

old and new, with particular reference to an OFDM code that is formed from 32 cosets of

RM4(1; 4). We also report the results of simulations for the algorithms, with reference to the

same OFDM code.

3

2 Coding Background

2.1 Generalised Reed-Muller Codes

Throughout, q denotes an even integer, and r and m are integers with 0 � r � m. We de�ne

a generalised Boolean function to be a mapping f : f0; 1gm ! Zq of f0; 1g-valued variables

x0; x1; : : : ; xm�1. A straightforward counting argument shows that every such function can be

written in algebraic normal form as a sum of monomials of the form xj0xj1 : : : xjr�1 (in which

j0; j1 : : : ; jr�1 are distinct). With each generalised Boolean function f we identify a length 2m

Zq-valued vector [f0f1 : : : f2m�1] in which

fi = f(i0; i1; : : : ; im�1)

where [i0i1 : : : im�1] is the binary expansion of the integer i (so that i =
Pm�1

j=0
ij2

j). Henceforth

we identify generalised Boolean functions and their corresponding vectors, using f to refer to

both.

We recall the de�nitions of the codes RMq(r;m) and ZRMq(r;m) from [2, 9]: RMq(r;m)

is the length 2m linear code over Zq that is generated by the monomials of order at most r in

variables x0; : : : ; xm�1, while for q even, ZRMq(r;m) is the length 2m linear code over Zq that

is generated by the monomials of order at most r � 1 together with twice the monomials of

order r in x0; : : : ; xm�1.

Alternatively, RMq(r;m) is the q-ary code whose codewords are obtained as all the Zq-

linear combinations of the rows of the generator matrix for the classical binary Reed-Muller

code RM(r;m).

Example 1 The code RM4(2; 4) is the linear code over Z4 with generator matrix:
2
66666666666666664

1111111111111111

0101010101010101

0011001100110011

0000111100001111

0000000011111111

0001000100010001

0000010100000101

0000001100000011

0000000001010101

0000000000110011

0000000000001111

3
77777777777777775

1

x0
x1
x2
x3
x0x1
x0x2
x1x2
x0x3
x1x3
x2x3

while ZRM4(2; 4) is the linear code over Z4 with generator matrix:
2
66666666666666664

1111111111111111

0101010101010101

0011001100110011

0000111100001111

0000000011111111

0002000200020002

0000020200000202

0000002200000022

0000000002020202

0000000000220022

0000000000002222

3
77777777777777775

1

x0
x1
x2
x3

2x0x1
2x0x2
2x1x2
2x0x3
2x1x3
2x2x3

4

Typical codewords of these codes are:

f = 1 + x0 + 3x1 + 2x3 = [1201120130233023] 2 RM4(1; 4);

f 0 = 1 + x0 + 3x1 + 2x0x1 + 2x0x2 + 2x2x3 = [1203100112033223] 2 ZRM4(2; 4):

By a coset of the code RMq(1; m) we mean a set of the form f + RMq(1; m) where f is a

q-ary length 2m word and `+' denotes componentwise addition of vectors modulo q. We call

f a coset representative. Any coset of RMq(1; m) in RMq(2; m) can be identi�ed with a coset

representative Q that is a quadratic form in variables x0; x1; : : : ; xm�1:

Q =
X

0�j<k<m

qjkxjxk

where qij 2 Zq. When all the coe�cients qij are even, the coset Q + RMq(1; m) lies in

ZRMq(2; m).

We next give an example of the OFDM codes that were presented in [2, 9]. The code is

typical in that it consists of a moderate number of cosets of a short �rst-order code.

Example 2 We use a code of the above type to compare the performance of the various decoding
algorithms in Section 6. The code consists of 32 cosets of the quaternary code RM4(2; 4) inside
ZRM4(2; m). Thus the code contains 32 � 45 = 215 codewords and can be used to encode 15
information bits (so the rate is 15=32 = 0:47). Because it is contained in ZRM4(2; 4), the code
has minimum Hamming distance at least 4 and minimum Lee distance at least 8 (see Theorem
1). The 32 coset representatives for the code are:

2x0x1 + 2x2x3 2x0x2 + 2x1x3

2x0x3 + 2x1x2 2x0x1 + 2x0x2 + 2x1x3

2x0x1 + 2x0x2 + 2x2x3 2x0x1 + 2x0x3 + 2x2x3

2x0x1 + 2x1x2 + 2x2x3 2x0x1 + 2x1x2 + 2x0x3

2x0x1 + 2x1x3 + 2x2x3 2x0x2 + 2x0x3 + 2x1x2

2x0x2 + 2x0x3 + 2x1x3 2x0x2 + 2x1x2 + 2x1x3

2x0x2 + 2x1x3 + 2x2x3 2x0x3 + 2x1x2 + 2x1x3

2x0x3 + 2x1x2 + 2x2x3 2x0x1 + 2x0x2 + 2x0x3 + 2x1x2

2x0x1 + 2x0x2 + 2x0x3 + 2x1x3 2x0x1 + 2x0x2 + 2x0x3 + 2x2x3

2x0x1 + 2x0x2 + 2x1x2 + 2x1x3 2x0x1 + 2x0x2 + 2x1x2 + 2x2x3

2x0x1 + 2x0x2 + 2x1x3 + 2x2x3 2x0x1 + 2x0x3 + 2x1x2 + 2x1x3

2x0x1 + 2x0x3 + 2x1x2 + 2x2x3 2x0x1 + 2x0x3 + 2x1x3 + 2x2x3

2x0x1 + 2x1x2 + 2x1x3 + 2x2x3 2x0x2 + 2x0x3 + 2x1x2 + 2x1x3

2x0x2 + 2x0x3 + 2x1x2 + 2x2x3 2x0x2 + 2x0x3 + 2x1x3 + 2x2x3

2x0x2 + 2x1x2 + 2x1x3 + 2x2x3 2x0x3 + 2x1x2 + 2x1x3 + 2x2x3

2x0x1 + 2x0x2 + 2x0x3 + 2x1x2 + 2x2x3 2x0x1 + 2x0x2 + 2x1x2 + 2x1x3 + 2x2x3

The signals S(c)(t) corresponding to codewords from this code all have peak envelope power at

most 64, so the peak-to-mean envelope power (PMEPR) of the code is at most 4. This should be

compared to a PMEPR of 16 for an uncoded OFDM system with the same number of carriers.

5

2.2 Lee and Hamming Metrics

Let x = [x0x1 : : : xn] and y = [y0y1 : : : yn�1] be Zq-valued vectors of length n.

We de�ne the Hamming weight of x, denoted wtH(x) to be the real sum
P

xi 6=0
1 which

counts the number of non-zero components in x. We de�ne the Hamming distance between

x and y, denoted dH(x; y) to be wtH(x � y) (where subtraction is componentwise modulo q).

The minimum Hamming distance of a code C over Zq is de�ned to be minx;y2C dH(x; y) and is

denoted by dH(C).

We de�ne the Lee weight of x, denoted wtL(x) to be the real sum
Pn�1

i=0
minfxi; q�xig. We

de�ne the Lee distance between x and y, denoted dL(x; y) to be wtL(x� y) (where subtraction

is componentwise modulo q). The minimum Lee distance of a code C over Zq is de�ned to be

minx;y2C dL(x; y) and is denoted by dL(C).

We have the following theorem from [2, 9] concerning minimum Hamming and Lee distances

of the codes RMq(r;m) and ZRMq(r;m):

Theorem 1 We have:

� for q � 2, dH(RMq(r;m)) = dL(RMq(r;m)) = 2m�r.

