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Abstract

With the advance of hybridization array technology researchers can measure expression levels of sets of genes

across di�erent conditions and over time. Analysis of data produced by such experiments o�ers potential insight into

gene function and regulatory mechanisms. We describe the problem of clustering multi-condition gene expression

patterns. We de�ne an appropriate stochastic model of the input, and use this model for performance evaluations.

We present a O(n(log(n))c)-time algorithm that recovers cluster structures with high probability, in this model,

where n is the number of genes. In addition to the theoretical treatment, we suggest practical heuristic improvements

to the algorithm. We demonstrate the algorithm's performance �rst on simulated data, and then on actual gene

expression data.

1 Introduction

In any living cell that undergoes a biological process, di�erent subsets of its genes are expressed in di�erent stages

of the process. The particular genes expressed at a given stage and their relative abundance are crucial to the cell's

proper function. Measuring gene expression levels in di�erent stages, di�erent body tissues, and di�erent organisms is

instrumental in understanding biological processes. Such information can help the characterization of gene/function

relationships, the determination of e�ects of experimental treatments, and the understanding of many other molecular

biological processes.

Current approaches to measuring gene expression pro�les include SAGE [Velculescu et al 97],

RT/PCR [Somogyi et al 95], and hybridization based assays. In the latter, a set of oligonucleotides, or a set

of appropriate cDNA molecules, is immobilized on a surface to form the hybridization array. When a labeled

target DNA (or RNA) mixture is introduced to the array, target sequences hybridize to complementary immobilized

molecules. The resulting hybridization pattern (detected, for example, by uorescence) is indicative of the mixture's

content. Hybridization arrays are thus used as molecular recognition tools for nucleic acids (see [Drmanac et al 91,

Khrapko et al 91, Lennon Lehrach 91, Pevzner et al 91, Lysov et al 95, Blanchard Hood 96, Lin et al 96].)

These methods accelerate the rate at which gene expression pattern information is accumulated [Kim's Lab,

Lockhart et al 96, DeRisi Iyer Brown 97, Wen et al 98, Khan et al 98] (also see Section 3 for more details). As a

result, there is an increasing need to elucidate the patterns hidden in the data. However, the nature of studies of

multiconditional gene expression patterns may widely vary. Accordingly, we are interested in analysis tools that may

be useful in all such contexts. Clustering techniques are applicable as they would cluster sets of genes that "behave

similarly" under the set of given conditions.

In cluster analysis, one wishes to partition entities into groups called clusters, so that clusters are homogeneous and

well-separated. Clustering problems arise in numerous disciplines including biology, medicine, psychology, economics

and others. There is a very rich literature on cluster analysis going back over two decades (cf. [Duda Hart, Everitt,

Mirkin].) There are numerous approaches to de�ning quality criteria for solutions, stipulating the type of clustering

sought, and interpreting the solutions. Algorithmic approaches also abound. Most formulations of the problem are

NP-hard, so the algorithmics emphasizes heuristics and approximation. Clustering literature lacks concensus on basic

de�nitions, probably due to the diversity of applications of the problem. A common theme in the literature is the need

to �t the approach to the problem at hand and the necessity to assess the quality of solutions by subjective impression

of experts in each area.
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in Mathematics and Molecular Biology.
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Analyzing multi-conditional gene expression patterns with clustering algorithms involves the following steps:

� Determination of the gene expression data (usually reported as vectors of real numbers).

� Calculation of a similarity matrix S. In this matrix the entry Sij represents the similarity of the expression

patterns for genes i and j. Many possible similarity measures can be used here. The actual choice should reect

the nature of the biological question and the technology that was used to obtain the data.

� A clustering algorithm. This is the main concern of this paper. The clustering algorithm should be e�ective and

e�cient. Its input is the similarity matrix mentioned above and its output is a set of clusters. Genes that belong

to the same cluster have similar expression patterns, under the given conditions.

� Means for visually presenting the constructed solution (exempli�ed in Section 3).

