HEWLETT®
(';/B PACKARD
Avatars in LivingSpace

Mike Wray, Vincent Belrose
Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-98-182

October, 1998

E-mail: [mjw,vinbel]@hplb.hpl.hp.com

virtual humans, We describe how we implemented the avatars we use
avatars, to represent users in LivingSpace, our
distributed virtual implementation of the Living Worlds standard for
environments, multi-user distributed VRML worlds. LivingSpace
dead reckoning, allows multiple users to interact in a shared VRML
VRML world and communicate using spatialised audio.

Avatars execute walking animations when the user
moves and are capable of sitting, waving, and nodding
as well as tracking a surface with a hand. Avatar
position and orientation is predicted using dead
reckoning based on velocity, curvature and angular
velocity. We describe the problems we found, and
draw some conclusions such as the need for an Inline
that preserves the fields of an imported node and
more control of VRML worlds over user interaction.
We also discuss the use of avatars in multi-user
interfaces, such as our VRML conferencing world.

Internal Accession Date Only

o Copyright Hewlett-Packard Company 1998

Avatars in LivingSpace

Mike Wray™(mjwehplb.hpl.hp.com)
Vincent Belrose (vinbel@hplb.hpl.hp.com)
Hewlett-Packard Labs (Bristol),

Filton Road, Bristol BS34 8QZ, UK

Abstract

We describe how we implemented the avatars we use
to represent users in LivingSpace, our implementation
of the Living Worlds standard for multi-user distributed
VRML worlds. LivingSpace allows multiple users to in-
teract in a shared VRML world and communicate using
spatialised audio. Avatars execute walking animations
when the user moves and are capable of sitting, waving,
and nodding as well as tracking a surface with a hand.
Avatar position and orientation is predicted using dead-
reckoning based on velocity, curvature and angular veloc-
ity. We describe the problems we found, and draw some
conclusions such as the need for an Inline that preserves
the fields of an imported node and more control of VRML
worlds over user interaction. We also discuss the use of
avatars in multi-user interfaces, such as our VRML con-
ferencing world.

Keywords: Virtual humans, avatars, distributed virtual
environments, dead reckoning, VRML.

1 Introduction

The aim of this work was to implement human-like
avatars in distributed multi-user VRML worlds. The
specific system we used was LivingSpace[18, 8], our im-
plementation of the Living Worlds (LW) specification for
multi-user distributed virtual environments (DVEs) us-
ing VRML [17, 10].

The problem of creating virtual humans in a DVE has
three main parts: modelling the geometry of the human,
creating the behaviours, and distributed coordination of
the behaviours. We will not go into modelling here, one
useful text is [14]. An overview of the whole problem can
be found in [2, 16], some more recent work on the Jack
system is [1].

Defining an avatar behaviour includes animating the
avatar to execute motion. Methods for animating vir-
tual characters can be roughly divided into approaches
based on motion capture and those based on simulation.

*Corresponding author

Motion capture uses data recorded from actual motion,
and can produce extremely realistic and subtle anima-
tion. Motion capture is typically done off-line, with the
recorded data replayed at runtime. The drawbacks of
motion capture include the relatively high cost of cap-
turing the data, the lack of flexibility of pre-recording,
and the fact that the motion must be performable by
someone.

Simulation relies on computation of a mathematical
model to generate motion [9]. This can be done off-line
and the motion data recorded, or on-line if the computa-
tional load is not excessive. Simulation can generate pre-
cisely controlled motion, with interactive control if done
on-line, but it tends to look mechanical. It is relatively
easy to adapt a simulation to variations in animation pa-
rameters, such as limb length or walking speed. Data
from motion capture is much more difficult to adapt,
though it can be done [6].

We needed interactive control of the avatar animations,
and we wanted to be able to use the same animations
for avatars with varying geometry. This lead us to base
our approach on simulation rather than motion capture.
Our initial requirements only included a simple set of
animations which we felt we could simulate in real time.

Animation is not all there is to it though. Even if you
have animations for the actions you need you still need to
control when the avatar executes them, and how they are
combined. If you have separate animations for walking
and waving you need to define how to do both at the
same time. You also need to define the control logic of
the avatar.

