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1 Introduction

Electronic image capture devices like scanners and digital cameras use charge-coupled device

(CCD) or active pixel sensor (APS) technology for sensor fabrication. The colour capabilities

of these devices come about from the colour �lters that are used with the sensors, and there

has been considerable interest and literature on the design of optimal colour �lters from the

point of view of colour �delity [2, 3, 4, 5, 6, 7, 1] and robustness [8, 9, 6, 10]. There is a

wide range of criteria for colour �delity, varying in colorimetric accuracy, parameters and

computational complexity. The common aspect of most of the criteria is that they may be

expressed in terms of inner products, as we will show in section 3. The existing investigations

into robustness of a recording �lter set [8, 9, 6, 10] are based on speci�c colorimetric accuracy

criteria.

This paper poses the problem of the accuracy of color recording �lters in terms of inner

products and orthogonality - exploiting the common aspect of most existing performance

criteria. This allows a common framework for noise analysis. We de�ne an inner product

using data-dependence in the form of preferential weighting of errors in directions where

most of the energy of the data set is concentrated. We show that Neugebauer's Q-factor can

be extended using the generalized inner product. We illustrate the use of the generalized

inner product, the induced generalized orthogonality and generalized Q-factor by addressing

the problems of the characterization of colour �lters with respect to colour �delity and noise

sensitivity.

The problem of colour �delity has been addressed satisfactorily by a number of researchers,

and we show that the inner product provides a single framework for similar approaches.

We generalize the fundamental error, based on orthogonal directions in the HVSS, to other

quadratic error measures in the target colour space. The FOMs of Sharma and Trussell

[1] and Wolski et al [6] for negligible noise, Neugebauer [2], Vora and Trussell, (�), [3] and

Finlayson [7], are all choices of an inner product, and hence choices of `orthogonality'. The
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purpose of this paper is to demonstrate the use of the idea of inner products in simpli�cation

of optimality expressions for colour recording �lters. The rich mathematical results available

for inner products may be used to produce other results in the future.

We address the problem of noise sensitivity in detail and show that optimal �lters with

respect to noise sensitivity are those that are orthonormal with respect to the generalized

inner product. Vrhel and Trussell [4] show that optimal �lters with respect to sensitivity

to �lter fabrication errors also satisfy the same criterion. We present the result here in a

simpler form than they do, in terms of inner products and orthonormality.

The paper is organised as follows. We establish notation and background in section 2. In

section 3, we de�ne the tools we use in the rest of the paper - generalized inner products,

orthogonality, projection operators and Q-factors. In section 4, we describe the use of the

tools in studying colorimetric accuracy - in particular, we describe the speci�c translations

from colour space and data statistics to inner products. In this section we also show how

the measures of [2, 3, 6, 1] correspond to choices of inner products. We also show that

these measures may be expressed as a weighted sum of generalized Q-factors of preferred

directions in the target space. We present the use of our tools for noise analysis in section 5.

Simulation results demonstrating the usefulness of the framework and the noise sensitivity

results are in section 6. A summary of the major results of the paper is presented in section

7.

2 Preliminaries

The notation in this paper follows that of Trussell [11], Vora and Trussell [3, 9] and Sharma

and Trussell [1]. Filter transmissivities, spectral re
ectance functions, radiant illuminant

spectral distributions, the CIE matching functions [12, pg.] and all other functions of wave-

length are assumed to be represented by N samples in the visual range. The theoretical
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results presented here and the ideas used are independent of the sampling rate. The simu-

lations have been performed for N = 31.