Current approaches to clustering gene expression patterns ([Brown's Lab, NHGRI, Wen et al 98]) utilize hierarchi-

cal methods (constructing phylogenetic trees) or methods that work for Euclidean distance metrics (e.g k-means). We

take a graph theoretic approach, and make no assumptions on the similarity function or the number of clusters sought.

The cluster structure is produced directly, without involving an intermediate tree stage.

In Section 2.1 we describe the stochastic model used in this work. We then present a provably e�cient method

of solving the problem with high probability. In Section 2.2 we present a heuristic improvement of the said method

and analyze its performance by simulations. In Section 3 we apply it to actual gene expression data, and analyze its

output.

2 The Clustering Algorithm

2.1 Theory

We approach the clustering problem at hand by studying a stochastic model. A graph is called a clique graph if

it is a disjoint union of complete graphs. Given a graph, consider the problem of �nding its nearest clique graph,

where distance is measured by the number of edges that must be changed (added or removed). Those cliques can

be thought of as the underlying cluster structure of the graph. In the case of gene expression patterns it makes

(biological) sense to assume that some true underlying cluster structure does exist for a graph that represents correlation

between patterns of di�erent genes. The underlying structure is, however, obscured by the complexity of the biological

processes and corrupted by experimental errors. For our purposes it makes sense, therefore, to study the clustering

problem on a random graph model built upon a cluster structure and corrupted at random. In this section we

therefore assume that the input to the clustering problem are distributed according to the corrupted clique-graph

model de�ned below. It is reminiscent of the planted bisection model ([Condon Karp 98]) and the planted clique model

([Alon Krivelevich Sudakov 98]).

In [Ku�cera 95] a variety of graph partitioning problems is considered, in the context of random graphs. The

author considers the bisection problem and the graph coloring problem. He suggests algorithms for solving these

with high probability and studies their expected complexity assuming some speci�c distributions on the input. In

[Condon Karp 98] the authors consider the graph l-partition problem: partition the nodes of an undirected graph into

l subsets of prede�ned sizes so that the total number of inter subset edges is minimal. They then present a linear (in

the number of edges) time algorithm that solves the graph l-partition problem with high probability, on the planted

l-partition model. Our problem is di�erent: no prede�ned structure is given (any clique structure is, apriori, a possible

candidate) and minimality with respect to inter cluster edges as well as intra cluster non-edges is sought.

De�nition 2.1:

(i) A cluster structure is a vector S = (s1; s2; :::; sd), where si > 0 and
P

si = 1. For a cluster structure S, let

(S) = the smallest entry, d(S) = the dimension, d.

(ii) A cluster structure S = (s1; s2; :::; sd) de�nes a clique graph on the vertices f1:::ng in the following way: The

number si corresponds to a clique of size bsiNc (In our simulations we will choose N and S so that no rounding

is needed. For asymptotic results the rounding is irrelevant) on the appropriate vertices. Call this graph Qn(S).

A relabeling of the vertices of Qn(S) according to a permutation � 2 Sn generates the clique graph Qn(S; �).
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De�nition 2.2: The random graph model Q(n; �; S) (representing random corruption of clique graphs) is de�ned

as follows: Given a cluster structure S and a value 0 � � � 1
2
, the random graph Q(n; �; S) is obtained from

Qn(S) = (V;E) by randomly (1) removing each edge in E with independent probability �; (2) adding each edge not

in E with independent probability �; (3) permuting the vertices according to a uniformly chosen random permutation

� 2 Sn. Edge inversions can be represented by a binary vector � of length
�
n

2

�
, where ij is inverted i� �ij = 1. The

graph generated as above, from (�; �) 2 Sn � f0; 1g(
n

2) will be denoted G(�; �) = (V;E(�; �)).

De�nition 2.3: Consider an algorithm A that takes arbitrary graphs as inputs and returns clique graphs. Denote

the output of A on G = (V;E) by A(G) = (V; F ). Accordingly, F (�; �) is the edge set of A(G(�; �)).