� for q � 4 with q even, dH(ZRMq(1; m)) = 2m�r and dL(ZRMq(1; m)) = 2m�r+1.

We also require a notion of Lee weights and distances that is applicable to real-valued vectors

x = [x0x1 : : : xn�1] and y = [y0y1 : : : yn�1] with xi; yi 2 [0; q). We de�ne the soft Lee weight of

x, again denoted wtL(x), to be the real sum:

n�1X
i=0

minfxi; q � xig

and the soft Lee distance between x and y, again denoted dL(x; y), to be wtL((x � y) mod q)

where (x � y) mod q denotes the vector whose components are the unique real numbers zi in

the range [0; q) satisfying zi � (xi � yi) = `q for some integer `.

2.3 Existing Decoding Approaches

In the binary case, q = 2, the generalised Reed-Muller codes coincide with the classical Reed-

Muller codes. So well established techniques can be used to handle decoding of the binary

OFDM codes. For example, a maximum likelihood, soft-decision (MLSD) algorithm can be ob-

tained by combining the method of supercode decoding [1] with the Fast Hadamard Transform

(FHT) MLSD decoder for RM(1; m) [7, pp. 419{426].

Supercode decoding is a general method applicable to codes formed from a union of cosets of

a base code. Each coset representative is subtracted from the received word in turn, and the best

result (in some metric sense) obtained using a decoder for the base code over all these modi�ed

words is selected. The corresponding coset representative and this best result determine the

�nal decoded word. The FHT algorithm gives a computationally e�cient method for computing

the correlations between a received word and all 2m+1 words of the code RM(1; m).

For a length 2m code formed from ` cosets, the complexity of a soft-decision `supercode+FHT'

approach is approximately `m2m real operations. So this maximum likelihood supercode ap-

proach is computationally feasible only when ` is relatively small. A convenient method for

handling large numbers of binary cosets is to regard a received word as a codeword of the full

second-order code (with the addition of noise) and then use the well-known Reed decoding

6

algorithm [7, pp. 385{388]. This approach is guaranteed only to correct errors whose weights

are less than half the minimum distance of the second-order Reed-Muller code RM(2; m), i.e.

whose weights are less than 2m�3. It is not maximum likelihood in general and gives no infor-

mation when the decoded word happens to lie in a coset of RM(1; m) inside RM(2; m) that is

not in the original union of cosets. Moreover, the Reed algorithm as originally described is a

hard-decision algorithm. In other words, it operates on an input vector of binary-valued com-

ponents and does not use additional soft information that may be available from the OFDM

demodulator.

For more general q-ary Reed-Muller codes, there already exist several decoding algorithms

[2, 3, 4, 11]. These can be roughly characterised as being of two types: `signal-domain' algo-

rithms and `coding-domain' algorithms. The former type has as inputs complex values that are

obtained directly from the vector output by the OFDM demodulator (which we have denoted

by r above) while the latter has inputs which are real numbers in the range [0; q), obtained

by appropriately scaling the phases of the components of r. Coding-domain algorithms can be

further classi�ed into hard-decision and soft-decision algorithms. In the hard-decision case, the

phase information is quantised to integer values, so that the input to the decoder is a vector of

integers. In soft-decision decoding, the real-number phase information is directly passed to the

decoder.

Essentially, a coding-domain algorithm rejects magnitude information from the demodulated

signal while a signal-domain algorithm preserves it. A potential advantage of a coding-domain

algorithm is that it may need to use only real operations (or integer operations in the hard-

decision case) while a signal-domain one will most naturally use complex operations and as

such may be more expensive to implement. On the other hand, for multipath fading channels,

magnitude information is an important indicator of symbol reliability and a signal-domain

algorithm has the potential to use this information to obtain enhanced decoding performance.

A signal-domain version of the Reed majority logic decoding algorithm suited to the codes

RMq(1; m) was given in [11], though it was presented there only for a length 8 example of what

van Nee called a `complementary code'. Nevertheless, this algorithm inspired the algorithms

of Section 3 in this paper and indeed is a special case of Algorithm 2. We will see in Section

3 that its complexity is prohibitively large for codes formed from many cosets of RMq(1; m).

The decoding performance for a single coset of the length 8 octary code is estimated [11] as

being 3dB worse than that of maximum likelihood decoding.

In [3, 4], a q-ary analogue of the FHT is developed which yields a signal-domain MLSD

algorithm for the q-ary generalised �rst-order code RMq(1; m). This algorithm computes the

correlations between the received word r and the complex versions of all codewords ofRMq(1; m)

of the form
Pm�1

k=0
akxk, i.e. all codewords having zero constant coe�cient. This computation

can be expressed as a matrix multiplication:

Y = Hr: (1)

Here H is a qm � 2m matrix whose rows, labelled H[a0a1:::am�1] are the complex-conjugated

versions !�c of codewords c =
Pm�1

k=0
akxk and Y is complex vector with entry Y[a0a1:::am�1] being

the correlation
P2m�1

i=0
!�ci � ri . The entry of maximum absolute value in Y , say Y[â0â1:::âm�1],

determines a codeword of the form
Pm�1

k=0
âkxk. The maximum likelihood estimate of the

transmitted codeword is then
Pm�1

k=0
âkxk + â where â 2 Zq is the integer which maximises

Re(!�âY[â0â1:::âm�1]). The output of the decoder is the list of q-ary coe�cients â; â0; â1 : : : ; âm�1.

A naive approach to the computation in equation (1) would require on the order of 2mqm

complex arithmetic operations. Substantial reductions in complexity can be obtained by de-

composing the matrix multiplication in a similar way as in the binary FHT described in [7, pp.

7

419{426] | see [4] for details. In particular, for q = 4, all multiplications can be avoided and

the number of complex additions required is on the order of 22m. More generally, for q = 2h,

this algorithm requires on the order of 2hm complex additions and, for h � 3, an additional 2hm

complex multiplications. It is therefore too complex for all but the shortest codes and infeasible

for use in supercode decoding when ` is even of moderate size.

A more e�cient approach to decoding was developed in [2] for 2h-ary codes, the case of most

practical interest. There, coding-domain decoders for RM2h(1; m) requiring the computation

of only h length 2m integer or real FHTs (for hard- or soft-decision decoding) were given.

Consequently, the complexity of these decoders is on the order of hm2m operations. The

algorithms are not maximum likelihood, but a set of error patterns that they can correct were

classi�ed in [2]. In particular, the algorithms are minimum distance decoders for both Hamming

and Lee metrics (i.e. they can correct all errors of Hamming or Lee weight less than half the

appropriate minimum distance of the �rst-order code). These algorithms are closely related to

the sub-optimal signal-domain algorithm presented in [3, Section V].

Further work in [2] combined the above coding-domain algorithm in a non-trivial way with

a generalisation of the supercode method to produce decoders that are applicable to codes

formed from unions of ` cosets of RM2h(1; m) which require at most ` + h� 1 real FHTs and

so have complexity on the order of (`+ h� 1)m2m real operations.