Having constructed your avatar you have to make it
work in a distributed multi-user virtual environment.
The problems to be solved include keeping animation
smooth in networked clients without using too much
bandwidth, and coordinating which animations to run.
We use an extension of the dead-reckoning technique
used in systems such as DIS [4] to reduce the bandwidth
consumed by position and orientation updates. Dead-
reckoning using Kalman filtering to predict the joint an-
gles of a moving avatar is reported in [3]. We also commu-
nicate the high-level avatar state and execute animations
locally.

We discuss the details of our approach to all these as-
pects in the following sections.

2 VRML and Avatars

We use the Hanim 1.0 standard [5] to describe the ge-
ometry of our avatars. This standard was produced by
Human Animation Working Group of the VRML Con-
sortium and defines a set of PROTOs to be used to rep-
resent a humanoid in VRML. The top-level is the Hu-
manoid PROTO, which contains lists of Joint and Seg-
ment PROTOs representing the joints and body parts of
the humanoid. The Hanim standard defines a joint hier-
archy and gives the joints standard names by which they
can be referenced. Sending set_rotation events to indi-
vidual joints allows changing the posture of the body,
while sending set_rotation and set_translation events to
the HumanoidRoot joint allows positioning the avatar in
the world.

You can create behaviour for the humanoid by routing
into it, but this requires the animation and the humanoid
be in the same VRML file. You can import a humanoid
into another file using Inline, but then you have no access
to its joints. We wanted to separate avatar behaviour
from geometry to make it easy to use the same behaviours
for different geometries, so this was a problem for us.
We solved it by creating an Avatar PROTO having a
url field to indicate which avatar to load. The script
implementing Avatar loads the VRML file from the URL,
and takes the first Humanoid node it finds there to be
the avatar definition. Having got the Humanoid node the
script can access all the external fields and make them
accessible to its behaviours.

Our Avatar PROTO has our implementation of be-
haviour built-in, but we felt the loading capability
would be generally useful, so we have also implemented
a HumanoidImport EXTERNPROTO having all the
eventOuts from Humanoid, plus fields for loading a
URL and handling errors. A HumanoidImport loads the
VRML file given in its url and fill in all the eventOuts
from the first Humanoid it finds in the file. Using Hu-
manoidImport lets us use the Humanoid interface while
still being able to easily change which avatar geometry
we are using.

This problem of abstracting by using a URL without
losing access to node fields is common in VRML. One
can construct an XImport PROTO for each node type X
needed, but this is tedious, and we feel it would be worth
considering adding a facility to VRML to import from a
URL while preserving node fields.

The Hanim specification standardises the joint and
segment names of humanoids, but it does not specify
which ones have to be present. Luckily all our avatars
had the basic joints such as hip, knees, elbows etc., but

we found considerable variation in the joints of the back.
We therefore had to make our avatar animation code look
for any one of several possibilities to use.

One critical parameter we needed was the eyeHeight
- the distance from the avatar’s eyes to the floor. This
is not supplied in Hanim 1.0, so we had to find a work-
around. The first problem was that we did not know
the eye height for our avatars. We created a test world
that imported a given avatar, allowed the user to move
a marker (a sphere) until it was in front of the eyes, and
printed the eyeHeight. We then edited a string of the
form "eyeHeight=x" giving the value in metres into the
documentation strings of the avatar’s Humanoid node.
Our avatar script extracts this when the avatar is loaded.

The Java control of the avatar’s animation is built in
5 layers, which we now describe:

e Layer O: the interface between Java and VRML. It
is based on a Script node which has directOutput
enabled and a field referring to the avatar body, an
H-Anim Humanoid node. A Joint class reflects the
Joint PROTO structure in Java.

e Layer 1: A set of Java classes implementing the ar-
chitecture of an H-Anim 1.0 avatar. Further struc-
ture is added with classes handling the limbs (legs
and arms). These classes use layer 0 to build an
internal representation of the avatar from the data
contained in the VRML file. As most avatars will
not implement all the joints, the tree structure
representing the body is simplified to retain only
the meaningful information. The AvatarJoint class
stores VRML information for each joint of the body
as well as the tree structure. It allows access to the
parent and all the children of a given joint. Further
structure will probably be added in the future for
better handling of the head and hands. Up to now,
our avatars have not been detailed enough to need
this.