Let � > 0. We say that an algorithm A as above clusters Q(n; �; S) with probability 1� � if the output graph is,

asymptotically, as good a solution as the original cluster graph is, with probability 1� �. That is,

lim inf
n!1

PI (jE(�; �)4F (�; �)j � jE(�; �)4Qn(S; �)j) > 1� �:

Here and throughout this section PI denotes the relevant probability measure (which is clear from the context).

Let �(n)! 0. We say that an algorithm A as above clusters Q(n; �; S) with failure rate �(n) if

lim sup
n!1

1� PI (jE(�; �)4F (�; �)j � jE(�; �)4Qn(S; �)j)

�(n)
<1:

Theorem 2.4: Let S be a cluster structure and � < 1=2.

(i) For any �xed � > 0 there exists a n(log(n))c-time algorithm that clusters Q(n; �; S) with probability 1� �. (c is

a constant that depends only on the cluster structure S and on �).

(ii) For any �(n) 2 
((log(n))�b), where b is some constant, there exists a n(log(n))c(b)-time algorithm that clusters

Q(n; �; S) with failure rate �(n). (c(b) is as above but also depends on b).

(iii) For any �(n) 2 
(n�b), where b is some constant, there exists a polynomial-time algorithm that clusters Q(n; �; S)

with failure rate �(n).

To prove this theorem we shall present the algorithm and analyze its performance. It uses ideas similar to these

presented in [Condon Karp 98] and [Ku�cera 95]. For the proof we need Theorem 2.5, due to Cherno� ([Cherno� 52],

[Dembo Zeitouni, Section 2.2]). We use D(pjja) to denote the relative entropy distance from (p; 1 � p) to (a; 1 � a),

That is, D(pjja) = p log(p=a) + (1� p) log((1� p)=(1� a)).

Theorem 2.5: (Cherno�, 1952) Let X � Binomial(N; p). Let a < p < b. Then

PI(X > b) < exp(�ND(bjjp)); and PI(X < a) < exp(�ND(ajjp)):

We also need a very crude sampling lemma, stated without proof:

Lemma 2.6: Consider n objects of d di�erent colors, each color represented by at least n=m objects. If s objects are

sampled uniformly, and independently without replacement then

PI( The sample contains � s=2m representatives of each color ) > 1� �;

providing 16m2 log(d=�) � s � n

4m
.

Proof: (of Theorem 2.4)

Sketch. Before presenting the complete proof, we outline the idea. Consider a simpler scenario - assume that

the hidden structure S, consists of only two clusters, red, and blue. We say that a logn-subset of vertices is a core if

it is monochromatic (either all red or all blue). The algorithm has two phases. In the �rst phase it forms a list L of

core candidates. In the second it uses each core candidate, L 2 L, as a classi�er, to partition the rest of the vertices:

vertices with at least log n

2
neighbors in L versus those that have fewer neighbors in L. Finally, the partition that is

closest (in the symmetric di�erence sense) to the input graph is returned.

The analysis of the algorithm above is based on the following:
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� A list of core candidates, L, that positively contains a core can be generated in polynomial time - choose an

arbitrary subset A of size 2 logn and let L be the list of all logn-subsets of A.

� Assume that a core is used as a classi�er to produce the vertices partition. Using large deviations bound we show

that the produced partition is as good as the original cluster structure with high probability.

Note that the time complexity of the second phase is O(n logn) times the size of L. To reduce the time complexity

order we replace the �rst phase of the algorithm above by a \recursive" application of the algorithm. We generate a

list that contains O(log n) sub-core candidates, each with log logn vertices. Each sub-core candidate is used to grow a

core candidate, which in turn is used to grow the complete partition.

Complete proof. For clarity we analyze the case d(S) = 3, (S) = 1=m. Generalizing to more clusters is straight

forward.

We are given a graph on n vertices that was obtained from a cluster structure S by the process described in

De�nition 2.2. Call the vertices of the original clusters blue, red and white. Write V = B [ R [W . For a vertex

v 2 V let C(v) denote the subset it belongs to (before corrupting the clique graph). Let � > 0 (will be related to the

tolerated failure probability, at the end). Let k(�) = d2=D(1=2jj�)e.