We also mention the decoding algorithm for quaternary codes (q = 4) given in [5]. This is a

maximum likelihood, hard-decision, coding-domain algorithm which makes neat use of the ex-

istence of a distance-preserving Gray map between the length 2m quaternary code ZRM4(1; m)

and the length 2m+1 binary code RM2(1; m+1). Since RM4(1; 4) can be represented as a union

of 2m cosets of ZRM4(1; m), this map sends any union of ` cosets of RM4(1; m) onto a union

of 2m` cosets of RM(1; m+ 1) and allows the use of binary decoding techniques (for example,

binary FHTs) to be applied to a quaternary code. By carefully extending the Gray map to soft

values, it is also possible to develop a soft-decision version of this algorithm. We include the

details for completeness. If we use the standard Gray map

� : 0! (0; 0); 1! (0; 1); 2! (1; 1); 3! (1; 0);

then we can extend � to a soft Gray map on inputs r 2 [0; 4) by writing:

�(r) =

8>><
>>:

(0; r) for 0 � r < 1;

(r � 1; 1) for 1 � r < 2;

(1; 3� r) for 2 � r < 3;

(4� r; 0) for 3 � r < 4:

We can apply this soft � to the components of real-valued input vectors and then use real-

input FHTs on the resulting length 2m+1 vectors. Unfortunately, this decoder requires the

computation of 2m` FHTs and this makes the decoder too intensive in all but the simplest of

instances.

2.4 Further Facts about Generalised Reed-Muller Codes

We prove some simple facts about generalised Reed-Muller codes which will form the basis for

our new decoding algorithms in subsequent sections.

De�nition 1 Let k be an integer with 0 � k < m and let Ik be the set of integers i with

0 � i =
Pm�1

�=0
i�2

� < 2m with the property that ik = 0. Given f , a length 2m vector over Zq,

we de�ne fk to be the length 2m�1 vector with components fki , i 2 Ik where

fki = fi+2k � fi mod q; i 2 Ik

8

For example the set I0 is equal to f0; 2; 4; : : : ; 2
m � 2g and consists of all the even integers

between 0 and 2m�2. Similarly, Im�1 consists of all integers between 0 and 2m�1�1. It is also

easy to see that, in general, the set Ik contains exactly those positions in which the codeword

xk has a zero. If m = 4, q = 4 and f = (1211120130233021), then

f 0 = [10111113];

f 1 = [03333331];

f 2 = [00300002];

f 3 = [22122220]:

Lemma 2 Let f be a codeword of RMq(r;m). Then for 0 � k < m, fk is the codeword of

RMq(r � 1; m� 1) corresponding to the generalised Boolean function

f(x0; :::; xk�1; 1; xk+1; : : : ; xm�1)� f(x0; :::; xk�1; 0; xk+1; : : : ; xm�1) mod q;

in variables x0; : : : ; xk�1; xk+1; : : : ; xm�1, which is obtained by substituting xk = 1 and xk = 0

into the algebraic normal form for f , subtracting the results modulo q and simplifying.

Proof: Given i with i 2 Ik, consider the vector f in positions i and i+2k. The binary expansions

of these indices di�er in the k-th bit only, where i has a 0 and i + 2k a 1. Components fi and

fi+2k of f are therefore obtained by evaluating the generalised Boolean function at inputs which

di�er only in the value of the variable xk. It is now clear that the vector fk corresponds to the

Boolean function in the statement of the lemma. The monomials which appear in this function

are obtained by

� removing all monomials not involving xk in f ,

� replacing xk by 1 in all monomials which do involve xk in f

That the order of the resulting function is at most r � 1 is then obvious. �

Example 3 Take c = 1 + x0 + 3x1 + 2x3 = [1201120130233023] 2 RM4(1; 4),

e = [0010000000000002] and r = c + e mod 4 = [1211120130233021]. Then c3 = [22222222],

while

c(x0; x1; x2; 1)� c(x0; x1; x2; 0) = 2:

Notice that c3 is a constant word (of RM4(0; 3)) whose components all equal the coe�cient of

x3 in c. On the other hand, r3 = [22122220] and we see that the majority of the components in

r3 still equal 2, despite the presence of the error vector e.

The above example reveals the basis for our decoding algorithms: simple transformations of

Reed-Muller codewords corrupted by noise still reveal coe�cients used in the encoding process.

3 Majority Logic Decoding Algorithms for First-order

Codes

We present generalisations of the classical majority logic decoding algorithm that are applicable

to the codes RMq(1; m).

9

3.1 Majority Logic Coding-Domain Decoders for RMq(1;m)

Our �rst decoder is a coding-domain Hamming and Lee distance hard-decision decoder.

Algorithm 1 (Hard-decision coding-domain decoding algorithm for RMq(1; m)).

1. Input the received word r = [r0r1 : : : r2m�1] as a vector over Zq.

2. For k = 0; 1; : : : ; m� 1, compute the length 2m�1 vector rk (as in De�nition 1).

3. For k = 0; 1; : : : ; m� 1, �nd the most frequent symbol in rk. Denote this symbol by âk.

4. Let r0 = r �
Pm�1

k=0
âkxk mod q.

5. Find the most frequent symbol in r0. Denote this symbol by â.

6. Output â; â0; â1; : : : ; âm�1

The relationship between Algorithm 1 and the Reed majority logic algorithm for RM(1; m)

is straightforward: modulo 2 addition is replaced with appropriate modulo q operations, and

in place of taking a majority decision (between symbols 0 and 1), the most common symbol

amongst q possible symbols is selected. The algorithm reduces to the Reed algorithm when

q = 2.

Theorem 3 Algorithm 1 is a Hamming and Lee distance hard-decision decoder for the code

RMq(1; m).

Proof: Let c = a +
Pm�1

i=0
akxk be the transmitted codeword, and let r be the received word.

Write e = r � c mod q so that e represents the error vector. Since the minimum Ham-

ming and Lee distances of RMq(1; m) are 2m�1, we need only show that, under either the

restriction wtH(e) < 2m�2 or the restriction wtL(e) < 2m�2, Algorithm 1 computes values

â0; â1; : : : ; âm�1; â satisfying:

â0 = a0; â1 = a1; : : : ; âm�1 = am�1; â = a:

Now, for each k with 0 � k < m, we have rk = ck+ ek mod q. From Lemma 2, we know that ck

is equal to the vector [akak : : : ak]. Since e has Hamming or Lee weight less than 2m�2, so does

the vector ek (obtained by subtracting pairs of components of e). So less than half the entries

in ck are changed from ak to other values when adding ek. Thus the most common entry in rk

is still ak, and so the value âk output by the algorithm equals ak. Continuing, we then �nd that

r0 = r �

m�1X
k=0

âkxk

= e + a+

m�1X
k=0

(ak � âk)xk

= e + a

Again, because of the restricted weight of e, we see that the majority of the components of r0

are equal to a. Hence the algorithm outputs a value â that is equal to a. �

The computational cost of the above algorithm is made up from (m+ 2)2m�1 subtractions

modulo q (step 2), (m+ 2)2m�1 comparisons (steps 3 and 5) and the cost of one encoding step

10

and 2m subtractions modulo q (step 4). Ignoring the cost of re-encoding (which can be achieved

by a simple hardware circuit), the total cost is about that of (m + 3)2m additions modulo q.

This is slightly greater than for the FHT-based decoder applicable to the binary code RM(1; m)

(which requires on the order of m2m additions modulo 2 for hard-decision decoding), but is

always less (and often, substantially less) than the decoders of [2, Algorithm 5.3], [3, Section V]

and [4, Algorithm 1] when q � 4. Of course, we expect these latter algorithms to have superior

decoding performance.

We note that steps 3 and 5 of Algorithm 1 are really hard-decision decoding algorithms

for the codes RMq(0; m� 1) and RMq(0; m): this code has as codewords the constant vectors

[aa : : : a] and maximum likelihood hard-decision decoding of these codes is achieved simply by

�nding the most common symbol in the received word.

We can also derive a less e�cient, soft-decision decoder for RMq(1; m) using similar ideas.

For soft-decision decoding, each component of the received vector r in step 1 is a real number

in the range [0; q) and in the computation of rk in step 2, we take ri � ri+2k mod q to be

the unique real number x in the range [0; q) satisfying x� (ri � ri+2k) = `q for some integer `.

