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ARITHMETIC ON SUPERELLIPTIC CURVES

S.D. GALBRAITH, S. PAULUS AND N.P. SMART

ABSTRACT. In this paper we present an efficient, polynomial-time method to
perform calculations in the divisor class group of a curve which has a single
point on its normalization above infinity. In particular, we provide a unique
representation of divisor classes and an algorithm for reducing a divisor on
such a curve to its corresponding representative. Such curves include the case
of elliptic, odd-degree hyperelliptic and superelliptic curves.

In the case when the curve is defined over a finite field, the divisor class
group is a finite group which can be used for implementing discrete logarithm
based public key cryptosystems. This paper therefore provides a new class of
groups for cryptography.

On the other hand, we present a method to solve the discrete logarithm
problem in these groups. This method is sub-exponential when the degree of
the defining equation of the curve is large.

1. INTRODUCTION

The goal of this paper is to describe a practical and efficient method for com-
puting in the Jacobian of a large class of algebraic curves.

This research is primarily motivated by cryptography, as abelian varieties over
finite fields can be used for implementing discrete logarithm based cryptosystems.
However, the methods are equally applicable to the situation where the curves are
defined over characteristic zero fields, and so our methods are also relevant for
studying the arithmetic of curves.

We also generalize the subexponential algorithm of Adleman-DeMarrais-Huang
[1) (which is based on the function field sieve) for solving discrete logarithms on
these curves.

Explicit computation on elliptic curves is easily performed as the group law is
given by simple formulae. Jacobians of hyperelliptic curves have also been imple-
mented. The addition rule is given by Cantor’s algorithm [6]. The key to Cantor’s
algorithm is a reduction method which is analogous to reduction of binary quadratic
forms.

For computing in Jacobians it is essential to be able to determine if two divisors
are equivalent. This is usually done using some form of reduction theory. The main
obstacle to computing in more general Jacobians is finding a suitable method of
reducing divisors. The approach adopted in this paper is to use lattice reduction
techniques to provide a reduction method. This is analogous to the strategy used
for computing with ideals in number fields (see Cohen [8] Section 6.5).

1991 Mathematics Subject Classification. 14Q05, 14H05, 14H40, 11G20, 11Y16.
Key words and phrases. superelliptic curves, jacobians, cryptography, discrete logarithm

problem.



In this paper we are concerned with curves given in the form
C:cn(z)y™ + cnr()y™ ™ + - + e (z)y + colx) (1)

where c¢;(z) € k[z] for some field k. The function field of the curve C is K := k(C).
We will think of this as being a degree n algebraic extension of the function field
k(z) and will sometimes write K = k(z,y) where the algebraic relation C(z,y) = 0
is implicit. We will impose the following further conditions on C.

1. C non-singular as an affine curve.

2. ca(z) = 1 (which can always be arranged by a change of variables, though
this may render the curve singular).

3. There should be only one point at infinity on the desingularisation of the
projective model of the curve. Equivalently, the “infinite” place of k(z) (i.e.,
the place corresponding to the element z7!) should be totally ramified in
K/k(z).

4. The integral closure of k[z] in k(C) = k(z,y) is k[z,y] (where the algebraic
relation C(z,y) = 0 is implicit).

The most serious of these restrictions is the third. In Section 3 we will give a large
class of curves satisfying these four conditions.

We note that there have already been methods proposed to compute in general
Jacobians (see for instance Coates [7], Huang-leradi [13], Volcheck [23]). These
methods, however, are not, practical and they require taking extensions of the base
field. We observe that the restriction of our method to the hyperelliptic case yields
Cantor’s algorithm (which in turn, restricted to elliptic curves, gives the usual
addition formulae) and so our method is a very natural generalization.

We now summarise the contents of the paper. In Section 2 we list some results
about Jacobians and divisor class groups. In Section 3 we describe superelliptic
curves. In Sections 4 and 5 we provide some background theory. Section 6 contains
the details of the reduction algorithm. The remainder of the paper is concerned
with the discrete logarithm problem on Jacobians of curves over finite fields.

2. Divisor CLAss GrRoupPs OoF CURVES

For this section let C' be any non-singular algebraic curve over any field k. A
divisor of C over k is a formal sum D = ZpeC(k) nyp where p runs over all places of
the function field k(C) and where n, € Z. The degree of a divisor D is 3, n,, deg(p)
where deg(p) is the degree of the residue field k(C),/k (equivalently, the degree of
the field of definition of the k-points corresponding to p). An effective divisor is one
for which all n, > 0. We say that D; > D, if Dy — D is an effective divisor. Given
a function f € k(C) we can define the order of f at a prime divisor p in the usual
way (using uniformizers at p). The divisor of a function f is (f) = >, ord,(f)p,
which is a divisor of degree zero (and is called a principal divisor).