� Uniformly draw a subset U1 of vertices of size r � k(�) log log(n) where r is determined so that with probability

1� � each color has at least k(�) log log(n) representatives in this chosen subset. By Lemma 2.6 r can be set to

be 2m providing that n is large enough: log log(n) > 8m log(1=�) and n > 8m2 log log(n).

� Uniformly over the subsets of V nU1 draw a subset U2 of vertices with r � k(�) log(n) elements. Again, r is such

that with probability 1� � each color has at least k(�) log(n) representatives in this chosen subset and r = 2m

su�ces under the above assumptions.

� Consider all partitions of U1 into 3 subsets (there are less than log(n)r�k(�) log(3) of them). Call the subsets of

each such partition BC

1 , R
C

1 and WC

1 . Run the following enumerated steps starting with all these partitions. For

the analysis focus on a partition where BC

1 � B, RC

1 � R and WC

1 �W (such a partition is, indeed, considered,

since we are considering all partitions).

1. For all u 2 U2 let Ĉ(u) be the color that attains max(deg(u;B
C

1 )=jB
C

1 j; deg(u;R
C

1 )=jR
C

1 j; deg(u;W
C

1 )=jWC

1 j).

Add u to that set. Assume that C(u) = B. The collection of edges from u to BC

1 are independent

Bernoulli(1� �) (the drawings of U1 and U2 were independent of everything else). Therefore deg(u;B
C

1 ) �

Binomial(jBC

1 j; 1� �). Using the Cherno� bound stated above we therefore have

PI
�
deg(u;BC

1 ) � jBC

1 j=2
�

< exp(�jBC

1 jD(
1

2
jj�))

< log(n)�k(�)D( 1
2
jj�) (1)

< log(n)�2; (2)

where (1) follows from jBC

1 j � k(�) log log(n). Similarly, deg(u;RC

1 ) � Binomial(jRC

1 j; �), and thus

PI
�
deg(u;RC

1 ) � jRC

1 j=2
�
< exp(�jRC

1 jD(
1

2
jj�)) < log(n)�2: (3)

The same holds for WC

1 , whence Ĉ(u) = C(u) with high probability: PI
�
Ĉ(u) 6= C(u)

�
< 3 log(n)�2.

Finally, by a union bound

PI
�
Ĉ(u) 6= C(u) for some u 2 U2

�
< 3r � k(�) log(n)�1: (4)

2. Focusing on the part of the measure space where no error was committed in the previous steps (in particular,

all vertices were assigned to their original color), we now have three subsets of vertices BC

2 � B, RC

2 � R

and WC

2 � W , each of size at least k(�) log(n). We take all other vertices and classify them using these

subsets, as in the previous step. Observe that all edges used in this classi�cation are independent of the

algebra generated by everything previously done. This is true since in the previous step only edges from

U2 to U1 were considered, and these are of no interest here. Therefore, the equivalents of (2) and (3) hold,

yielding

PI (any v 2 V was not assigned to C(v)) < 3r � k(�)n�1: (5)
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� Amongst all outputs of the above, chose the partition which is closest (in the symmetric di�erence sense) to the

input graph.

The total probability of failure in this process is estimated as follows

PI

�
The original partition V = B [ R [W

is not one of the outputs

�
< 2� + 3r � k(�)

�
n�1 + log(n)�1

�

� 2� + 6m � k(�)
�
n�1 + log(n)�1

�
; (6)

which is arbitrarily small for large n. As noted above, we have less than log(n)2m�k(�) log(3) parallel processes here.

In each one the expensive part (time-wise) is the classi�cation of all vertices in V n (U1 [ U2), using the core clusters

BC

2 , R
C

2 and WC

2 . In this stage O(n log(n)) edges are considered, each at most once: sums over disjoint subsets

of these are compared to a threshold. Thus the time spent here is O(n log(n)) and the total time complexity is

O(n log(n)2m�k(�) log(3)+1). This proves (i).