Similarly in step 4, the computation of r0 is carried out using real arithmetic operations and each

component is forced to lie in the range [0; q). Finally, in steps 3 and 5, we cannot simply make

a frequency-based decision for the values of âk and a, because the symbols in the vectors rk and

r0 are no longer from the alphabet Zq. An alternative step is to choose for âk the value which

minimises the soft Lee distance dL(âk; r
k). Here, âk denotes a constant vector of length 2m�1.

Similarly for the coe�cient â. The computational cost of this for each coe�cient âk is roughly

q2m real operations. The total computational requirement is then around (2q+ 1)(m+ 2)2m�1

real arithmetic operations (ignoring the cost of re-encoding in Step 4). It is easily shown that

this procedure can correct all errors e whose soft Lee weight is less than 2m�2. We will give an

alternative signal-domain soft-decision algorithm in the next sub-section.

3.2 Majority Logic Signal-Domain Decoder for RMq(1;m)

Now we give a signal-domain decoder for RMq(1; m). This decoder is similar to the one pre-

sented in [11, Section V] for the length 8 `complementary code'.

Algorithm 2 (Signal-domain decoding algorithm for RMq(1; m)).

1. Input the received word r = [r0r1 : : : r2m�1] as a vector over C .

2. For k = 0; 1; : : : ; m� 1, compute the complex number

Rk =
X
i2Ik

ri+2k � ri
�:

3. For k = 0; 1; : : : ; m� 1, select from Zq the value âk which maximises Re(!�âkRk).

4. Compute the codeword z =
Pm�1

k=0
âkxk mod q and the complex number

R0 =

2
m�1X
i=0

ri � !
�zi:

5. Select from Zq the value â which maximises Re(!�âR0).

11

6. Output â; â0; â1; : : : ; âm�1

To obtain Algorithm 2 from Algorithm 1, we have essentially replaced modulo q operations

by appropriate signal-domain analogues at each step. We have also replaced the strategy of

making a majority decision for the coe�cients âk and â by a step appropriate to the complex

domain of `averaging the phase' in the complex versions of the vectors rk and r0 (steps 2 and

4). Steps 2 and 4 are e�ectively signal-domain decoders for RMq(0; m � 1) and RMq(0; m)

respectively. In fact, it is not hard to show that if R =
P

2
m�1

i=0
ri where r = [r0r1 : : : r2m�1] is

the received complex word and if a 2 Zq maximises the function Re(!�aR), then [aa : : : a] is

a maximum likelihood estimate of the transmitted codeword from RMq(0; m), in the sense of

minimising Euclidean distance.

A simple calculation shows that the computational requirement of Algorithm 2 is roughly

(m+2)2m�1 complex additions and (m+2)2m�1 complex multiplications. The equivalent num-

ber of real operations (regarding one complex multiplication as requiring 3 real multiplications

and 5 real additions and one complex addition as requiring 2 real additions) is 7(m + 2)2m�1

real additions and 3(m+2)2m�1 real multiplications. Step 4 can be performed using no complex

multiplications when q = 2 or q = 4 by manipulating real and imaginary parts of the ri. This

reduces the computational burden.

Algorithm 2 is a signal-domain, soft-decision decoder, but it can be used to obtain a coding-

domain, soft decision decoder too, simply by mapping a real-valued received vector r into

its complex analogue with components !ri. This coding-domain decoder uses less arithmetic

operations than the soft-decision version of Algorithm 1, although they are complex rather than

real operations.

4 Majority Logic Decoding Algorithms for Second-order

Codes

In this section we consider majority logic-based decoding algorithms for the codes RMq(2; m)

and ZRMq(2; m), and for codes formed from a union of cosets of RMq(1; m) contained in either

of these codes.

For �xed j and k with 0 � j < k < m, we de�ne Ijk to be the set of integers i with

0 � i =
Pm�1

�=0
i�2

� < 2m with the property that ij = ik = 0. Given f , a length 2m vector over

Zq, we de�ne f
jk to be the length 2m�2 vector with components f

jk
i , i 2 Ijk where

f
jk
i = fi+2j+2k � fi+2j � fi+2k + fi mod q; i 2 Ijk

Recall that a typical codeword f of such a code is identi�ed with a generalised Boolean

function of order 2 with coe�cients from Zq. We write:

f = a+

m�1X
k=0

akxk +
X

0�j<k<m

qjkxjxk:

Repeated application of Lemma 2 shows that in this case f jk is the length 2m�2 constant vector

[qjkqjk : : : qjk]. This observation forms the basis for our decoding algorithms for second-order

codes.

12

4.1 Majority Logic Decoders for RMq(2;m) and ZRMq(2;m)

We begin with a decoder for the code RMq(2; m).

Algorithm 3 (Hard-decision coding-domain decoding algorithm for RMq(2; m)).

1. Input the received word r = [r0r1 : : : r2m�1] as a vector over Zq.

2. For 0 � j < k < m, compute the length 2m�2 vector rjk.

3. For 0 � j < k < m, �nd the most frequent symbol in rjk. Denote this symbol by q̂jk.

4. Let r0 = r �
P

0�j<k<m q̂jkxjxk mod q.

5. Pass r0 to the decoder of Algorithm 1, which outputs integers â; â0; â1; : : : ; âm�1.

6. Output q̂jk, 0 � j < k < m.

Algorithm 3 obtains estimates q̂jk for the second-order coe�cients of the transmitted code-

word (steps 2 and 3), re-encodes using these estimates to obtain the second-order partP
0�j<k<m qjkxjxk and subtracts this word from r (step 4) to reduce the decoding problem to

a �rst-order one (step 5). The algorithm is identical to the Reed majority logic algorithm for

the code RM(2; m) when q = 2. We have an analogue of Theorem 3, with a very similar proof:

Theorem 4 Algorithm 3 is a Hamming and Lee distance hard-decision decoder for the code

RMq(2; m). In other words, the algorithm correctly decodes the received vector r in the presence

of a error e whose Hamming or Lee weight is at most 2m�3.

The computational cost of the algorithm is roughly
�
m

2

�
� 2m arithmetic operations modulo q

(steps 2 and 3) plus the cost of a �rst-order decoding (step 5). It can be extended to soft-

decision decoding in the same way as Algorithm 1. It can then also be used to decode the code

ZRMq(2; m), simply by restricting the coe�cients q̂jk in the soft version of step 3 to be chosen

only from the set of even integers in Zq. The resulting soft-decision decoder for ZRMq(2; m)

can correct all errors of soft Lee weight less than 2m�2.

We also have a signal-domain version of the above algorithm:

Algorithm 4 (Soft-decision signal-domain decoding algorithm for RMq(2; m)).

1. Input the received word r = [r0r1 : : : r2m�1] as a vector over C .

2. For 0 � j < k < m, compute the complex number

Rjk =
X
i2Ijk

ri+2j+2k � r
�
i+2j

� r�i+2k
� ri:

3. For 0 � j < k < m, select from Zq the value q̂jk which maximises Re(!�q̂jkRjk).

4. Compute the codeword z =
P

0�j<k<m q̂jkxjxk mod q and the length 2m complex vector r0

with components r0i = ri � !
�zi.

5. Pass r0 to the decoder of Algorithm 2, which outputs integers â; â0; â1; : : : ; âm�1.

6. Output q̂jk, 0 � j < k < m.

13

The above algorithm is readily modi�ed to provide a decoder for ZRMq(2; m) by restricting

q̂jk in Step 3 to be chosen from the set of even integers in Zq. The computational requirements

of the algorithm are dominated by steps 2 and 4, which require a total of roughly (3
�
m

2

�
+

4)2m�2 complex multiplications and
�
m

2

�
2m�2 complex additions. The equivalent numbers of

real operations are (9
�
m

2

�
+ 12)2m�2 real multiplications and (17

�
m

2

�
+ 20)2m�2 real additions.