2.1 Notation

We list here the symbols used in the paper, they are also repeated where they are derived.

f: re
ective spectrum

A = [a1 a2 a3]: matrix of the CIE matching functions

M = [m
1
m

2
:::::::mr]: matrix of r recording �lters

V = [v
1
;v

2
; ::::vs]: matrix of s target measurement �lters

t = VT f , and t̂: s-stimulus values of f and their Linear Minimum Mean Square Error

(LMMSE) estimates respectively

h: combination of optical path, recording illuminant and sensor characteristic

l: viewing illuminant

H and L: diagonal matrices with Hii = h(i) and Lii = l(i) respectively

MH and AL : matrix products HM (or `e�ective recording system') and LA respectively

AT
Lf : CIE tristimulus vector of re
ective spectrum f under viewing illuminant l

g = MT
Hf + n: recorded noisy measurements

B: colour correction matrix

C: linear transformation of s-stimulus values for error metric

D: preferred directions in target space, D = VCT

R, Rn: correlation matrices of data and noise respectively

�2: noise variance

� and �: eigenvalues of matrices (MT
HRMH)R

�1

n and MT
HRMH respectively

� and !: condition numbers of matrices MT
HRMH and B respectively

JF : Jacobian matrix for non-linear transformation from target space to uniform error space

R(X): range space of matrix X - the span (set of linear combinations) of its column vectors
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X�: pseudo-inverse of matrix X

<;>e, <;>
0: euclidean and generalized inner products respectively

PX , P
0

X : projection operators onto R(X) using the euclidean norm and the norm induced

by the generalized inner product respectively

vec(X): matrix X stacked column by column as a vector


: Kronecker product

2.2 Problem Formulation and Background

The common problem in colour scanning, digital photography, and colour correction is the

design of �lters to obtain the values

t = VT f (1)

where f is an N-vector representing the visual stimulus. The matrix V consists of s columns,

V = [v
1
;v

2
; ::::vs]. The columns of V represent the combined e�ect of the CIE matching

functions and a viewing illuminant in the case of colour scanning and digital photography, or

the combined e�ect of the CIE matching functions and many di�erent viewing illuminants

in the case of colour correction. The vector t may be referred to as the s-stimulus vector (s

= 3 when V = AL). This formulation allows the linear model ideas of [2, 13, 14, 15, 11, 3]

to be extended to de�ne colour �delity criteria of sets of recording �lters used for multi-band

spectral measurements, even when the measurements are not those of the CIE tristimulus

values [16]. The designed �lters do not need to replicate the columns of V, and it is su�cient

to obtain measurements from which the values VT f may be determined through a linear

transformation [13, 11, 3]. The properties of the linear transformation determine the noise

ampli�cation inherent in the procedure, and this is discussed in detail in section 5.

The output of the e�ective recording system represented by MH is g = MT
Hf + n. The

linear minimum mean square error (LMMSE) estimate of the s-stimulus values of zero-mean
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signal f in the presence of zero-mean signal-uncorrelated measurement noise is [4, 8]:

t̂ = VTRMH(M
T
HRMH + Rn)

�(MT
Hf + n) (2)

where R = E[�T ] and Rn = E[nnT ] are the sample correlation matrices of the data

and the noise respectively. The incorporation of non-zero signal and noise means does not

change the basic results of the analysis. The correction matrix is the linear transformation

used to obtain the estimate from the measurements:

B = VTRMH(M
T
HRMH + Rn)

� (3)

The properties of the matrix B determine the noise ampli�cation properties of the procedure

of determining the target s-stimulus values using the e�ective recording system MH .

The error in estimating the s-stimulus values may be calculated in many ways. Linear

models have been largely successful in explaining the colour responses of the sensor and

�lter combination [17, 18, 19], though errors perceived by the human visual system are far

from linear. Commonly used error measures for the colour reproduction of patches include

the mean-square error in a linear transformation of the CIE tristimulus space and the mean-

square error in the perceptually uniform CIELAB space [12, pg. 166]. We discuss these

errors in more detail in the rest of this section.