To see that (ii) holds observe that the dominant term in (6) is log(n)�1 and that the degree here can be increased

by pushing k(�) up, paying a price in the time complexity (the power of log(n) there would increase). The proof of

(iii) is along similar lines and is omitted here.

2.2 Practice

In this section we take a more practical approach, and present a novel and simple clustering heuristic, called Cluster

Affinity Search Technique, or, in short, CAST. The algorithm uses the same idea as in the theoretical algorithm

described in Theorem 2.4, namely it relies on average similarity (a�nity) between unassigned vertices and the current

cluster seed to make its next decision. However, it di�ers from the theoretical algorithm in some aspects: (1) The

theoretical algorithm repeats the same process for many initial seeds. Here we use \cleaning" steps to remove spurious

elements from cluster seeds and avoid the repetition. (2) CAST adds (and removes) elements from the current seed

one at a time (and not independently, as in the theoretical algorithm). Heuristically, this helps by strengthening the

constructed seed, thus improving the decision base for the next step. (3) CAST handles more general inputs. Namely,

it allows the user to specify both a real-valued similarity matrix, and a threshold parameter which determines what is

considered signi�cantly similar. This parameter controls the number and sizes of the produced clusters.

The input to the algorithm is a pair h�; ti, where � is a n-by-n similarity matrix (�(i; j) 2 [0; 1]), and t is a

similarity cuto�. The clusters are constructed one at a time. The currently constructed cluster is denoted by Copen.

We de�ne the a�nity of an element x, denoted by a(x), to be the sum of similarity values between x and the elements

in Copen. We say that an element x is of high a�nity if a(x) � tjCopenj. Otherwise, x is called of low a�nity. Note

that an elements' status (high/low a�nity) depends on Copen. Roughly speaking, CAST alternates between adding high

a�nity elements to Copen, and removing low a�nity elements from it. When this process stabilizes Copen is closed and

a new cluster is started. A pseudo-code of the algorithm is given in Figure 1.

We remark that the \cleaning" steps in CAST serve to avoid a common shortcoming shared by many popular

clustering techniques (such as single-linkage, complete-linkage, group-average, and centroid): due to their

\greedy" nature, once a decision to join two clusters is made, it cannot be reversed (see [Everitt, ch. 4]).

2.2.1 Performance Analysis

As is sometimes the case with practical heuristics, it is very hard to prove rigorous performance bounds for CAST.

Instead, we assess its performance by testing its ability to recover hidden cluster structures in computer generated

random data. Recall (De�nition 2.2) that the corrupted clique graph random graph model is speci�ed by three

parameters: a cluster structure S, an error probability �, and a size parameter n. For di�erent choices of these

parameters, we perform the following steps:

� Draw a random graph G = G(�; �), from the distribution Q(n; �; S).

� Apply CAST to G (viewed as a binary similarity matrix), using cuto� t = 0:5.

For each such trial we compute the similarity between the output cluster structure and the original clique graph

Qn(S; �) using similarity coe�cients (matching coe�cient and Jaccard's coe�cient [Everitt, p. 41]). Visual judgment

can also be used.
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Clustering A�nity Search Technique

� Input: An n-by-n similarity matrix �, and a cuto� parameter t.

� Initializations:

C  ; /* The collection of closed clusters */
Copen  ; /* The constructed cluster */
U  f1; : : : ; ng /* Elements not yet assigned to any cluster */
a(�) 0 /* Reset the a�nity (total similarity between v and elements in Copen) */

� while(U [Copen 6= ;) do
Let u be an element with maximal a�nity in U .
if (a(u) � tjCopenj) /* u is of high a�nity */
Copen  Copen [ fug /* Insert u into Copen */
U  U n fug /* Remove u from U */
For all x in U [Copen do

a(x) = a(x) + �(x; u) /* Update the a�nity */
end

else /* No high a�nity elements outside Copen */
Let v be a vertex with minimal a�nity in Copen.
if (a(v) < tjCopenj) /* v is of low a�nity */
Copen  Copen n fvg /* Remove v from Copen */
U  U [ fvg /* Insert v into U */
For all x in U [ Copen do

a(x) = a(x)� �(x; v) /* Update the a�nity */
end

else /* Copen is clean */
C  C [Copen /* Close the cluster */
Copen  ; /* Start a new cluster */
a(�) 0 /* Reset a�nity */

end

end

end

� Done, return the collection of clusters, C.