Finally in this section, we note that a general procedure for reducing the decoding of

RMq(r;m) to that of RMq(r � 1; m) can be obtained by generalising the above algorithms.

In the coding-domain version, we compute
�
m

r

�
vectors rj0j1:::jr�1 of length 2m�r, where each

component i of rj0j1:::jr�1 is formed from a sum of 2r terms:

r
j0j1:::jr�1
i =

X
[j0j1:::jr�1]2f0;1gr

(�1)1+wtH [j0j1:::jr�1] � ri+2
j0+2

j1+���2jr�1 mod q; i 2 Ij0j1:::jr�1:

Here Ij0j1:::jr�1 denotes the set of integers i with 0 � i =
Pm�1

�=0
i�2

� < 2m with the property

that ij0 = ij1 = � � � = ijr�1 = 0.

For hard-decision decoding, the coe�cient of the monomial xj0xj1 : : : xjr�1 in the transmitted

codeword c is determined from the most common symbol in the vector rj0j1:::jr�1. The decoding

problem can then be reduced to decoding an order r � 1 code by re-encoding the order r part

of c and subtracting it from r. Soft-decision and signal-domain decoding algorithms can also

be derived.

4.2 Majority Logic Decoders for Coset Codes

In this subsection, we present a decoding algorithm that is applicable to a code C formed from

a union of cosets of RMq(1; m) inside either RMq(2; m) or ZRMq(2; m). Let

C =
[

0�i<`

fQi +RMq(1; m)g

where

Qi =
X

0�j<k<m

qijkxixj mod q; 0 � i < `

are the coset representatives in C.

The basic idea of our algorithm is to assign a likelihood measure to each possible value of

each second-order coe�cient q̂kl (as in Algorithm 3) by calculating dL(r
jk; [aa : : : a]) for each

a 2 Zq. We then calculate a likelihood measure for each coset representative Qi in turn as a

sum of Lee distances:

di =
X

0�j<k<m

dL(r
jk; [qijkq

i
jk : : : q

i
jk]):

We choose for our coset representative one which minimises this sum. We then subtract this

coset representative from the received codeword and use a soft-decision �rst-order decoder.

The details of the coding-domain algorithm are as follows

Algorithm 5 (Coding-domain decoding algorithm for coset code).

1. Input the received word r = [r0r1 : : : r2m�1] as a vector of real numbers.

14

2. For 0 � j < k < m, compute the length 2m�2 vector rjk.

3. For 0 � j < k < m and a 2 Zq, calculate dL(r
jk; [aa : : : a]).

4. For each 0 � i < `, calculate (using the results from step 3):

di =
X

0�j<k<m

dL(r
jk; [qijkq

i
jk : : : q

i
jk]):

5. Select the value I which minimises dI, 0 � I < `.

6. Let r0 = r �
P

0�j<k<m qIjkxjxk mod q.

7. Pass r0 to the soft-decision version of Algorithm 1, which outputs integers

â; â0; â1; : : : ; âm�1.

8. Output I.

Despite the apparently ad hoc nature of our likelihood measures, we are able to show that

the above algorithm can correct all error patterns of weight less than half the minimum distance

of the code RMq(2; m):

Theorem 5 Let C be a union of cosets of RMq(1; m) inside RMq(2; m). Then Algorithm 5

correctly decodes C in the presence of any error of soft Lee weight less than 2m�3.

Proof: Let c = a +
Pm�1

i=0
akxk + QI be the transmitted codeword, and let r be the received

word with components ri 2 [0; q). Write e = r � c mod q and suppose wtL(e) < 2m�3. Now,

for each j; k with 0 � j < k < m, we have rjk = cjk + ejk mod q. But cjk is equal to the vector

[qIjkq
I
jk : : : q

I
jk]. Since e has soft Lee weight less than 2m�3, so does the vector ek. Hence

dL(r
jk; [qIjkq

I
jk : : : q

I
jk]) = wtL(e

k) < 2m�3: (2)

Also, for any a 2 Zq with a 6= qIjk, we have (using a triangle inequality for the Lee metric and

the fact that the minimum Lee distance of the code RMq(0; m� 2) is exactly 2m�2):

dL(r
jk; [aa : : : a]) � dL([q

I
jkq

I
jk : : : q

I
jk]; [aa : : : a])� dL(r

jk; [qIjkq
I
jk : : : q

I
jk])

> 2m�2 � 2m�3

= 2m�3 (3)

Thus for any i with 0 � i 6= I < `, we have:

di � dI =
X

0�j<k<m

dL(r
jk; [qijkq

i
jk : : : q

i
jk])� dL(r

jk; [qIjkq
I
jk : : : q

I
jk])

=
X

0�j<k<m; qi
jk
6=qI

jk

dL(r
jk; [qIjkq

I
jk : : : q

I
jk])� dL(r

jk; [qijkq
i
jk : : : q

i
jk])

The sum here is non-empty because the Qi are distinct coset representatives. Moreover, from

inequalities (2) and (3), each term of the sum is positive. Thus di > dI and so choosing the

value of i which minimises di in step 5 correctly identi�es the coset representative QI .

Finally, because the soft-decision version of Algorithm 1 can correct errors e of soft Lee

weight less than 2m�2, steps 6 and 7 correctly decode the �rst-order part of the codeword c. �

Algorithm 5 can also be adapted to decode an arbitrary union of cosets of RMq(1; m) inside

ZRMq(2; m). This latter code has minimum Lee distance double that of RMq(2; m). We need

only replace step 3 of the algorithm with a more e�cient step:

15

30. For 0 � j < k < m and a 2 2Zq, calculate dL(r
jk; [aa : : : a]).

The rest of the algorithm is identical. The following theorem shows that this adapted algorithm

does take full advantage of the increased minimum distance.

Theorem 6 Let C be a union of cosets of RMq(1; m) inside ZRMq(2; m). Then Algorithm 5

correctly decodes C in the presence of any error of soft Lee weight less than 2m�2.

Proof: The proof is very similar to that of Theorem 5. Given an error vector e with wtL(e) <

2m�2, we can derive inequalities:

dL(r
jk; [qIjkq

I
jk : : : q

I
jk]) < 2m�2:

and

dL(r
jk; [aa : : : a]) > 2m�2 for all a 2 2Zq; a 6= qIjk;

where the latter inequality holds because the minimum Lee distance of the code ZRMq(0; m�2)

is equal to 2m�1. The proof now follows the pattern set in the proof of Theorem 5. �

The computational requirement of steps 1 { 5 of the above algorithm is roughly (q +

2)
�
m

2

�
2m�1 + `

�
m

2

�
real additions. The �rst term here is a �xed overhead, roughly equiva-

lent to the cost of the soft-decision version of Algorithm 3. This term can be roughly halved

when step 30 is used for decoding a coset code in ZRMq(2; m). It can be further reduced by

computing the distances dL(r
jk; a) over only the set of values a 2 Ajk = fqijk : 0 � j < k < mg

which actually occur as coe�cients qijk in some coset representative Qi in the list of cosets. The

second term `
�
m

2

�
is, for values of m that are of interest, a small multiple of the number of

cosets ` in the code. Thus the algorithms are highly e�cient, even for codes formed from large

numbers of cosets.

We have presented Algorithm 5 as a soft-decision algorithm. Of course it can also be used for

hard-decision decoding. This allows the use of only integer operations and leads to a simpli�ed

implementation. There is also a natural signal-domain version of the algorithm:

Algorithm 6 (Signal-domain decoding algorithm for coset code).