e Layer 2: A set of Java classes using closed formulas
for inverse kinematics on the avatar limbs. A range
of useful positions is used: given some input param-
eters, we compute the missing parameters to achieve
the desired position.

e Layer 3: A set of Java classes providing a set of
motions for the avatar, based on the layer 2 IK for-
mulas.

e Layer 4: User control over the avatar using a menu.

2.1 Exact inverse kinematics

The avatars we used did not implement the complete
structure of the Hanim 1.0 specification, so we had to
use simplified models for some body parts, mainly the

Figure 1: Leg model

hands, feet and the head. These relatively simple mod-
els allowed us to compute closed formulas for the limb
positions during the motion.

Consider the model shown in figure 1. We want to
compute the hip, knee and ankle rotations necessary to
achieve the leg position defined by the input data z and
y. We can solve for a, 3,0:

AC = (Z2 + y2)1/2
a = arctan(z/y)+ arccos (ABZ +AC? — BCZ)
2ABAC
AB? + BC? — AC?
B = arccos (5 ABBC)
w
6 = «a + ,8 - 5

Then the required hip, knee and ankle angles are o, 8 —
7, 5 — 0 respectively.

2.2 Approximate motion

Although every human has his own way of walking, ev-
erybody has the same idea of what a walking motion
should look like. When simulating walking with dynam-
ics we tend to try to fit the motion to physics, when we
only need to fit it to human perception. A walking mo-
tion is not good when it is physically correct, but when
humans see it as a correct walking motion. Sources on
human motion include the seminal photographs of Muy-
bridge [12], and human kinematics texts such as [19].

Our method is based on this: human motions such as
running, walking and kneeling, which are not too com-
plex, can be decomposed into phases where it can be
simply described. Using the exact IK formulas, we can
then position our avatar during the different phases.

Imagine we want our avatar to turn 6 degrees to the
right. We can decompose the motion into 2 phases:

e phase 1: the avatar lifts its right foot, turns its body
0/2 degrees to the right and puts its right foot in
its final position. During this phase the left foot
remains at the same position on the floor.

e phase 2: keeping the right foot fixed on the floor,
the avatar lifts its left foot and moves it to the final
position, turning its body 6/2 degrees to the right.

Using this approach, we can produce real time mo-
tions which fit each avatar and allow interactions with
the environment, such as positioning the hand on ob-
jects, or shaking hands with another avatar. Moreover,
most motions can be parameterized; walking has a speed
parameter for example. In the future we could also add
different styles for motions, such as sitting, which may
be performed in very different ways by different humans.

The main drawback of this method is that someone has
to decompose the motion into steps, as might be done
when animating a cartoon character. The realism of the
motion depends directly on the skills of this “animator”.
Nevertheless, compared to pure physical simulation, this

allows “elegance” which otherwise would be very hard to
code into physical equations.

2.3 Interacting with objects

We would like our avatars to interact with the world they
are in, doing things like sitting in chairs, walking up stairs
and even shaking hands. In a normal VRML world ob-
jects are just Shapes containing IndexedFaceSets, and
there is nothing to distinguish a chair from the floor, a
desk or anything else.

In everyday life, we all know a door is made to be
opened or closed, a button to be pushed and a table to
put other objects on. In our VRML world, we need to
provide this information to our avatars. This is done
by encapsulating each kind of object in a PROTO. For
instance, there is a Chair PROTO, indicating that the
object is actually a chair (which tells the avatar how
they should use it) and describing the basic information
needed to use a chair:

PROTO Chair [

exposedField SFString name "Chair"
exposedField MFString info "vi.0"
exposedField SFBool has_1l_arm TRUE
exposedField SFBool has_r_arm TRUE
exposedField SFVec3f l_armCenter 000
exposedField SFVec3f 1_armBBox -1 -1 -1
exposedField SFVec3f r_armCenter 000
exposedField SFVec3f r_armBBox -1 -1 -1
exposedField SFVec3f supportCenter 0 0 0
exposedField SFVec3f supportBBox -1 -1 -1
exposedField SFVec3f backCenter 000
exposedField SFVec3f backBBox -1 -1 -1
exposedField SFVec3f translation 0 0 O
exposedField SFRotation orientation 00 10
exposedField SFVec3f scale 111
exposedField MFNode children 0

1{

This PROTO reflects the fundamental structure of a
chair, as needed in our virtual world: a chair has a seat,
a back, and usually two arms. It also includes bound-
ing boxes for its components (seat, back and arms). An
avatar can then adapt its sitting motion to the informa-
tion provided by the Chair PROTO, whatever the chair
geometry, as illustrated in figure 2.

Constructing a PROTO for each object type allows
an object’s attributes to be recovered from its node, but
an avatar still has the problem of finding the node in
the first place. VRML does not allow code to arbitrarily
tour the scene graph, so objects need to be put in a place
the avatar can access. LivingWorlds uses a Zone node
as a container for shared objects, so this could also be
used to find objects. However, the problem of efficiently
discovering the objects of interest among all the objects
present remains.

This is a general problem, and our view is that VRML
needs to move towards supporting objects, properties
and affordances instead of geometry and the scene graph.

2.4 Touching objects

To reflect the user’s intention, we want our avatar to be
able to touch objects in the world when the user clicks on
them. We want this capability to be independent of the
objects’ specific structures. If we attach a TouchSensor
to an object we can retrieve the following information:
which object was clicked on, where, and the surface nor-
mal at that point. Using the IK formulas, we can then
position the avatar’s hand on the object if it is reachable,
or otherwise just point at it. We use the surface normal
to orient the hand correctly with respect to the surface
of the object.

3 Avatars in a DVE

We run distributed multi-user VRML worlds using our
LivingSpace system, an implementation of the Living
Worlds standard. Users loading the VRML file for a
world running on LivingSpace are allowed to choose the
avatar used to represent them to other users of the same
world. The URL of the user’s avatar is communicated
to the other clients of the world so they can load it and
move it around as the user moves. Users have a first-
person view, so they cannot see their own avatars, only
other people’s.

This is not the place to go into the details of Liv-
ing Worlds, but we do need a little background. Living
Worlds (LW) defines a number of PROTOs for VRML
nodes that are used to interface with an external applica-
tion implementing the logic to handle sharing the state of
shared objects in the VRML world. LW does not define
how this is implemented, instead it assumes the exis-
tence of an implementation, called multi-user technology
(MUtech), satisfying certain semantic constraints.

Each client connected to a LW world has its own copy
of the world, and it is the information distributed by the
MUtech that coordinates these copies to create the illu-
sion of a shared world. We will not go into detail about
LW and the MUtech here, suffice it to say that, among
other things, the MUtech is responsible for monitoring
changes in a user’s viewpoint, using a ProximitySensor,
and communicating its position and orientation to other
clients of a world. The viewpoint information communi-
cated by the MUtech is used to move the user’s avatar
around the world as their viewpoint changes.

In LW a shared object such as an avatar has replicas
running in several browsers. The controlling replica is
known as the pilot and the others are known as drones.
Our avatar implementation contains pilot code sampling

Figure 2: Sitting animation

the viewpoint and drone code predicting the viewpoint
based on parameters sent by the pilot.

3.1 Dead-reckoning

When a user moves, the ProximitySensor supplies events
at a high rate, typically the frame rate of the user’s
browser. Simply forwarding the events to other users
at this rate would overwhelm the network. One could
imagine forwarding events at some lower rate, but this
would make the motion of avatars jerky in other clients’
browsers. To avoid this we use dead-reckoning. Re-
mote avatars predict the current position and orientation
based on the last information supplied to them, updating
their predictions in response to events from a TimeSen-
sor. The local avatar performs the same prediction and
compares it with the actual values, sending an update
when the difference exceeds a threshold. Remote avatars
use new parameters immediately when they get them.
This can make them ‘jump’ if the error was large, but at
least they are up-to-date. It would be possible to blend
from old to new values, but we have not implemented
this.