Figure 1: CAST Algorithm

For completeness we de�ne the above mentioned similarity coe�cients. Let M(S) be the adjacency matrix of

Qn(S; �) (a n-by-n matrix). That is, M(i; j) = 1 if and only if i and j belong to the same cluster. Similarly, let M(C)

denote the adjacency matrix of the output cluster structure. Let N0; N1; N2 denote the number of entries that have

'0' in both matrices, the number of entries that have '1' in both matrices, and the number of entries that di�er in the

two matrices, respectively. The matching coe�cient is simply the ratio of the total number of entries on which the two

matrices agree, to the total number of entries: (N0 +N1)=(N0 +N1 +N2). Jaccard's coe�cient is the corresponding

ratio when \negative" matches (N0) are ignored: N1=(N1 +N2).

In Table 1 we report results (based on at least 100 executions) for various choices of the model parameters. Figure

2 visually presents clustering results.

Cluster structure (S) n � Matching coe�. Jaccard's coe�.

h0:4; 0:2; 0:1; 0:1; 0:1; 0:1i 500 0.2 1.0 1.0

h0:4; 0:2; 0:1; 0:1; 0:1; 0:1i 500 0.3 0.999 0.995

h0:4; 0:2; 0:1; 0:1; 0:1; 0:1i 500 0.4 0.939 0.775

h0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1i 1000 0.3 1.0 1.0

h0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1i 1000 0.35 0.994 0.943

Table 1: Results from simulations.
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Original clustering structure, N= 1024, alpha=0.300, beta=0.300, I=1 
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Input matrix to clustering algorithm, N= 1024, alpha=0.300, beta=0.300, I=1 
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Out matrix, N=1024, cutoff=5.000e−001, alpha=0.300(0.310), beta=0.300(0.301), I=1
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Figure 2: The visual e�ect of clustering. The �gure on the left depicts the adjacency matrix of the corrupted clique

graph, before vertices are permuted. The middle �gure constitutes the actual input to the algorithm (vertices are

randomly permuted). The �gure on the right is the output. Note that all large clusters were recovered. Some of the

very small ones were lost, but these di�erences are hard to detect.

2.2.2 Implementation Notes

All of the software developed (including the CAST algorithm, the synthetic data generation, and the visualization tools)

was implemented using MATLAB. The expression matrix for the data in [Kim's Lab] is 1246 � 146. Running one

clustering execution on it takes under ten seconds on a HP Vectra XU 6/180MHz (after a one time preprocessing step

that computes the similarity matrix). The similarity matrix for actual gene expression data can take large memory

space. When this is a problem it is possible to compute all similarity values when they are needed. Since (in CAST)

some entries of the matrix are accessed more than once this increases the computation time. The expression data in

[DeRisi Iyer Brown 97] (a � 6000� 7 matrix) was analyzed in this manner.

3 Applications to Biological Data

3.1 Temporal Gene Expression Patterns

As a �rst example of applying our clustering techniques to gene expression data we analyze the data reported, analyzed

and discussed in [Wen et al 98]. In this study the authors establish some relationships between temporal gene expression

patterns of 112 rat CNS (Central Nervous System) genes and the development process of the rat's CNS. Three major

gene families are considered: Neuro-Glial Markers family (NGMs), Neurotransmitter Receptors family (NTRs) and

Peptide Signaling family (PepS). All other genes measured in this study are lumped by the authors into a fourth family:

Diverse (Div). All families are further subdivided by the authors, based on apriori biological knowledge.