1. Input the received word r = [r0r1 : : : r2m�1] as a vector of complex numbers.

2. For 0 � j < k < m, compute the complex number

Rjk =
X
i2Ijk

ri+2j+2k � r
�
i+2j

� r�i+2k
� ri:

3. For 0 � i < `, compute the real number di, where:

di = Re

 X
0�j<k<m

!�qi
jkRjk

!
;

4. Select the value I which maximises dI, 0 � I < `.

5. Compute the codeword z =
P

0�j<k<m qIjkxjxk mod q and the length 2m complex vector r0

with components r0i = ri � !
�zi.

16

6. Pass r0 to the decoder of Algorithm 2, which outputs integers â; â0; â1; : : : ; âm�1.

7. Output I.

The computational requirement of steps 1 { 3 of the above algorithm is roughly 3
�
m

2

�
2m�2+

`
�
m

2

�
complex multiplications and

�
m

2

�
2m�2+`

�
m

2

�
complex additions. The equivalent numbers of

real operations are 9
�
m

2

�
2m�2+3`

�
m

2

�
real multiplications and 17

�
m

2

�
2m�2+7`

�
m

2

�
real additions.

Notice that when q = 2 or q = 4, step 3 can be carried out using only complex additions,

sign changes and manipulation of real and imaginary parts of the Rjk. This reduces the number

of complex multiplications required by `
�
m

2

�
.

5 Reduction Decoders

Recall from Lemma 2 that if f =
P

0�j<k<m
qjkxjxk +

Pm�1

k=0
akxk + a is a word of RMq(2; m),

then for each k with 0 � k < m, the word fk is a word of RMq(1; m� 1). In fact, we have

fk =
X
j 6=k

qjkxj + ak;

a function in variables x0; : : : ; xk�1; xk+1; : : : ; xm�1 obtained by computing

f(x0; :::; xk�1; 1; xk+1; : : : ; xm�1)� f(x0; :::; xk�1; 0; xk+1; : : : ; xm�1) mod q:

Thus all the �rst and second-order coe�cients qjk and ak arising in f can be obtained from the

m words fk.

This observation forms the basis of a second set of decoding algorithms. We see that if r is

a received vector, then after computing the m vectors rk, the decoding problem for RMq(2; m)

is reduced to m �rst-order decoding problems for RMq(1; m�1). By appropriately re-encoding

using the coe�cients obtained from these m �rst-order results, the constant coe�cient can

also be estimated. Any �rst-order decoder we like can be employed for the m sub-problems

(for example, the majority logic algorithms developed above or the FHT). The idea is easily

extended to show that the decoding problem for the code RMq(r;m) can be reduced to m

decodings of RMq(r � 1; m� 1) and estimation of a constant coe�cient.

In what follows, we will present a variety of `reduction decoders' both for the full second-

order code and for codes formed from cosets of RMq(1; m) inside RMq(2; m) and ZRMq(2; m).

5.1 Second-order Reduction Decoders

We begin by describing a hard-decision decoder for RMq(2; m). Assume that we have available

a hard-decision, coding-domain decoder for RMq(1; m�1). We assume that its input is a length

2m�1 vector over Zq and that its output is a list of coe�cients â; â0; : : : ; âm�2 giving estimates

for the constant and �rst-order terms of a codeword of RMq(1; m� 1). See Algorithm 1 for an

example of such an algorithm.

Algorithm 7 (Hard-decision coding-domain decoding algorithm for RMq(2; m)).

1. Input the received word r = [r0r1 : : : r2m�1] as a vector over Zq.

2. For 0 � k < m, compute the length 2m�1 vector rk.

17

3. For 0 � k < m, denote the output of the decoder for RMq(1; m� 1) on input rk by

âk; q̂0k; : : : ; q̂(k�1)k; q̂(k+1)k : : : ; q̂(m�1)k:

4. Let r0 = r �
P

0�j<k<m
q̂jkxjxk �

Pm�1

k=0
âkxk mod q.

5. Let â be the most frequent symbol in r0.

6. Output integers â; â0; â1; : : : ; âm�1, q̂jk, 0 � j < k < m.

A number of remarks on this algorithm are in order.

Because of an inherent symmetry, the algorithm actually provides two separate estimates

for each second-order coe�cient qjk (where j < k), these being denoted by q̂jk and q̂kj in step 3.

Step 6 outputs one of the two. It is not hard to see that if the decoder of Algorithm 1 is used in

step 3, then the two estimates will be identical, and moreover will be the same as that provided

by Algorithm 3. This suggests that Algorithm 7 is performing twice as much computation as is

necessary, and this is re
ected in the fact that its complexity is roughly twice that of Algorithm

3.

It is straightforward to prove, using similar ideas as were used to prove Theorem 3, that the

algorithm is a Hamming and Lee distance decoder for the code RMq(2; m).

Soft-decision and signal-domain versions of the algorithm are readily developed. The hard-

decision coding-domain decoder for RMq(1; m� 1) should be replaced by an appropriate algo-

rithm | for example, either the soft-decision version of Algorithm 1 or Algorithm 2. In the

signal-domain case, the generalised FHT of [4] can be used to perform the m decoding steps for

RMq(1; m � 1). We will show below how the extra information available in the output vector

of the generalised FHT can be exploited to develop e�cient decoders for codes formed from

unions of second-order cosets of RMq(1; m).

5.2 Reduction Decoder for Coset Codes

Now we describe a signal-domain coset decoder. The main idea is to use Algorithm 7 with

a generalised FHT as the �rst order decoder, but to use information obtained from the FHT

output vectors to judge each coset representative in turn. This approach is similar in spirit to

that taken in Algorithm 6.

As in Section 4.2, let C be the code
S

0�i<`
fQi +RMq(1; m)g where

Qi =
X

0�j<k<m

qijkxixj mod q; 0 � i < `

are the coset representatives in C. For 0 � i < ` and 0 � k < m, let vik denote the vector

[qi0k; q
i
1k; : : : ; q

i
(k�1)k; q

i
k(k+1); : : : ; q

i
k(m�1)]

obtained by extracting the coe�cients of second-order terms involving xk from the quadratic

form Qi. These vectors will be used to index entries in vectors output by generalised FHTs

in our algorithm. They can be computed from lists of coe�cients qijk on the
y, or can be

computed ahead of time and held in storage.

Algorithm 8 (Signal-domain reduction decoding algorithm for coset code).

18

1. Input the received word r = [r0r1 : : : r2m�1] as a vector of complex numbers.

2. For 0 � k < m, compute the length 2m�1 vector rk where

rki = ri+2k � ri
�; i 2 Ik:

3. For 0 � k < m, compute the q-ary generalised FHT of the vector rk, denoted by Y k, as

de�ned in equation (1). (Y k is a length qm�1 vector with complex components labelled

Y k
[a0;a1;::: ;am�2]

).

4. For each 0 � i < `, calculate (using the results from step 3) the following sum of squared

absolute values of entries from the vectors Y k:

di =
X

0�k<m

jY k

vik
j2:

5. Select the value I which maximises dI, 0 � I < `.

6. For 0 � k < m, let âk denote the integer in Zq which maximises Re(!�âkY k

vIk
).

7. Compute the codeword z =
P

0�j<k<m
qIjkxjxk+

Pq�1

k=0
âkxk mod q and the complex number

R0 =

2m�1X
i=0

ri � !
�zi:

8. Select from Zq the value â which maximises Re(!�âR0).

9. Output â; â0; â1; : : : ; âm�1 and I.

The main computational burden of the algorithm divides naturally into two parts. The �rst

part is a �xed overhead associated with steps 2 and 3. Here the m vectors rk are calculated

(requiring a total of m2m�1 complex multiplications) and then their q-ary FHTs are computed.