A ProximitySensor only supplies position and orien-
tation information, and for prediction we need rate-of-
change information as well. We get velocity by numer-
ical differentiation. The velocity can be used to predict
straight-line motion, but it does not predict motion along
a curved path well. Since curved motion is fairly com-
mon, we also extract the angular velocity of the motion
and use this in prediction. This allows us to predict mo-
tion along a circle as well as a straight line.

If the user’s motion is like that of a tracked vehicle, the
angular velocity derived from the user’s path and the rate
of change of the orientation are the same. However the
two angular velocities can be different: when the user is
turning on the spot, or moving from one viewpoint to
another under control of the browser for example. We
therefore compute the rate of change of the orientation

and predict the orientation independently.

Dead-reckoning immediately causes a difficulty: we use
a ProximitySensor to get position information, but Prox-
imitySensors only generate events while the user is mov-
ing, they do not generate events when the user stops. If
we do not detect stopping the remote avatars will con-
tinue moving. We therefore have to sample position and
orientation from a separate thread so we can detect stop-
ping. To improve responsiveness we give stopping a high
priority, so that an update will normally be sent out im-
mediately when the user stops moving. We do the same
when motion starts too.

3.2 Dead-reckoning derivations

Suppose the user’s position is described a curve f in R3.
We want to construct a local approximation to f that
drones can use to predict the position. We first review
some differential geometry [15]. Suppose f has arc-length
function s. Then s(v) = [; |f'(u)|du. We say that f is
parameterised by arc-length when s(u) = u, t.e. when
|f'(u)] = 1. We can write f(u) = g(s(u)) where g is
parameterised by arc length. We define functions t,n,b
whose values are mutually orthogonal unit vectors, and
real-valued functions x, T by

Il
x
~
2
=
=]
~
4
SNt

o
~ 2 ==
s

Il

o+

ay

S

x

j=]

B

S

£

We have n’(u) = 7(u)b(u)—x(u)t(u). These are the well-
known Serret-Frenet formulae. Putting v(u) = s’'(u) and
suppressing parameters for brevity, we have

f = ot
f' = v't+rv’n
" = (v =kt + (30K + vk’)n +v’kTb

So that

Ifl X flll
|£]°

£ x £ f
|f/ X fll|2

These are the curvature and torsion of the curve respec-
tively. The reciprocal of the curvature r = 1/k is the
radius of curvature of the curve, and the circle radius r
with centre ¢ = f — rn, axis b is the osculating circle. It
is fairly easy to see that

(fl % f/l) X fll

rn= |f/ x f//|2

Typical viewpoint motions are planar, and so have zero
torsion. If the curvature is non-zero we can approximate
the curve f near u by a curve h using motion along the
osculating circle of angular velocity

fl X fll
£

wi =vkb =

So that
h(z) = exp(Qu(z — u))(f(u) — c(u)) + c(u)

where €2 is the skew-symmetric matrix related to w; by
Q,p = w; X p, and exp is matrix exponential [7]. In
this case exp(€Q;(z — u)) corresponds to rotation about
w1 /|wi| by angle |wi|(z — u).

When the curvature is zero we use the obvious linear
approximation:

h(z) = f(u) + (z — w)f'(v)

We now turn to orientation. We represent orientation
using quaternions [13]. Suppose the orientation at time
u is given by q(u). The change in orientation from u —¢
to u is Aq = q(u)q*(u — t). If Aq has axis n and angle
6 this corresponds to an average angular velocity

wy = Qn
2T
We approximate q near u by a function p using its value
at v and the angular velocity:

p(z) = exp(wa(z — u))q(u)

One small point. The axis and angle of a rotation are
not uniquely defined. Changing the sign of the axis and
angle does not change the rotation for example. More
seriously rotations about n by 6 and about —n by 27 —6
are the same. When computing ws it is important to
use the alternative with the smaller angle, otherwise the
angular velocity may be wildly overestimated.