Write Divy(C) for the set of all divisors of C which are defined over k (which
means that they are fixed by the action of Gal(k/k)) and which have degree zero.
Write Pring(C) for the set of all divisors of functions f € k(C). Then Prin,(C)
is a subgroup of Divl(C) and the Divisor Class Group of the curve C is defined to
be the quotient

Picl (C) = Divy(C)/Pring(C). (2)
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To actually compute in the Divisor Class Group of a general curve we need a
suitable representation of divisors. Addition of divisors is trivial, however determin-
ing whether two divisors differ by a principal divisor is much more difficult. This
difficulty may be solved in the case of hyperelliptic curves by borrowing Gauss’
algorithm for reducing quadratic forms. However, the definition of reduced divisor
used in the hyperelliptic case does not generalize to give a unique divisor in our
more general setting. This paper overcomes the obstacle of unique representation

of divisors for a class of curves.
Our task in this section is to show that there does exist a candidate for a unique

representation of divisors. For a divisor D let L(D) = {f € k(C) : (f) > =D} and
D) = dimy(L(D)) as usual. We first give the following standard lemma.

Lemma 1. Let C be a non-singular curve over k of genus g with a given k-point
Po. Let D be a degree zero divisor in Divl(C). Then there is an effective divisor
E over k of degree g such that D is equivalent to E — gP.

Proof. By the Riemann-Roch theorem (see, for instance, Fulton [12])
(D + gPy) =l(k — D — gPo) +deg(D + gPs) +1—g > 1.

This means there is a function f € k(C) such that (f) > —D — gPs. Define
E:=(f)+ D+ gPsx > 0. Then E is effective and E — gP, = D + (f). O

The problem with the above result is that there may be several different effective
divisors E so that E — gP, is equivalent to D. The next result shows that there is
a unique choice of E having minimal degree.

Theorem 2. Let C be a non-singular curve over k of genus g with a given k-point
Py. Let D € Divz(C). Then there is a uniqe effective divisor over k of minimal
degree m < g such that E — mP,, is equivalent to D.

Proof. If D is principal then obviously m = 0 and E = 0. If D is not principal
then {(D) = 0. Consider the difference (D + (m + 1)P) — (D + mPs) > 0. The
Riemann-Roch theorem shows that this difference is

k=D~ (m+1)Po)+(m+1)+1-g—(l(k—D-mPo)+m+1-g)

whichis (k=D —(m+1)Py) ~l(k— D—mPsx)+1. Now, i(k =D —(m+1)Py) <
l(k — D —mPy). It follows that the values of [(D 4+ mPy) increase with m in steps
of only 0 or 1.

Let m be the unique smallest positive integer such that [(D +mP,) > 0 and let
f be the unique (up to scalar multiple) function f € L(D 4+ mPy). Then, as in the
previous lemma, we define E := (f)+D+mPs and see that E-mP, = D+(f). O

The above result shows that there is a unique representative for each divisor
class. The problem is then to give an algorithm which will reduce any divisor to
this form. In Section 6 we describe a method which achieves this for the class of
curves described in the introduction.

We now discuss a subtle point which is usually not mentioned in this context.
The Jacobian of a curve C is naturally defined over the algebraic closure of the field

k via the exact sequence

1 — Pring(C) = k(C)* /k* — Divi(C) — Jacg(C) = Pic}(C) — 0.
(3)
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This definition allows one to see that the Jacobian has a more functorial and
geometric interpretation. One then defines the Jacobian over the field k£ to be
Jack(C) := Jacg(C)® where G = Gal(k/k). Taking Galois cohomology of the
short exact sequence (3) yields

1 — Pring(C) — Div)(C) — PicY(C)® — HY(G, Pring(C))

which shows that the divisor class group is only a subgroup of the Jacobian. We
now show that the Divisor Class Group is actually equal to the Jacobian.

Theorem 3. Let C/k be a curve with a k-point. The map Divi(C) — Jaci (C)¢
15 surjective.

Proof. Fix a point Py in C(k). Let D be any divisor in Jaci(C)¢. As in Theorem
2 there is a unique smallest integer m such that (D + mPy) = 1 and (D +
(m — 1)Px) = 0. Let f € L(D + mPy) and set E to be the effective divisor
(f) + D +mPs. We want to show that E is actually defined over k, rather than k.

Now, let ¢ be any element of G. That E — mPs, lies in Jacg(C)® means that
E° —mPS = E° —mP,, = E — mP,, + (h) for some function h € k(C). In other
words, (k) = E° — E.

This means that (fh) = E° — D — mPy and so fh € L(D + mPy). It follows
that h is a scalar, and that E£° = F. [}

Before giving the method of reduction of divisors we introduce a large class of
curves which satisfy the restrictions imposed in the introduction.

3. THE GEOMETRY OF SUPERELLIPTIC CURVES

In this section we will provide a large class of curves of the form (1) which satisfy
the four properties imposed in the introduction.

Let n and § be any positive integers. Note that we do not assume that elther n
or 4 are prime. By a superelliptic curve we will mean

C:y®=clz) =asz’ +---+ag (4)

defined over a field k (by which we mean that the coefficients a; lie in k). We will
assume n, § > 3 since elliptic and hyperelliptic curves can already be easily handled
using other techniques.

In this section we will discuss some aspects of the geometry of superelliptic
curves. For background consult Fulton [12].

To ensure that the affine curve C is non-singular we will impose the condition that
ged(c(z),c'(x)) = 1 (i.e., the polynomial c(z) has no repeated roots) and the field
k has characteristic not dividing n (in particular, characteristic zero is permitted).
Note that, if we take n to be odd, all our results will be valid in characteristic 2.

We now consider the projective closure of C. If n < § then the curve has the
homogeneous equation

Y20 = a5zl 4 a5z + o+ ag2’.