For q = 2, the cost of each FHT is approximately (m � 1)2m�1 complex additions, while for

q = 4, the cost is 22(m�1) complex additions. For q = 8, the cost per FHT is around 23(m�1)

complex multiplications and 23(m�1) complex additions. The computations in the second part,

step 4, can be carried out using around 2m real additions and 2m real multiplications per coset.

A very important optimisation can be made when the code C consists of cosets of RMq(1; m)

contained in ZRMq(2; m) (rather than in RMq(2; m)), where can replace the q-ary FHTs in

step 3 by (q=2)-ary FHTs. The key point is that the cost of a (q=2)-ary FHT is much lower

than that of a q-ary one. The reason this replacement step can be used in this situation is

that the words rk can be regarded as noisy versions of the words in ZRMq(1; m� 1) instead of

RMq(1; m� 1). Maximum likelihood decoding of the code ZRMq(1; m� 1) can be achieved by

applying a (q=2)-ary FHT to the complex received vector, using the component of maximum

absolute value in Y , say Y[â0â1:::âm�2], to determine estimates 2â0; 2â1; : : : ; 2âm�2 for the m� 1

�rst order coe�cients and then estimating â, the q-ary constant term, to be the integer in Zq

which maximises Re(!�âY[â0â1:::âm�2]). In the optimised version of Algorithm 8, we re-de�ne vik

to be the vector

1

2
[qi0k; q

i
1k; : : : ; q

i
(k�1)k; q

i
k(k+1); : : : ; q

i
k(m�1)]

and have a replacement step 3:

19

30. For 0 � k < m, compute the (q=2)-ary generalised FHT of the vector rk, denoted by Y k,

as de�ned in equation (1). (Y k is now a length (q=2)m�1 vector with complex components

labelled Y k
[a0;a1;::: ;am�2]

, where at 2 Zq=2).

Further optimisation is possible if all the second-order coe�cients of codewords are known

to lie in a set q0Zq where q0 divides q. For then the q-ary FHTs can be replaced by (q=q0)-

ary FHTs. This observation is particularly useful for a particular class of 2h-ary codes having

PMEPR at most 2 that were identi�ed in [2, Corollary 3.4]: in this case we can take q0 = 2h�1

and all the 2h-ary FHTs become binary FHTs with complex inputs.

For a code formed from a union of ` cosets of RMq(1; m) in ZRMq(2; m) (like that in

example 2), the computations in the two groups identi�ed above require (2m+3)m2m�1+2m`

real additions and 3m2m�1 + 2m` real multiplications for q = 4 and m22m�1 + 5m2m�1 + 2m`

real additions and 3m2m�1 + 2m` real multiplications for q = 8.

6 Complexity Comparisons and Simulation Results

6.1 Complexity Comparisons

We wish to compare the computational complexities of our Algorithms 6 and 8 for coset codes

with the complexities of existing approaches to decoding such codes summarised in Section 2.3.

We use as our basic measure the number of real arithmetic operations (additions and multipli-

cations) required to carry out each algorithm. In our complexity estimates for Algorithms 6

and 8, we have already ignored small numbers of operations, concentrating only on the main

algorithmic steps. For small numbers of cosets and short codes, these operations may account

for a signi�cant fraction of the total cost. The same is true for the algorithms in Section 2.3.

Both of our algorithms have a �xed overhead associated with manipulations of the received

vector (and possibly computing FHTs) and then a second cost which scales linearly with the

number ` of cosets in the code. For Algorithm 6, this per coset cost is 10
�
m

2

�
operations, while

for Algorithm 8 it is 4m operations. In both cases, the per coset cost is small. This is in

contrast to the maximum likelihood approach in [4, Algorithm 1] and the more e�cient version

of [2, Algorithm 5.3]: here there is no �xed overhead, but the per coset cost can be quite high

(on the order of m2m arithmetic operations for the latter algorithm, potentially much higher

for the former). Thus we should expect our algorithms to be more e�cient when the number

of cosets is large. On the other hand, it is worth pointing out that [2, Algorithm 5.3] requires

no multiplication operations, only additions, and that these are far simpler to implement in

hardware or on a DSP.

For concreteness, in Table 1 we compare the decoding complexities of Algorithms 6 and 8

with the algorithms from [2, 4] for two particular choices of code. The �rst code is the code of

Example 2, the second consists of 256 cosets of RM4(1; 4) in RM4(2; 4). The table illustrates

the decrease in decoding complexity o�ered by our new algorithms, particularly over that of

maximum likelihood decoding as presented in [4]. Even though the per coset cost of Algorithm

8 is lower than that of Algorithm 6, the former algorithm is more expensive to implement for

these particular codes because of the relative sizes of �xed overheads.

6.2 Simulation Results

We have simulated the maximum likelihood algorithm [4, Algorithm 1], [2, Algorithm 5.3], the

soft version of the quaternary algorithm of [5] and Algorithms 6 and 8 with the code of Example

20

Number of cosets Operation [4, Algorithm 1] [2, Algorithm 5.3] Algorithm 6 Algorithm 8

32 + 30720 2112 792 608

� 0 0 216 352

256 + 245760 16448 3480 2400

� 0 0 216 2144

Table 1: Computational requirements of decoders for codes formed from cosets of RM4(1; 4) in

RM4(2; 4) (equivalent real additions and multiplications)

2 for two di�erent channel models. Recall that this code has rate 0:47, minimum Hamming

distance at least 4 and minimum Lee distance at least 8, and a PMEPR of 6.0dB.

Firstly, we describe the discrete Additive White Gaussian Noise (AWGN) channel. Let F�1

denote the IFFT of the OFDM modulator, and let y = F�1(!c) where c = (c0; c1; : : : ; c2m�1) is

the OFDM codeword. So y is a sampled version of the continuous time-domain OFDM signal.

Then we can write:

r = F (y + n) = F (y) + F (n) = !c + F (n)

where r denotes the demodulated complex-valued vector that is input to a decoder and

n = (n0; n1; : : : ; n2m�1)

is a vector whose components are i.i.d. complex-valued AWGN samples with zero mean and

variance �2 = N0=2. Here N0 denotes the one-sided noise spectral density. At the receiver,

we use coherent detection and assume perfect synchronisation. For validation purposes we

�rst considered the BER performance for the uncoded case, which has a theoretical bit error

probability given by [10, equation (5-2-57)]:

P =
1

2
erfc

 r
Eb

N0

!
(4)

where erfc(:) is the complementary error function, Eb = C=Tb, C is the average carrier power,

and Tb is the bit period of the information in seconds. The simulated results for the uncoded

case are shown in Figure 1 as the points marked �. Also included in the �gure is the continuous

curve given by evaluating (4) over the range of Eb=N0. It is clear that the uncoded BER

performance is in good agreement with the theoretical curve.

The simulation results for the various decoders on the AWGN channel are also shown in

Figure 1. We see that, with the exception of Algorithm 6, all the decoders perform within a

few tenths of a dB of maximum likelihood decoding, and so there is little to choose between

them in performance terms. But, as we have seen above, the algorithms have quite di�erent

implementation complexities, with Algorithm 8 having the lowest complexity for this code. We

note that, despite the fact that the coding-domain version of Algorithm 6 was proved to be a

Lee and Hamming distance decoder (see Theorem 5), the signal-domain version performs rather

badly. For this reason we caution against over-reliance on such distance measures. We also

expect the other majority logic based decoders to have poor performance. Finally, we note the

perhaps surprising fact that the best performing algorithm in Gaussian noise is the soft version

of the `Gray map' decoder of [5]. The underlying reason that this algorithm out-performs the

MLSD decoder (in terms of bit-error rate at a given Eb=N0) may be the additional level of

21

protection a�orded by the use of Gray coding of bits for this particular simulation. (We did

not use Gray coding when simulating the other decoding algorithms).