2.2.1 Quadratic Error Measures

A common instance where linear transformations of the tristimulus values are the target

of measurements is when a colour is to be reproduced on an additive display, like a CRT

monitor. While the mean-square error in a linear transformation of CIE tristimulus space is

not a good approximation of perceptual error, it provides a numerical estimate of colorimetric

accuracy and may be manipulated with the use of simple mathematics. Hence it is commonly

used for rough optimality estimates. In general, euclidean distance in a linear transformation

of the s-stimulus space corresponds to a weighted euclidean distance in the original space.
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If jj:jje represents the euclidean norm, the expression for the mean square value of the di�er-

ence between a linear transformation, C, of the required s-stimulus values t (equation (1) )

and the same linear transformation of the estimated values t̂ (equation (2)) is the euclidean

distance in the transformed space [16]:

E[jjejj2e] = Trace(CVTRVCT
� CVTRMH(M

T
HRMH + Rn)

�MT
HRVC

T )

The euclidean distance in a space of linearly transformed errors may be thought of as a

general form of a quadratic error measure because it is of the form
P
eiwijej, where e

symbolizes the error vector, and wij the weights.

When C is the identity, the error is measured as euclidean distance in the space of the s-

stimulus values. Hence, when the s-stimulus values are the CIE tristimulus values, and C =

I the above error is the mean square tristimulus error. When C corresponds to determining

PV , i.e. when C = V(VTV)�1, the error is measured as the euclidean distance between

fundamentals. Hence, when C = AL(A
T
LAL)

�1, the error is the euclidean distance in the

HVISS as in [3]. Notice that the LMMSE estimate of the transformed tristimulus values

is the same as the LMMSE estimate of tristimulus values with respect to the directions

represented by VCT . We will denote the matrix of preferred directions, VCT , by the matrix

D, with columns (individual preferred directions) di.

Proceeding as in [3, 16, 1], one may obtain a normalized measure based on euclidean distance

in the transformed space:

�(D; R; Rn; MH) =
Trace DTRMH(M

T
HRMH + Rn)

�MT
HRD

Trace DTRD
(4)

The above may be reduced to Neugebauer's Q-factor which is a measure of the quality of

a single recording �lter and negligible measurement noise, and is based on the fractional

energy contained in the HVISS. The Q-factor of x is de�ned as [2]:

q(x) =
jjPV (x)jj

2

e

jjxjj2e
(5)
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and substituting R = �2I, Rn = 0, C = V(VTV)�, i.e D = PV , and MH = Hm, in

equation (4) gives,

q(Hm) = �(PV ; �
2I; 0; Hm) (6)

The measure � is, unfortunately, not good enough at predicting perceptual error [1]. Hence,

Wolski et al [6] and Sharma and Trussell [1] suggest the use of Kronecker products to utilize

locally linear approximations to more accurate, non-linear, perceptual error models. Their

notation provides a more general analytical form than the error expressions discussed above,

and its use is justi�ed only when errors in spaces which are not linear transformations of the

space spanned by V are required.

2.2.2 Accurate approximations of perceptual error

The average �Eab error in CIE L�a�b� space [12, pg. 166] is a perceptual error which is not

equivalent to euclidean distance in any linear transformation of CIE tristimulus space. This

motivates the analysis of non-quadratic error measures. If F(t(f)) and F(t̂(f)) represent the

non-linear transformation of real and estimated s-stimulus values respectively, to a trans-

formed space where the euclidean distance represents a valid error measure, then the error

measure is jjF(t(f)) � F(t̂(f))jj2. A locally linear approximation of L�a�b� error proposed

by Wolski et al [6] allows the use of linear models to analyze non-quadratic error measures

as follows.

If the error between estimated and real s-stimulus values is small, and the transformation

F is di�erentiable with continuous �rst partial derivatives at both points, the error measure

can be approximated by the �rst term of the Taylor series approximation [6, 1]. The linear

transformation B that minimizes the approximated error measure is de�ned by [1]:

vecB = [(MT
H 
 Ir)Sf(MH 
 Ir) + Sn]

�1(MT
H 
 Ir)Sfvec(A

T
L) (7)

where:

Sf = Ef(�T

 (JT

F
(t(f)))g
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Sn = Rn 
 Ef(JT
F
(t(f)))g

As in equation (4), we obtain a normalized error measure which depends on both the preferred

directions in the target space as well as the non-linear transformation from the target space

to a perceptually uniform space.