From this we see that the only point at infinity is [z : y : 2] = [0 : 1 : 0]. This
point is a singular point as long as n+1 < 4. If n > 4 then similar arguments show
that the point [1: 0 : 0] is the only point at infinity (and that this is singular when
n+1>6). If n =4 then there are n different points at infinity (defined over k),
namely [z : y : 0] where y™ = asz™. These points are all not singular.
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In the case n # 6 we may blow up the singular point at infinity repeatedly until
we have a non-singular model for the curve C. It can be shown that, if (n,d) =1,
then there is only one point above infinity on the non-singular model. In other
words, the infinite prime is totally ramified. Furthermore, the condition that n be
coprime to the characteristic of k implies that the ramification is tame.

For the case of hyperelliptic curves it is much easier to handle the behaviour of
functions in the situation where infinity is ramified. Details of the more general
case can be found in Paulus-Riick [19], where it is necessary to consider the infras-
tructure. Similar techniques may also work for the case of more general curves. in
this paper, however, we will impose the restriction (n,é) = 1.

In this paper, “superelliptic curve” will always mean the non-singular model of
the curve (4) over the field k, subject to the three restrictions:

1. ged(e(z),c'(z)) =1

2. n is not divisible by char k

3. (n,6) =1
Note that we will always be working with the non-singular model of C, but that
there is no danger from just using the affine model (4) and treating the point at
infinity as a formal symbol. The next task is to determine the genus of C.

Proposition 4. The genus of the curve C is equal to %(n —1}6-1).

Proof. Consider the map ¢ : C — P'(k) given by ¢ : [z :y: 2] = [z:2]. Thisis a

degree n map which has ramification points at infinity and the 4 distinct zeroes of

c(z). All these points are totally ramified and have ramification index equal to n.
The Hurwitz formula (see Fulton [12] 8—36) therefore implies that

20g-1)=2n(0-1)+ (0 +1)(n—-1)
from which we see g = 1(6 — 1)(n - 1). |

Note that if § = n + 1 then the genus of C attains the maximal possible genus
for a degree é curve.

We now make some comments about the number of points on a curve (4) over a
finite field F, (where we assume that the curve only has singular points at infinity
and so, in particular, (n,q) = 1). If (n,g — 1) = 1 then each value of z € F; gives
rise to exactly one value y € F, (since nth roots always exist and are unique in
this case). Similarly, if (n,¢/ —1) = 1 for j = 1,2,...,g then #C(F,;) = ¢ +1
for j = 1,2,...,9. In this case, all the symmetric functions in the roots of the
characteristic polynomial of Frobenius are equal to zero, from which it follows that
the characteristic polynomial of Frobenius is simply X 29 + q9. The Jacobian of
C therefore has ¢9 + 1 points and is supersingular. For cryptographic purposes,
supersingular abelian varieties must be avoided, as their discrete logarithms may
be reduced to those in a finite field using the Tate pairing attack of Frey and Riick
[10].

We now consider the function field K = k(C) as a degree n extension of k(z).
The condition imposed earlier that n not be divisible by char k ensures that this
algebraic extension of fields is separable. The discriminant of the field extension
K/k(z) is (=1)»(r=1/2pne(g)n-1.

As above, this extension of fields is totally (and tamely) ramified at the infinite
place of k(z). One of the conditions imposed in the introduction is that the integral
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closure of k[z] in K should be k[z,y]. The following result shows that this property
holds for the curves we are considering.

Proposition 5. Let C be a curve of the form ({) which satisfies the other condi-
tions of this section. Then the integral closure of k[z] in K = k(C) is k{z,y].

Proof. Write O for the integral closure of k[z] in K. The element y is integral over
k(z) and so the O must contain k[z,y] with finite index (see, for instance, Frolich
and Taylor [11] 1.2.2).

The only primes which can effect this index are ones arising from square factors
of the discriminant of K/k(z) (in other words, powers of primes dividing ¢(z)).

Let I(z) be some irreducible factor of ¢(z). The minimal polynomial of y is
y™ — c(z) and this is an Eisenstein polynomial at [(z). We now appeal to [11]
Theorem 24 (also see Stichtenoth [22] II1.5.12) which implies that I(z) is totally
ramified in K /k(z) and that, locally at I(z), the index of k[z,y] in O is 1. O

4. THE Di1visor CLASS GROUP AS AN IDEAL CLASS GROUP

Let C/k be a curve satisfying the properties listed in the introduction. Let O
be the Dedekind ring which is the intersection of all valuation rings at all places
expect for the place Py at infinity. Then O is the integral closure of k[z] in the
extension k(C)/k(z) and we have insisted that this be k[z,y] (where the algebraic
relation C(z,y)} = 0 is implicit in k[z,y]).

We now show that the divisor class group of the curve ¢ and the ideal class
group of O are isomorphic.

Lemma 6. Let C/k be a curve as above. Let Cl(O) be the ideal class group of
O = k[z,y]. Then

Cl(O) = Pic? (C).

Proof. Let S be any (finite) set of places of the function field k(C) and write
Os for the intersection of all valuation rings for places not in S. For any divisor
D = Zp npp we may identify each place p ¢ S with a prime ideal p C Og and
obtain the ideal [] s p™. This induces the exact sequence

1 - Ker — Pic(C) — ClOs) - 1

where Ker is the subgroup of Picl(C) generated by all degree zero divisors with
support lying in S.