In our dead-reckoning code we numerically differenti-
ate the position samples we get from the ProximitySensor
to get £/ and f” and use the expressions above for wy, r
and h to predict position. This enables us to predict mo-
tion in a straight line or along a circle. We predict orien-
tation independently using w, and p. We force updates
once very few seconds, and are able to predict constant
turn-rate motion for about 10 seconds. The update rate
when the user is moving the viewpoint is typically about
4 per second.

4 Animating DVE avatars

We use human-like avatars, and we want them to move in
a human-like way, in particular we want remote avatars
to execute a walking animation when the user is moving,.
The avatar pilot code detects motion and sets the avatar
motion state to moving. This is sent to the drones by the
MUtech and triggers the walking animation. If the user
selects a modifier such as waving this is sent separately
and the drones execute a combination of the animations.
When the pilot detects the user has stopped moving it
sends an update setting the state to stopped, causing
the drones to stop the walking animation. However they
continue the waving animation (unless it has completed).

The walking motion works well when the user simply
moves around (at the correct eye-height) or looks from
side-to-side, but if the user looks up or down his whole
avatar tilts up or down. This makes the avatar’s feet
come off the floor. We would like turn the avatar’s head
instead, but this is difficult because of the way the ori-
entation information is communicated in LivingWorlds.

The code implementing the walking animation is pa-
rameterised by velocity, and capable of adjusting step-
length and frequency to match the avatar velocity. The
animation takes parameters such as the avatar limb
lengths into account and tries to prevent the support
foot from sliding on the ground. At the time of writing
the LivingWorlds architecture does not support commu-
nicating velocity to drones, so we have implemented an
extension to support this.

There are some difficulties in dead-reckoning and ani-
mating avatars. We are trying to reconstruct the user’s
motion from low-level information about their position.
We have to differentiate this numerically to get veloc-
ity and rate of turn. The browser’s GUI knows these
parameters already, but we cannot access them.

Also the user can move at any speed and stop instan-
taneously, things it is hard to make an avatar do convinc-
ingly. It might be worth considering changing the VRML
input model to allow more control, so that a VRML world
could define what kind of motion happends in response
to mouse motion. We would then be able to drive user
motion using a direct avatar model, determining veloc-

ity from the user’s input rather than numerically. This
should improve the behaviour of dead-reckoning by re-
moving a major source of numerical “noise”. We could
also provide a more direct avatar control model, restrict-
ing speeds to a range avatars can walk or run at, and
providing control over head and body motion indepen-
dently.

5 Multi-user interaction

When multiple users are present in a LivingSpace world
they can see each other, represented by their avatars.
They can also talk to each other, as we have inte-
grated a 3d-audio conferencing tool called TalkSpace
[11]. TalkSpace handles packetising audio and distribut-
ing it over the network. TalkSpace spatialises the sound
from the participants, with locations controlled by Liv-
ingSpace. This makes each user’s speech appear to come
from their location.

The Living Worlds architecture does more than sup-
port avatars, it includes SharedObjects having state that
is kept consistent across connected clients. We have cre-
ated a VRML world suitable for conferencing in which
we have used shared objects to implement a shared slide-
board in VRML. The slideboard shows slides which the
users can change or draw on, with the results made visi-
ble to all users.

However, users interact with the slideboard using the
mouse to activate TouchSensors. Although you can see
the slide change on the slideboard because someone has
clicked the ‘advance’ button, you cannot see who it was.
Since TouchSensors have unlimited range the user who
clicked a button may not even be anywhere near it from
your point of view. This can be confusing in an environ-
ment intended for collaboration. We plan to investigate
ways of making the user’s avatar reflect the user’s inter-
action with the world. One approach we are considering
is to limit the range of sensors on shared objects, and to
animate the user’s avatar when the user clicks on a sen-
sor. We could make the user’s avatar press the button
if it is close enough, or point at the button with a ‘laser
beam’ if further away.

6 Summary

We began with an introduction to the problem of imple-
menting avatars in a distributed multi-user environment.
We then described our approach to their implementation.

Avatar geometry is represented using the Hanim 1.0
Humanoid, and imported from an Avatar node. The
Avatar node uses Java classes internally to model the
structure of the avatar. Avatar poses are computed using
closed-form inverse kinematics, with the pose parameters
under program control.