�F(D;Sf ;Sn;MH)

=
vec(DT )TSf(MH 
 Ir)[(M

T
H 
 Ir)Sf (MH 
 Ir) + Sn]

�1(MT
H 
 Ir)Sfvec(D

T )

vec(DT )TSfvec(DT )
(8)

The main di�erence between expressions (4) and (8) is that the latter treats the entire matrix

D as one vector in sN-space, unlike the former which treats each column of D, i.e. each

preferred direction, as a separate vector. Further, the latter treats each column of MH as

a vector in rN-space, with zeros padding the N-vector. Because of these di�erences, the

latter allows the use of product terms of the form
P
wijklml(i)mk(j) (elements of the matrix

MT
H 
 Ir)Sf (MH 
 Ir) ) while the former allows only terms of the form

P
wijml(i)mk(j)

(elements of the matrix MT
HRMH). Another di�erence is that the weights (elements of the

matrices R and Sf for the former and latter respectively) depend only on the data and not

onMH or V in the former case, but depend on both the data and V in the latter. However,

the two expressions are similar in that the weights in both do not depend on MH and both

can be expressed in terms of inner products - the former in rN-space or sN-space, the latter

in N-space as we shall show in section 4.

In the following section, we generalize the euclidean inner product to include weighting of

di�erent directions based on the data statistics. This provides a common, simple framework

for all colour spaces and data sets as we show in section 4. While [1] provides a common

framework as well, and includes measurement noise which ours does not, our explicit use of

the inner product allows simple expressions linking even the most complex-looking measures

to Neugebauer's Q-factor.
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3 Generalization of inner products, orthogonality and

projection operators

Data dependence generally weights di�erent directions di�erently in the N-space of re-


ectance functions and recording �lters, and it is useful to de�ne the following inner product

which accounts for the weighting:

< x;y >0 = xTRy (9)

For equation (9) to de�ne an inner product it is necessary and su�cient that R be positive

de�nite. In particular, this implies that R be invertible. Clearly, the inner product is the

euclidean inner product and induces the euclidean norm when R = I. Note that this inner

product de�nes error measures in the `parent' N-space and not in the lower dimensional

R(V).

3.1 Induced norm and projection operator

Consider the norm induced by this inner product,

jjxjj02 = < x;x >0 = xTRx (10)

If P 0

X denotes the projection operator onto the space R(X) with respect to the inner product

<;>0, i.e. P 0

X(x) is the vector in R(X) closest to x with respect to the norm jj:jj0 of equation

(10), it can be shown that,

P 0

X = X(XTRX)�1XTR (11)

3.2 Generalized Q-factor

The generalization of inner products and projection operators induces a generalized Q-factor.

The Q-factor with respect to the space R(X) and the generalized inner product may be
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de�ned as a generalization of Neugebauer's Q-factor [2] (see equation (5) ):

q0X(x) =
jjP 0

X(x)jj
02

jjxjj0
2

(12)

Let fyig
!
i=1 be an orthonormal basis for R(X) with respect to the inner product in (9) (i.e.

YTRY = I or the yi are `R-orthonormal', and R(Y) = R(X); i:e: Y = X� for invertible

�). Then, P 0

X = YYTR and equation (12) is:

q0X(x) =

P!
i=1< x;yi >

02

< x;x >0
(13)

in terms of the generalized inner product.

3.3 Generalized inner product notation for matrices

The generalization of inner products above can be used to rewrite some useful matrix ex-

pressions:

XTRY = [< xi;yj >
0]

where xi and yi are the i
th columns of X and Y respectively. Further

Trace XTRY =
X

i

< xi;yi >
0

4 Generalized inner products and error measures

Generalized inner products may be used to simplify the expressions for all measures based

on an a�ne colour correction procedure.