In our case we have S = {P,.}, which implies Ker = {0}, and the result follows.

g

For curves C/k which satisfy the properties of the introduction, we therefore
have

Jac(C) =~ Picy(C) ~ Cl{k[z,y))-
Our task of computing in Jack(C) is therefore reduced to task of composing and

reducing ideal classes in CI((). First we will introduce some of the basic theory of

ideals in k[z, y].
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5. IDEALS IN FUNCTION FIELDS

Every element of K = k(C) may be written as Z?:_ol a;(z)y’ where a;(z) € k(z).
The extension K/k(z) is Galois since it is the splitting field of the polynomial
C(z,y) over k(x). The norm of an element a = Z:ZOI ai(z)yt € k(C) is defined
to be Ng/i(gy(a) := HUeGGI(K/k(I))O’(a). The norm of o lies in k(z). In other
words N k(z)(a) is the degree zero (in Y) coefficient of the minimal polynomial

seGal(kk(z)) (Y —0(a)) for a. We define the degree of an element a to be deg(a) =
deg, Nk /k(z)(c). Therefore, deg(a(z)) = ndeg,(a(z)).

An integral ideal of O is an additive subgroup of O which is also a O-module.
We will use two different representations of ideals (and hopefully no confusion will
arise):

e The notation (a;(z,%), ..., am(z, y)) (where m is usually 1 or 2) will represent

the ideal
{bl(ziy)al (Ivy) +- bm(z,y)am(:c, y) : bl(zay)a DR bm($7y) € O}
e The notation [a;(z,¥), .- .,an(,y)] represents the k[z]-module

{bi(z)ar (z,y) + - + ba(2)an(z,y) : bi(2), .-, ba(2) € Klz]}.

Every ideal may be written in this form. However, it is not true that every
such module is an ideal.

A fractional O-ideal (i.e. an ideal corresponding to a non-effective divisor) is
represented by an integral @-ideal and a denominator which lies in k[z]. The set
of classes of fractional ideals forms the abelian group CI(O). In this paper we
will mainly be considering integral ideals and so we will usually omit the adjective

“integral”.
Every integral ideal of @ is a k[z]-module and thus (using the notation above)
can be represented by a basis [ag, ... ,an-1], where

n—1 )
a; =) aij(@)y,
j=0

with a;j(z) € k[z]. This representation can be made unique by computing the
Hermite Normal Form (HNF) of the matrix (ai;)i j=o,..n—1- Similarly, a fractional
ideal is represented by a denominator and a k[z]-module in HNF as above.

Composition of k[z]-modules is performed by multiplying termwise and then
taking the HNF reduction as described in Cohen [8].

The degree of a (fractional) ideal in HNF is given by the degree of the product
of the diagonal elements (minus the degree of the norm of the denominator) and
denoted by deg. It turns out that the degree of a principal ideal equals the de-
gree of a generator. The degree of an ideal is equal to the degree of the divisor
corresponding to the ideal.

If (z9,70) € C(k) then the unique HNF k[z]-module corresponding to the place
(%0, o) is given by [z — 2o,y — y0,¥* — ¥3,---,y™ ' — g~ ']. One sees that the
degree of this ideal is indeed 1. Similar calculations enable one to find a k{z]-
module representation of any ideal.

We emphasise that we are considering three different notions of degree:

o If a(z,y) € O then we write deg,(a(z,y)) and deg,(a(z,y)) for the usual

degrees of a(z,y) as a polynomial.
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o Ifa=Y""ai(z)y’ € K = k(C) then we write
deg(a) = deg, (Nk/k(z)(a))-
¢ If ais an ideal then we have deg(a) to be the degree of the corresponding divi-
sor (which can be computed from the HNF of the k[z]-module representation
of ).
We now explain how to determine how a “finite” prime of k(z) decomposes in
K.

Proposition 7. Let C/k be u curve satisfying the properties of the introduction.
Let p(x) be an irreducible polynomial in k[z] and suppose C(z,y) factors modulo
p(z) as [T2, ri(z,y)¢ . Then the prime p(z) splits as (p(z)) = [112, (p(z),7i(z, )"
where each ideal (p(x),r;(z,y)) is a prime ideal of K of ramification degree e; and
residue class degree f; = deg, ri(z,y).

Proof. See Stichtenoth [22] Theorem IIL.3.7. a

We now give an interpretation of Lemma 1 and Theorem 2 in terms of the ideal
class group of O. Lemma 1 becomes
Let D be an ideal of O. There is an integral ideal E of O equivalent to
D with deg(F) = g.
and Theorem 2 becomes
Let D be an ideal of © and let E be an integral ideal equivalent to D for
which deg(E) is minimal. Then E is unigue.

6. COMPUTING REDUCED DIVISORS

6.1. The idea. For this section we allow k to be a field of any characteristic. The
methods given will work for any curve C/k of the form described in the introduction,
however we only provide the full details in the case of superelliptic curves.