Although the discrete AWGN channel gives a indication of the performance attainable with

the various decoding algorithms, it is not a channel model appropriate to typical OFDM appli-

cations. Consequently, simulations with that model do not re
ect the potential gains that can

be obtained using a coded OFDM signal. To make a proper assessment of the various decoding

algorithms, we need to de�ne a realistic channel model that provides a suitable platform for

comparing performances without introducing undue complexity. Here, we model an idealised

OFDM system, where the channel is frequency selective across the complete bandwidth of the

OFDM signal, but where the subcarriers are independently faded according to a Rayleigh dis-

tribution. This provides su�cient diversity for the OFDM signal to exploit without introducing

intersymbol interference between adjacent OFDM symbols. Thus the results obtained from this

type of channel model can be considered as placing an upper bound on the performance of a

coded OFDM system.

As above, y = F�1(!c) denotes a sampled version of the continuous time-domain OFDM

signal. Let H = (H0; H1; :::; H2m�1) be a complex vector which represents the frequency domain

response of the channel across the bandwidth of the OFDM signal. We write

Hj = �je
�i�j

where �j is a non-negative real number representing the magnitude of the fade on carrier j and

�j denotes the relative phase-o�set on carrier j. We assume that the �j are each independently

Rayleigh distributed and that the �j have independent uniform distributions in [0; 2�). Since

we are assuming perfect synchronisation, we can in fact take �j = 0 for each j. Then we model

the e�ect of the channel on the vector y as:

r = !cH + F (n)

where r is the demodulated vector input to a decoder and n is Gaussian noise as above, and

!cH denotes the vector with components !cjHj, 0 � j < 2m.

We �rst consider the e�ect of the channel in the uncoded case. We simulated 50000 di�erent

instantiations of the above channel model with 32 OFDM symbols per instantiation. The

theoretical bit error probability for both BPSK and QPSK modulation is given by [10, equation

(14-3-7)]:

P =
1

2

�
1�

r
�
b

1 + �
b

�
(5)

where �
b =
Eb
N0

E((�j)
2) is the average signal to noise ratio across the bandwidth of the OFDM

signal and E((�j)
2) is the expectation of the fade magnitude. The simulated results for the

uncoded case are shown in Figure 2 as the points marked �. Also included in the �gure is the

continuous curve given by evaluating (5) over the range of Eb=N0. It is again clear that the

uncoded BER performance is in good agreement with the theoretical curve.

The simulation results for the various decoders with this fading channel model are also shown

in Figure 2. We see that there is a greater spread in the performances of the algorithms than

in the Gaussian noise case. The signal-domain Algorithm 8 lies within 2dB of the maximum

likelihood algorithm of [4], and has much lower implementation complexity. This algorithm

also outperforms [2, Algorithm 5.3] by as much as 3dB and is again less complex to implement.

In summary, Algorithm 8 is an attractive alternative to maximum likelihood decoding for this

type of fading channel.

22

In contrast to the AWGN situation, the coding-domain algorithms perform relatively poorly

| this is attributable to the fact that extraction of phases of badly faded carriers prior to the

operation of a coding-domain algorithm leads to greatly ampli�ed errors. The signal-domain

algorithms do not su�er from this de�ciency, and indeed they indirectly use the magnitudes

of received vector components ri to provide reliability information. For example, in step 2 of

Algorithm 8, components ri that are small in magnitude will lead to small components in the

vectors rk; these vectors are fed directly to FHTs which compute correlations to �rst-order

codewords and components of small magnitude in the input vector to a FHT will have less

in
uence on the FHT outputs than components of large magnitude.

One further conclusion that can be drawn from these results is that it can be important

to perform simulations with a channel model appropriate to the application in mind when

selecting a decoding algorithm.

7 Conclusions

We have given generalisations of the Reed majority logic decoding algorithm for the classical

Reed-Muller codes that is applicable to their non-binary generalisations. We have also made

non-trivial modi�cations to obtain low complexity, high performance decoding algorithms that

are usable in practice for coset codes of the type that are of increasing importance in OFDM.

We have given a theoretical justi�cation for the �rst modi�cation by proving that the resulting

algorithm is a Hamming and Lee distance decoder. Our second modi�cation lacks this, but in

any case has higher performance than the �rst.

We have made a comparison of our new algorithms with existing decoders, both in terms of

complexity and decoding performance. We have demonstrated that one of our decoders (Algo-

rithm 8) gives close to maximum likelihood performance with substantially reduced complexity.

23

References

[1] J.H. Conway and N.J.A. Sloane. Soft decoding techniques for codes and lattices, including

the Golay code and the Leech lattice. IEEE Trans. Inform. Theory, IT-32: 41{50, 1986.

[2] J.A. Davis and J. Jedwab. Peak-to-mean power control in OFDM, Golay complementary

sequences and Reed-Muller codes. Technical Report HPL-97-158, Hewlett-Packard Labs.,

Dec. 1997. Submitted to IEEE Transactions on Information Theory.

[3] A.J. Grant and R.D.J. van Nee. E�cient maximum likelihood decoding of peak power

limiting codes for OFDM. In IEEE 48th Vehicular Tech. Conf., pages 2081{2084, 1998.

[4] A.J. Grant and R.D.J. van Nee. E�cient maximum-likelihood decoding of q-ary modulated

Reed-Muller codes. IEEE Communications Letters, 2(5):134{136, May 1998.

[5] A.E. Jones and T.A. Wilkinson. Performance of Reed-Muller codes with OFDM and a

maximum-likelihood decoding algorithm. Technical Report HPL-98-88, Hewlett-Packard

Labs., April 1998. Submitted to IEEE Transactions on Communications.

[6] X. Li and L.J. Cimini, Jr. E�ects of clipping and �ltering on the performance of OFDM.

IEEE Communications Letters, 2: 131{133, May 1998.

[7] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes (2nd Edition).

North Holland, Amsterdam, 1986.

[8] H. Ochiai and H. Imai. Block coding scheme based on complementary sequences for

multicarrier signals. IEICE Trans. Fundamentals, pages 2136{2143, Nov. 1997.

[9] K.G. Paterson. Generalised Reed-Muller codes and power control in OFDM. Technical

Report HPL-98-57, Hewlett-Packard Labs., March 1998. Submitted to IEEE Transactions

on Information Theory.

[10] J.G. Proakis. Digitial Communications (3rd Edition). McGraw-Hill, Inc., 1995.

[11] R.D.J. van Nee. OFDM codes for peak-to-average power reduction and error correction.

In IEEE Globecom 1996, pages 740{744, London, Nov. 1996.

24

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

A
ve

ra
ge

 B
E

R

Figure 1: Performance of decoders for AWGN channel.
� uncoded

C maximum likelihood decoding, [4, Algorithm 1]

� soft Gray mapped decoder from [5]

4 [2, Algorithm 5.3]

� Algorithm 6

� Algorithm 8

25

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

A
ve

ra
ge

 B
E

R

Figure 2: Performance of decoders for multipath fading channel.
� uncoded

C maximum likelihood decoding, [4, Algorithm 1]

� soft Gray mapped decoder from [5]

4 [2, Algorithm 5.3]

� Algorithm 6

� Algorithm 8

26