4.1 Quadratic error measures

The most general quadratic error measure (equation(4)) for negligible measurement noise

may be simply expressed in terms of inner products as follows. Let G = [g
1
; g

2
; ::::g
 ]
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where fgig


i=1 is an R-orthonormal basis for R(MH). The numerator in equation (4) is

Trace DTRGGTRD and

�(D; R; 0; MH) =

P�
i=1

P

j=1< di; gj >

02

P�
i=1 < di;di >0

One of the strengths of the measure � was the fact that it generalized Neugebauer's Q-factor.

An expression for � is:

�(MH ;V) =

Pi=�
i=1 q(oi)

�

where foig
�
i=1 is an orthonormal basis for R(MH) with respect to the euclidean inner product

and � is the dimension of R(V).

The measure � can be represented in terms of generalized Q-factors as follows.

�(D; R; 0; MH) =

P�
i=1 �iq

0

M
H

(di)
P�

i=1 �i

where �i is the energy in the ith preferred direction in R(V), di. Thus the most general

quadratic error measure consists of a weighted average of the generalized Q-factors of pre-

ferred directions in the target space.

4.2 Accurate approximations of non-linear (perceptual) error

measures

To extend the ideas of the previous section to accurate approximations of non-linear error

measures, the de�nitions of inner products, projection operators and Q-factors need to be

slightly modi�ed. The matrix D is replaced by the vector vec(D), the matrix MH by the

matrix MH 
 Ir, and the matrix R by the matrix Sf . The expression of equation (8) for

negligible noise may be represented in terms of inner products as follows. If

< x;y >F = xTSfy
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and fgig


i=1 is an Sf -orthonormal basis for R(MH 
 Ir) in rN -space, then

�F(D; Sf ; 0; MH) =

P

j=1(< vec(D); gj >

F)2

< vec(D); vec(D) >F

In terms of generalized Q-factors,

�F(D; R; 0; MH) = qFM
H

Ir

(vec(D))

In the next section we illustrate the use of the generalized inner product in noise analysis.

5 Noise analysis using generalized inner products

The analysis performed so far ignores noise and hence implies that any set of �lters M

which maximizes expressions (4) or (8) is a `good' set of �lters. However, it is clear that

the correction (equation (2) ) may unduly amplify measurement noise, especially when the

inverse problem is ill-conditioned. It is well-known that the inclusion of noise statistics in

any LMMSE makes the inverse problem better conditioned. We address the problem of

conditioning in this section and derive �lter design criteria to reduce noise ampli�cation

by the correction matrix. Vrhel and Trussell have addressed this problem while analyzing

robustness of colour correction to errors in �lter design [4] and while addressing optimality

of �lters with respect to noise performance [8]. One of the solutions we present is similar to

their solution, and is presented here in terms of inner products and orthogonality.

Here, we think of noise as that component of the output that has considerable variation over

patches, and has its origin in the measurement noise. The error in colour reproduction which

would be constant across a patch is not thought of as noise. Another way of thinking about

the noise is thinking of it as the variation of the error in colour reproduction, while ignoring

the mean.
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5.1 Worst-case Signal to Noise Ratio

The min-max method of [4] may be used to analyze the worst-case signal to noise ratio (SNR)

as follows. For a speci�c re
ective spectrum f and noise n, the SNR after correction is lowest

when MT
Hf is an eigenvector of minimum eigenvalue of the correction matrix (equations (3)

and (7)), and n is an eigenvector of maximum eigenvalue. This minimum SNR is:

SNRmin = (
�min

�max

)2 �
Trace MT

H�
TMH

Trace nnT
= (

�min

�max

)2 � � = !2�

where �min and �max are minimum and maximum eigenvalues respectively of the correction

matrix, � is the SNR before correction, and ! is the condition number of the correction

matrix (the ratio of maximum to minimum eigenvalue). A max-min approach of maximizing

the minimum SNR leads to maximizing �min
�max

or minimizing !. The optimal solution is when

! is unity, or the correction matrix is a multiple of the identity (the recording �lters are

identical scalar multiples of the preferred directions).