We have seen that the problem of reduction of divisors comes down to the prob-
lem of reduction of ideals. We will solve this problem by using similar ideas to those
developed for number field arithmetic (see Cohen [8] or [4]). Unlike the number
field situation, we can prove that our algorithm always computes the “smallest”
reduced ideal (with respect to the degree of the norm). The strategy is as follows:

Assume that we can compute an element e of smallest norm in an integral ideal
D. Then we prove that (e¢)/D is an ideal equivalent to D~' which has smallest
norm among all ideals equivalent to D~!. This fact can be used in our situation by
first computing an ideal which is equivalent to D~! and then looking for an element
of smallest norm therein. Thus, a class is uniquely given by a representation of the
specific reduced divisor. The representation of such a divisor can be made unique
by using the Hermite normal form representation of the ideal as a k{z]-module.

The computation of the element e can be achieved by a modified lattice reduction
as follows: We first show that the degree of the norm of an element is a “metric” on
the Dedekind ring O by using properties of the embedding of superelliptic curves
into a field of Puiseux expansions. We use the word “metric” to mean that it
satisfies the properties required for the lattice reduction (the word “norm” would
be more appropriate, but also more confusing). Furthermore, we modify the lattice
basis reduction algorithm and corresponding invariants from [18] in such a way that
they work with the new metric. In this way, we can compute a element of an ideal
whose norm is of smallest degree.




All these computations are exact and do not need any computation in the field
of puiseux expansions. This is due to the very special nature of these superelliptic
curves and the representation with a Dedekind ring where the prime at infinity is
totally ramified. This situation does not exist in the number field case.for n > 2
since there is no number field with a totally ramified prime at infinity. Therefore,
this is a natural generalization of the imaginary quadratic case, which enables a
simple arithmetic for jacobians of hyperelliptic curves.

6.2. The reduction procedure. Let D be a fractional ideal of O. Then we call
the unique integral ideal E equivalent to D such that deg E is minimal the reduced
ideal corresponding to D. To compute E for a given D, we need the following
lemma.

Lemma 8. Let D be an integral ideal of O. Let e be an element of D with minimal
degree and define A := (e)/D. Then A is the reduced ideal corresponding to D™'.

Proof. First note that (e)/D is an integral ideal. Now, consider the set of principal
ideals which are constructed as follows: multiply D by every integral ideal A in the
class of D~!. The generators of the ideals in this set are elements e of D and their
degree is equal to deg D + deg A, where A. Obviously dege is minimal iff deg 4 is
minimal. Thus, determining an element of smallest degree in D yields an ideal A
of smallest degree equivalent to D~1.

But since there is only one integral ideal in a given class of smallest degree, namely
the reduced ideal, e must be unique up to multiplication by a unit (and the units

are all scalars in this case), and so A = (e)/D is the reduced ideal in the class of
D O

We can then formulate the following algorithm for computing the reduced ideal
corresponding to an integral ideal D:

e Compute an integral ideal equivalent to D=1, namely E := [[,. D°-
e Compute the shortest vector e in E.
e Output (e)/E = (e) 'D/NK/k(I)(D).

It is possible to generalize this algorithm to Jacobians of function fields which do
not have a totally ramified prime (at infinity). In that case, the divisor class group
is not isomorphic to the ideal class group, and so one one must pay attention to
the infrastructure. This is the set of divisors whose support contains only infinite
primes and it is related to the behaviour of the non-trivial units of O. In any case,
the reduced ideal produced by the above algorithm would not correspond to a single
divisor class and it is not clear how to distinguish the divisor classes corresponding
to the given ideal.

6.3. Embeddings of function fields. To explain the algorithm, we need to in-
troduce some theory and notation about embeddings of function fields into Puiseux
expansion fields. In this paper, we limit ourselves to the situation of a curve with
a totally ramified prime at infinity. The more general theory goes back to Mahler
[15]; we adopt the notation of [20].

Let | € N. We call

k(.’[l/1> = { Z Cixi/l I G ek .Cm # 0}

1= =~ 00
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the field of puiseux series in z'/! over k. A slightly non-standard valuation deg on

k(z'/') is given by
deg ( Z Cixi/'> =m/l.

These fields allow some geometry analogous to Minkowski’s theory [15]. We will
now explain how to embed k(C) into such fields.

Theorem 9. Let C(z,y) be a curve over a field k. Suppose k(C)/k(z) is a degree
n extension having a totally ramified prime at the “infinite” place of k(x). Let
P15 . pn be the distinct elements in k(z) such that C{z,p;) = 0 and let k,, the
field extension of k containing the n-th roots of unity. Then

Pls--- 3 Pn € kn(zl/")

For the proof see e.g. [24]. This is a special case of Theorem 9 in [20]. By this
method, we get an embedding of k(C) into L := (k,(z'/™))™

n~1 n-—1
KC) 3 a=3 aj(@y s (@V,...,a) = [ 3 a;(@)e! €L
7=0 j=0 i=1,...n

Let us call this map L by abuse of notation. The image of an ideal of @ under L is
a lattice (i.e., it is a k[z]-module and it has a basis as a k[z]-module which is also a
basis for L as a vector space over k,(z'/™)). The vector space L is equipped with
a norm N, namely N(L(a)) = max{deg(a'?)}.

We now return to the case of superelliptic curves: y™ = ¢(z) and define § to be
deg, c(z) with (6,n) = 1. To generalize to a larger class of curves one must consider
a more general norm form.

All deg(p;) are equal to §/n; this can be seen as follows: since p; = pkp; for
some k, where j,, is an n-th root of unity and []-, p; = ¢(z), and (6,n) = 1. So,
deg(a?) equals max;{dega; + dj/n}, thus they are all equal.