We enable avatars to interact with objects in the en-
vironment by using object PROTOs, such as Chair, to
represent the object attributes and type.

Our DVE system, LivingSpace, is an implementation
of the LivingWorlds specification, and uses the Avatar
implementation to represent users. We execute a walk-
ing animation when the user moves, with other anima-
tions under direct user control. We use dead-reckoning
based on veclocity, path curvature and angular velocity
to reduce the bandwidth used by position and orientation
updates, and to avoid jerkiness.

The LivingSpace system has been used to implement
a conferencing application including a shared slideboard
and spatialised audio conferencing. We hope to investi-
gate further the use of avatars in multi-user interfaces,
as well as adding more capabilities to our avatars.

References

[1] Norman I. Badler. Real-time virtual humans, Pro-
ceedings of the fifth Pacific conference on Computer
Graphics and applications, pp. 4-13, IEEE Comput.
Soc. Press, 1997.

[2] Norman I. Badler, Cary B. Phillips, Bonnie Lynn
Webber. Simulating humans, Oxford University
Press, 1993. ISBN 0-19-507359-2.

[3] Tolga K. Capin, Igor Sunday Pandzic, Nadia Megne-
nat Thalmann, Daniel Thalmann. A dead-reckoning
algorithm for virtual human figures, Proceedings of
IEEE 1997 Annual Internation Symposium on Vir-
tual Reality, pp. 161-169, IEEE Comput. Soc. Press,
1997.

DIS. 1278.1 IEEE standard for distributed interac-
tive simulation - application protocols, ANSI, 1995.

[4

[5

H-ANIM. Specification for a standard VRML
humanoid, version 1.0, 1998, on-line pa-
per http://ece.uwaterloo.ca:80/ h-anim/
spec.html.

6

Michael Gleicher. Retargeting motion to new char-
acters, SIGGRAPH 98 Conference Proceedings, pp.
33-42, ACM SIGGRAPH, 1998.

[7] Ronald N. Goldman. Transformations as exponen-
tials, Graphics Gems II, pp. 332-337, Academic
Press, 1991. ISBN 0-12-064480-0.

[8] Rycharde Hawkes, Mike Wray. LivingSpace: a Liv-
ingWorlds implementation using an event-based ar-
chitecture, submitted to VRML99.

(9]

[10]

[11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

Jessica K. Hodgins, Wayne L. Wooten, David C.
Brogan, James F. O’Brien. Animating human ath-
letics, SSIGGRAPH 95 Conference Proceedings, pp.
71-78, ACM SIGGRAPH, 1995.

LW. Living Worlds specification, Draft 2, 1997,
on-line paper http://www.livingworlds.com/
draft_2/index.htm.

Colin Low, Laurent Babarit. Distributed 3D audio
rendering, Computer Networks and ISDN systems,
30(1998), 407-415.

Eadweard Muybridge. The human figure in motion,
Dover, 1955. ISBN 0-486-20204-6.

Patrick-Gilles Maillot. Using quaternions for coding
3d transformations, Graphics Gems, pp. 498-515,
Academic Press, 1990. ISBN 0-12-286166-3.

Peter Ratner. 3-D human modelling and animation,
John Wiley and Sons, 1998. ISBN 0-471-29229-X.

Michael Spivak. A comprehensive introduction to
differential geometry, vol. 2, Publish or Perish, 1979.
ISBN 0-914098-81-0.

Nadia Magnenat Thalmann, Daniel Thalmann, edi-
tors. Interactive computer animation, Prentice-Hall,
1996. ISBN 0-13-518309-X.

VRML. Virtual Reality Modeling Language,
ISO/IEC DIS 14772, 1997, on-line paper
http://vag.vrml.org/VRML97/DIS/.

Mike Wray, Rycharde Hawkes. Distributed virtual
environments and VRML: an event-based archi-
tecture, Computer Networks and ISDN systems,
30(1998) 43-51.

Vladimir M. Zatsiorsky. Kinematics of human mo-
tion, Human Kinetics, 1998. ISBN 0-88011-676-5.