When the correction matrix is not a multiple of the identity, ! is a measure of the amount

of noise ampli�cation for a speci�c viewing illuminant L and a speci�c estimated value

of Rn. An increase in the estimated noise variance decreases ! and hence also the noise

ampli�cation, but at the cost of color saturation [20]. Hence ! is not an accurate predictor

of the image quality from a speci�c �lter set, though it is a predictor of noise ampli�cation.

Calculating the value of ! for Rn = 0 is a means of estimating the noise ampli�cation and

color saturation trade-o�, but it is useful only when the �lters are to be evaluated for a �xed

viewing illuminant, which is not always the case (digital camera and scanner output images

may need to be rendered for many di�erent viewing conditions). In the following section we

show how we can get around this limitation.

14



5.2 Ratio of expected signal power to expected noise power

The min-max method of [4] may be used to analyze the ratio of expected signal power to

expected noise power after correction (denoted SexpNexpR) as follows. The value of SexpNexpR

assuming signal-independent and signal-uncorrelated noise is:

SexpNexpR =
E[Trace (BMT

H�
TMHB

T )]

E[Trace (BnnTBT )]
=

Trace (BMT
HRMHB

T )

Trace (BRnBT )

where E[:] represents the expectation operator.

From the theory of matrix inequalities,

�min � SexpNexpR � �max (14)

where �min and �max are minimum and maximum eigenvalues respectively of (MT
HRMH)R

�1

n .

With no more knowledge about the nature of the individual matrices, an optimal solution is

one where �min = �max or, equivalently,

(MT
HRMH)R

�1

n = cI

for a constant c. This implies that:

MT
HRMH = cRn

or:

<MHi;MHj >
0 = cE(ninj) (15)

Hence, the correlation matrix of optimal e�ective recording �lters is a scalar multiple of

the noise correlation matrix. In particular, orthogonal noise variables imply R-orthogonal

optimal e�ective recording �lters, and independent, identically distributed noise variables

implyR-orthogonal optimal e�ective recording �lters of equal norm (which may be thought of

as R-orthonormal recording �lters). The �rst known use of orthogonality in colour recording

�lters was in [21], though to date there has been no literature on reasons why orthogonality

is important.

15



In the rest of this paper, we assume that the noise variables are orthogonal and istotropically

distributed, i.e., Rn = �2I, which implies that:

� =
�

�2
(16)

where � is an eigenvalue of MT
HRMH . Inequality (14) becomes:

�min � �2 � SexpNexpR � �max (17)

The ratio of expected signal power to expected noise power before color correction is

Trace MT
HRMH

Trace Rn

=
Trace MT

HRMH

r � �2
=

1

r � �2

X
�i

where r is the number of recording �lters, or the number of measurements. This implies

that the factor by which the ratio of expected signal to expected noise changes after color

correction is:

& �
SexpNexpR

1

r��2

P
�i

=
�2 � SexpNexpR

1

r

P
�i

(18)

Using the simple algebraic inequality:

�min �
1

r

X
�i � �max

and equations (17) and (18) we obtain bounds on the factor by which the ratio of expected

signal to expected noise increases on colour correction:

�min

�max

�
�minP

�i

r

� & �
�2 � SexpNexpRP

�i

r

�
�maxP

�i

r

�
�max

�min

The condition number of MT
HRMH and its inverse provide upper and lower bounds respec-

tively on &. We refer to the condition number of MT
HRMH as � in the rest of this paper,

and propose its use as a measure of �lter orthogonality and noise sensitivity. A perfect value

of � is unity, and indicates an R-orthonormal set of color �lters. Larger values of � indicate

`less orthonormal' �lters and larger noise ampli�cation in general.