Recall that deg(a) is defined to be the degree (in z) of the norm of a in the
extension k(C)/k(z). The following lemma relates the two definitions of norm.

Lemma 10. Let C/k be a superelliptic curve and let o = Z;:l aj(z)y’ € k(C).
We have deg(a) = n - N(L(a)) = max;{(deg, a;(z))n + d5}.

Proof. The following computation is performed in k,{(z'/"). We have
n n
deg(a) = deg,(Ni(o)/i(a) (@) = deg, ([] a'?) = D deg(a!)
=1 i=1
= n-max{deg, a;(z) + §j/n}
J

and the proof follows. 0

From this lemma one sees that we have a suitable “metric” (or norm) on O for
performing lattice reduction techniques. In other words

Corollary 1. Let a = Z;:_OI a;y’ € O. The function
deg(a) = max{dega;n + dj}
j

is a metric on O.




Due to this result, we do not need to compute with elements of the field of
puiseux expansions but we can compute with just elements of k(C). Observe that
we do not need to extend the ground field in order to be able to add divisors. This
is a very important consideration for the applications.

Nevertheless, we do need a modified lattice basis reduction algorithm which takes
the modified metric into account.

6.4. Modified lattice basis reduction. In contrast to lattices in vector spaces
over Q, there exists a lattice basis reduction algorithm which always computes a
reduced basis for lattices over function fields. In particular, this algorithm computes
the smallest element with respect to the maximum norm as a metric. In this section,
we will mention the necessary modifications to show that we can apply the lattice
reduction algorithm with our modified metric to compute an element of an ideal
with smallest norm. The original algorithm, as well as the proofs, can be found in
[18].

To an element 8 = 3.7/ b;y? € K(C) we associate its vector representation
b= (by,.-.,bn_1). To agree with the new norm, we define |b;| = ndegb; + ié and
|b] = max |b;| = deg .

Let bi,ba,...,b, € k[z]™ be linearly independent over k(z). The lattice L C
k[z]™ of rank n spanned by b1,... , by is defined as

L=
J
In our special situation, an ideal given by a basis as a k[z]-module will be the lattice

spanned by the elements of the basis.
The determinant d(L) € k[z] of L is defined as the determinant of the n x n ma-

k[z]b; = erbj rj €kl (1<i<n)

n n
=1 j=1

trix B having the modified vectors b],... , b’ as columns. The vectors are modified
in the following way: if b = (bg,... ,bn_1), then b* = ((bo)™, (b1)" cxd (b))
2 (bp_q)™ - z(*~ V%) The value of d(L) does not depend on the choice of a

basis of L up to units of K. The orthogonality defect OD(b,, ... ,b,) of a basis
bi,..., by for a lattice L is defined as

> [bi] ~ deg, d(L).

i=1

We have OD(by,... ,b,) > 0; this is easily proved by computing the determinant
by e.g. starting by the first column. We say that the basis b;,... ,bn is reduced
if OD(by,...,b,) = 0. It follows immediately that the length of the i-th vector

of a reduced basis is the i-th successive minimum of L with respect to the new
metric. Especially, the first vector will be the shortest vector of the lattice, i.e. it
will represent an element of the ideal with smallest degree norm.

In the following, if we speak about permuting coordinates, this means that we
put the y-exponent and thus its degree modification to the corresponding coordinate
when flipping its place in the vector.

Lemma 11. Let by,... b, be a basis for a lattice L and denote b; ; the j-th coor-
dinate of b;. If the coordinates of the vectors by, ... by can be permuted in such a
way that they satisfy

Lo b < by for1<i<j<n and

2. Ibi,jl < lbi,i| < Ibi,k| for1<j<i< k<n,
11




then the basis by,... , b, is reduced.

Again, this is easily proved by developing the determinant according to the first
column and paying attention to the d'egree modifications. We only mention the
existence and the complexity of the reduction algorithm, since the formulation and
its correctness are now analogous to the original case and can be found in [18]:

Lemma 12. There ezists an algorithm which takes
O(n® - max|b;| - OD(by, ... ,bn))

arithmetical operations in k to compute a reduced basis starting from a basis by,... ,by,.

We give now a very rough estimate on the complexity for the composition algo-
rithm on the divisor class group of a curve.

Lemma 13. The composition on the divisor class group C of a superelliptic curve
C/k as in the introduction may be performed in O(n®8?¢?) operations in the field
k.

Proof. The composition algorithm consists of the following steps: multiplication of
ideal representations, computation of an ideal equivalent to the inverse, finding a
shortest vector and finally compute a product of ideals. We refer to the standard
literature [8] for the complexity of arithmetic of ideals. Let m be an upper bound
for the degree of every element in each of the vectors in a basis of a reduced ideal
in Hermite normal form.