Gene expression patterns for the 112 genes of interest were measured (using RT/PCR: [Somogyi et al 95]) in

cervical spinal cord tissue, at nine di�erent developmental time points. This yields a 112� 9 matrix of gene expression

data. To capture the temporal nature of this data, the authors transform each (normalized) 9-dimensional expression

vector into a 17-dimentional vector - 8 di�erence values (between time adjacent expression levels) were included.

This transformation emphasizes the similarity between genes with closely parallel, but o�set, expression patterns.

Euclidean distances between the augmented vectors were computed, yielding a 112 � 112 distance matrix. Next, A

phylogenetic tree was constructed for this distance matrix (using FITCH, [Felsenstein 93]). Finally, Cluster boundaries

were determined by visual inspection of the resulting tree. Some correlation between the resulting clusters and the

apriori family information was observed.

We analyze the same data in the following way. The raw expression data is preprocessed in a similar manner -

�rst the normalized expression levels are augmented with the derivative values. Then, a similarity matrix is computed

based on the L1 distance between the augmented 17-dimensional vectors. A hands-o� version of our algorithm, which

automatically searches for a good cuto� value, is applied to the similarity matrix (the eventual cuto� for the presented

data was 0.647). Clusters are directly inferred.
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Figure 3: In the top �gure the expression patterns of genes in each of the clusters are depicted. The graphs are color

coded so as to distinguish between members of the various families (see legend in the bottom �gure). Our software

enables comparison to any user de�ned partition into families. Note a single NGM in cluster #5 that is dominated by

NTRs. The bottom �gure summerizes the composition of all clusters, in terms of the de�ned families. The distribution

into clusters, within each one of the individual families can also be displayed, as in the example here.
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Figure 4: The unprocessed data is compared to the output of the clustering algorithm. Top: the two similarity

matrices are depicted. Since the original unprocessed data is ordered according to the four families, some pattern can

be detected in the raw data as well. Bottom: The raw gene expression matrix is ordered according to the permutation

produced by the clustering algorithm and compared to the original order.
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Figure 5: Top left: examples of the clusters found in analyzing the data in [Kim's Lab]. Below we have enlarged cluster

No. 2. Note that it is possible to identify the regions that signi�cantly contribute to correlations within a cluster and

then analyze the corresponding sub matrix. We are currently working on automating and benchmarking this process.

Right: not much information is available about how the genes studied are grouped into families. Therefore, the family

comparison utility is presented here mostly for the purpose of validation. Genes coding sperm proteins (8 genes) were

all clearly clustered together. The same is true for dehydrogenase related genes (3 of them). ATP related genes don't

speci�cally correlate with any other pattern. This is expected since ATP is involved in all cell processes and is not

correlated with speci�c conditions.

3.2 Multi Experiment Analysis

Clustering gene expression patterns is useful even if the experiments' enumeration has no physical meaning (as opposed

to temporal patterns). In [Kim's Lab] studies of gene regulation mechanisms in the nematode C. elegans using cDNA

microarrays hybridization assays are described. Some software tools (Acacia Biosciences, Inc.) for analyzing the raw

data are also accessible from [Kim's Lab]. Using our methods and tools we analyzed the data for 1246 genes, from 146

experiments. The data is in the form log
�

Red
Green

�
(representing the log-ratio of the two sample intensity values at the

corresponding array feature), per experiment. Some experiments are parts of time courses and some compare certain

mutants to a reference cell. Here we only present some initial clustering results, without further pursuing any of the

implied relationships.

Contrary to Section 3.1, where the similarity measure needed to reect the temporal nature of the data, the order of

experiments here, in the total set, has little or no importance. Therefore, we use a Pearson correlation based similarity

measure here. Figure 5 summerizes the results. For time courses it makes sense to use other similarity measures when

the corresponding sub matrices are clustered. Clustering the columns (rather than the rows) of the expression matrix

is also possible and contains biologically meaningful information.
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