The condition number of the color correction matrix (equations (3) and (7)), !, is distinct

from the value �, and takes the viewing illuminant and the value of � into consideration
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while evaluating the �lters. An optimal value of the colour correction matrix corresponds to

e�ective recording �lters that are a scalar multiple of the preferred directions, which need

not be R-orthogonal. When there are many di�erent viewing illuminants and hence no �xed

set of preferred directions, however, orthogonality is a useful criterion for optimality. The

value � is to be used in cases where the set of illuminants is not known.

5.3 Combination of two optimality criteria

`Most optimal' colour recording �lters with respect to both colour �delity and noise sensitivity

are those that lie along the preferred directions. If it is not possible to design �lters that lie

along the preferred directions (for example, it is not possible to design �lters that mimic the

NTSC phosphor matching functions, Figure 8, because they have negative values at some

points), and in cases where the recording �lters are to be designed for a number of di�erent

viewing conditions, the `most optimal' recording �lters are those that span most of the

space R(V) and are R-orthonormal, assuming noise variables are independent, identically

distributed, and signal-independent.

6 Experimental Results

The sets of spectral responses used here are representative of several that were used in

experiments during this work. We used six sets of spectral responses that are used in

the manufacture of consumer digital cameras. Figures 1-6 show the normalized spectral

responses. Sets 1-5 are spectral responses of sensor arrays with RGB (Red, Green, Blue)

�lters, while Set 6 is the response of a sensor array with CMYG (Cyan, Magenta, Yellow,

Green) �lters.

17



400 450 500 550 600 650 700
0

5

10

15

20

25

WAVELENGTH IN NM.

S
P

E
C

T
R

A
L 

S
E

N
S

IT
IV

IT
IE

S
, N

O
R

M
A

LI
Z

E
D

 S
O

 M
A

X
IM

U
M

 IS
 U

N
IT

Y

SET 1

RED

GREEN
BLUE

Figure 1: Set 1

400 450 500 550 600 650 700
0

5

10

15

20

25

WAVELENGTH IN NM.

S
P

E
C

T
R

A
L 

S
E

N
S

IT
IV

IT
IE

S
, N

O
R

M
A

LI
Z

E
D

 S
O

 M
A

X
IM

U
M

 IS
 U

N
IT

Y

SET 2

RED

GREEN

BLUE

Figure 2: Set 2

18



400 450 500 550 600 650 700
0

2

4

6

8

10

12

14

16

18

20

WAVELENGTH IN NM.

S
P

E
C

T
R

A
L 

S
E

N
S

IT
IV

IT
IE

S
, N

O
R

M
A

LI
Z

E
D

 S
O

 M
A

X
IM

U
M

 IS
 U

N
IT

Y

SET 3

RED

GREEN
BLUE

Figure 3: Set 3

400 450 500 550 600 650 700
0

5

10

15

20

25

30

35

WAVELENGTH IN NM.

S
P

E
C

T
R

A
L 

S
E

N
S

IT
IV

IT
IE

S
, N

O
R

M
A

LI
Z

E
D

 S
O

 M
A

X
IM

U
M

 IS
 U

N
IT

Y

SET 4

REDGREEN

BLUE

Figure 4: Set 4

19



400 450 500 550 600 650 700
0

5

10

15

20

25

30

35

WAVELENGTH IN NM.

S
P

E
C

T
R

A
L 

S
E

N
S

IT
IV

IT
IE

S
, N

O
R

M
A

LI
Z

E
D

 S
O

 M
A

X
IM

U
M

 IS
 U

N
IT

Y

SET 5

RED

GREEN

BLUE

Figure 5: Set 5
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For our simulations, we used four di�erent illuminants - D65, a measured overcast daylight, a

measured tungsten illuminant and a measured quartz illuminant. The normalized illuminants

are plotted in Figure 7. The preferred target directions are NTSC phosphors [23] normalized

so a 
at spectrum gives equal R, G, and B values, in the corresponding illuminant. The