The multiplication of ideal representations is possible in O(n*m) field operations,
the subsequent Hermite normal form computation is then of complexity O(n?m?).
Thus ideal multiplication is of complexity

O(max{n*m,n?*m?}).
The computation of the product of the other conjugates amounts to about n mul-
tiplications of ideals and thus is therefore (the degrees of the polynomials involved
may grow by m with every multiplication) O(max{n®m,n5m?}).
The computation of a smallest element in an ideal is of complexity O(n®-dm-OD),
where OD is bounded by "7, nm = O(n?m) , thus is at most O(n®m?). The final
multiplication now is of lower complexity, thus can be omitted. ,

Finally, we have to estimate an upper bound for the norms of the basis vectors
of an ideal I, i.e. for m. Since the matrix representation will be given in Hermite
normal form and the determinant of the matrix is equal to the degree of the norm
of the corresponding ideal, we get immediately m < ddeg/. Since degl < g for a
reduced ideal I, we have m < 8g. This finishes the proof. O

7. DISCRETE LOGARITHMS

We now return to the more general model
n
C:Clz,y) =) cla)y’
=0

for our curve C (subject to the restrictions given in the introduction) but restrict
to the case where the field k is a finite field F,. We let 6 = maxdeg, ci(x).

The discrete logarithm problem on Picgq (C) is the following: given a divisor
class D; and some divisor class D5 in the subgroup of Picgq(C) generated by D,

12




find an integer A such that Dy = AD;. This problem is the central problem for
cryptography on abelian varieties.

In the following sections we will generalize the algorithm of Adleman-DeMarrais-
Huang [1], which was developed for solving discrete logarithms in jacobians of
hyperelliptic curves.

8. EXPLICIT BOUNDS FOR A GENERATING SYSTEM

In this section we generalize the method of Miiller, Stein and Thiel [16] to show
the following result, for the curves C(z,y) above.

Theorem 14. Let
2log(4g — 2)
logg
then the divisor class group (which, in this case we are thinking of as an ideal class

group), of C is generated by the set of prime ideals of residue class degree one whose
norm is less than ¢¢.

d := next_prime (max {n,

To prove this result we will need to use zeta functions. We refer the reader to
[16] for further explanation of the notation. Let x denote a character of finite order
on Pic)(C) and extend x to act on Divl(C) in the natural way. We let 1 denote
the trivial character, and define two zeta functions, where u = ¢™°, by

1
2w K) = ]l =5 ppyasees
p

Zw,K) = Z@u1,K)=]] !
p

1 — ydegp’

where both products are over the set of prime divisors of K. It is well known that
both zeta functions can be expressed as polynomials in u, with respective roots
wi(x) and w;,

Z(u, K) Hiil(l — wil)

1-uw)(—qu)’
29—2

Z(u,x, K) = ][0 -wilu)
i=1

A consequence of the Riemann Hypothesis (which was proved by Weil) for function
fields is that all roots satisfy

|w:| = fwi(x)| = V3
We can now prove the theorem.

Proof. Suppose the prime divisors of residue class degree one and norm less than
q® only generate a proper subgroup G C Pic)(C). Then let x be any character
which is trivial on G but non-trivial on Picy(C).

Since x(p) = 1 for all prime divisors p of residue class degree one and norm less
than ¢ then some of the Euler factors in Z(u, K) agree with some of the Euler
factors in Z(u,x,K). We let J[]* denote the product over all prime divisors of

13




residue degree one and norm less than or equal to g%, whilst []! will denote the
product over all other prime divisors. We obtain

292

[Ho-ww = ZwxK)= H 1—,;(;’)@’

=1
_ * t
N H 1-x udegp H 1-x )udegp’
1 — ydesr
_ 1
= Z(u. K) H T %) udegp

22,1 = wiu) Hf 1—udegp .
(1 —u)(1~qu) p)udesr
We take the logarithmic derivatives of this equation to obtam
oo 29-2 oo 292
Z Z wi(X)v+1ut Z Z w‘“ v Zu un+l v (u), (5)
v=0 i=1 v=0 i=1

where P(u) is the polynomial
P(u) = ') (degp)u’®tP " (x(n)" - 1),
v=1

and 3T is the sum over all prime divisors of norm greater than ¢¢ of residue class
degree greater than one. If we consider the coefficient of u®~! of P(u) we find that
it is equal to
A=3"*(degp)(x(p)¥ %5 1),

where the sum is now over all prime divisors of degree a divisor of d and of residue
class degree greater than one. Hence, since d is prime, the only divisors in the last
sum must be of degree d or 1. But they cannot be of degree one, since if p lies
above p and p has residue class degree greater than one, we have

degp > fp > 1.

So the sum is over all divisors of degree d and of residue class degree greater than
one. But, again since d is prime, we then conclude that the residue class degree
is equal to d, but this is impossible since the residue class degree must be less or
equal to than n and d > n. Hence the sum is empty and A = 0.
We now look at the coefficient of u¢~! in equation (5). Since the coefficient of

u?! in P(u) vanishes we have

29-2

1+ ¢ Zw - Z wi(x)?.
1=1

By the Riemann Hypothesis for functxon fields we deduce that
g% +1< (29 + (29 - 2)) g%,

which implies
2log(4g — 2)
logg
This contradicts the choice of d. Therefore x must be the trivial character and
G = Picd(C). (]

14

d<




9. THE ALGORITHM

In this section we shall describe a method (based on that of Adleman-DeMarrais-
Huang [1]) for solving discrete logarithms on Picy(C). A variant of the Hafner-
McCurley method as described in {17] could also be applied to solve this problem.
This would involve composing random multiples of divisors, reducing them and then
factoring them over the given factor base. The Hafner-McCurley method is easier
to analyse from a theoretical point of view. Nevertheless, obtaining a non-heuristic
analysis would be very difficult to achieve. For function fields of degree greater than
two the Hafner-McCurley approach is less amenable to practical implementation
than the method we shall give below. This last fact is for a number of reasons:

1. To obtain the non-heuristic running time one must restrict to dense matrices.
This means we cannot use sparse techniques. In a practical algorithm this
would become a major computational bottleneck. The method we propose
will produce sparse matrices. .