NTSC phosphors are graphed in Figure 8.
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Figure 7: Illuminants

To test if our orthonormality measure was a valid predictor of noise performance, we per-

formed the following simulations. For each set, combined with each illuminant as a record-

ing illuminant and each illuminant as a viewing illuminant (sixteen combinations for each

set) we calculated the LMMSE of tristimulus values wrt the NTSC phosphors for the Vrhel-

Gershon-Iwan set assuming we knew the correlation matrix exactly. We calculated the colour

correction matrix assuming four di�erent values of noise variance (zero, estimated variance

equal to the noise variance, estimated noise variance equal to twice and ten times the noise

variance) and for 20 di�erent realizations of a noise sequence with uniformly distributed noise

corresponding to 8-bit quantization. We examined the values of di�erent criteria considered

in this paper (! and �) to determine their e�cacy as predictors of &.
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Figure 9 shows a scatter plot of the value of & vs. !, the condition number of the corre-

sponding colour correction matrix. ! predicts the value of & well, as expected.
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Figure 8: NTSC Phosphors, normalized

Figure 10 shows a scatter plot of the average value of & over the di�erent estimated noise

variances vs. ! with estimated value of variance equal to zero. The plot is similar to the

one in Figure 9, and average values of & are well-predicted by values of ! for zero estimated

noise variance.

Figure 11 shows a scatter plot of the average value of & over the di�erent estimated noise

variances and the four di�erent recording illuminants while �xing the viewing illuminant

vs. the condition number of the colour correction matrix assuming zero noise variance and

assuming that the viewing illuminant is identical to the recording illuminant.

Figure 12 shows a scatter plot of the average value of & over the di�erent estimated noise

variances and the four di�erent viewing illuminants while �xing the recording illuminant

vs. the condition number of the colour correction matrix assuming zero noise variance and

assuming that the viewing illuminant is identical to the recording illuminant.
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Figures 11 and 12 show very similar graphs. While the value of & decreases in general with

respect to the value of !, it is not monotonic, and the value of ! does not seem to predict

well the value of & when averaged over many di�erent viewing or recording illuminants. The

data points for Set 6 are plotted as asterisks (*) and they lie well in the middle of the plots.

Figures 13 and 14 show the same data as in Figure 12 vs. the natural logarithm of the

value of �, for E[� ]T = I and E[� ]T = R respectively. Figure 14 shows a clear monotonic

decreasing relationship between & averaged over many viewing illuminants and the value of

� for E[� ]T = R. The points that do not �t as well in this graph as most of the points

are points associated with Set 6, and are shown with asterisks (*) as in Figures 11 and 12.

Figures 13 and 14 demonstrate quite clearly that �, a measure of �lter orthonormality, is at

least as good a measure of noise sensitivity as !, though it depends upon fewer variables (it

is independent of the viewing illuminant and of the estimated noise variance).

Figures 15 and 16 show the average of & over the di�erent noise estimates as well as over

both recording and viewing illuminants, vs. the natural logarithm � for E[� ]T = I and

E[� ]T = R respectively. � is clearly a good predictor of average performance over di�erent

viewing and recording illuminants, especially when the data set is known. The sets with high

values of � either have high overlap among the spectral response functions of each channel,

(Sets 2 and 6) or have very di�erent channel gains as well as fairly high overlap (Set 5).
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illuminant, E�T = I
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7 Conclusions

We have built on the linear model ideas of [2, 13, 14, 15, 11, 3] to demonstrate how the use of

inner products and orthogonality can simplify the procedure of colour recording �lter design.

We show how de�nitions of inner products and orthogonality are in
uenced by the choice of

error measures for colour recording �lters, and we use these ideas to develop a generalized

Q-factor as an extension of Neugebauer's Q-factor [2]. We also use these ideas to show that

optimal recording �lters with respect to noise sensitivity are orthonormal �lters when the

noise variables are independent and identically distributed. Lastly, we present simulations

to support our claims.
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