2. In function fields of degree greater than two it appears unlikely that an effi-
cient sieving technique like that applied in degree two fields in [9] can be found.
The method below does allow efficient sieving strategies to be employed.

3. The factor base for the Hafner-McCurley style method is the set of all prime
ideals of norm less than some bound. In our method we need only to take all
prime ideals of residue class degree one less than some bound. This means
for the same size factor base we have a larger bound, and hence more chance
of factoring an element of a fixed size.

We therefore leave, as a theoretical exercise for the reader, the analysis for the
Hafner-McCurley style method for function fields of degree greater than two. We
shall focus instead on giving a heuristic analysis of a method which would appear
to be far more suitable in practice.

First we recall the result of [1].

Theorem 15 (Adleman, De Marrais and Huang). There is a heuristic sub-ezponential

algorithm to solve the discrete logarithm problem in the Jacobian of an (odd degree)
hyperelliptic curve C/F, of genus g, assuming that
logp < (2g + 1)>%.
A heuristic analysis shows that the method runs in time
O (Ly2o41 (1/2,¢))

for some constant c as g — 0.

As usual we have used the function
L (e, B) = exp(B(log N)*(log log N

to interpolate between polynomial (o = 0) and exponential (a = 1) time.
In this section we shall show

Theorem 16. Let C/F, be a curve as in the introduction. There is a heuristic

sub-ezponential algorithm to solve the discrete logarithm problem n Pic%q(C’) for

the general curve C above assuming

2logd
é

loggq >
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The heuristic complezity is given by
0 (L55(1/2, logq + 0(1)))
as § — co. We assume in the analysis that n and q are fized.

In the case of hyperelliptic curves our method and that of Adleman, De Marrais

and Huang are practically identical.
If C is a superelliptic curve then the group size is O(¢q?) and the complexity
estimate in the above theorem becomes L,s(1/2,2/v/n ~1 + 0o(1)) as & tends to

infinity.

9.1. Basic Definitions and Results. Each prime divisor of K (resp. prime in
Fy [z]) induces a valuation on K (resp. F,[z]). Each prime divisor D; corresponds
to a non-conjugate embedding, K (), of K into some local field, where the image of
this divisor is the only prime. If ¢ € K and ¢ is its image in K9 then we can
extend the valuation p(z) of F,[z] to K9 in an essentially unique way by defining

. 1
Ordp(z)(fﬁ(z)) = ;OrdD; (¢)

We will be interested in functions of the form
¢(z,y) = a(z) + b(z)y € K.
We have
No = Nic/i,(21(0) = a(2)" = eno1(2)a(z)" b(z) + - + (~1)"co(2)b(z)".

We wish to have a simple procedure which will allow us to decompose divé into

prime divisors
le¢ = ZmiD,- - Zmioo

with m; > 0. Clearly if D is a prime divisor which lies above p(z) and ord,;)(¢) > 0
then p(z) divides Ny. So we need to determine which prime divisors D, lying above
p(z), are in the support of divg and to what multiplicity.

Lemma 17. Let Dy and D, denote two distinct prime divisors lying above the
prime p(z) € Fy[z]. Let a(z),b(z) denote two coprime elements of F,[x].

1. There is at most one prime divisor D € {Dy, D2} such that

ordp(a(z) + b(z)y) > max{ey, e; Jordy(s (3'* — y") (6)

where D; = (p(x),ri(z,y)), y: € F,(z) is any root in y of the polynomial
ri(z,y) mod p(z). The index k (resp. 1) is arbitrarily chosen from the set
{1,... ,deg, ri(z,y)} (resp. {1,...,deg,r2(z,y)}).
2. If (6) holds for D = D; and e; > 1 or f; > 1 then
ordp, (a(z) + b(x)y) < erordy) (v - yi").
where k and | are arbitrarily chosen from the set {1,... ,deg, ri(z,y)}.

Proof. We write div(a(z) +b(z)y) = vi Dy +v2D2 + E —moo where v; > 0 and E is
an effective divisor such that {D;, D} NSupp(E) = 0. To prove the first statement

we need to show

. k !
min{v;, v} < max{el,eg}ordp(z)(yi - y; )),
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the second statement will follow in a similar way. We have

min{un,val % T (6) = ordye ale) + b(@)y):

max{e;,e2}.” € T €

Hence
min{vy,vs} . (k) 0]
—_— < —+ : -+ .
ax{el, 62} S mn (Ordp(z)(a(z) b(z)yl )70rdp(z)(a(z) b(x)'y] ))
< ordy(g) (b(w)(zﬁk) - yél)))

Now if b(z) = 0 (mod p(z)) then, since a(z) and b(z) are coprime, we would have
p(z) does not divide Ny and so v; = v, = 0 and we are done. Hence assume p(z)
does not divide b(z) but then

. k 1
min{v;,ve} < maX{el,ez}Ordp(z)(yi Py

as required. O
If we define D to be the discriminant of C(z,y) with respect to y, then we obtain:

Corollary 2. If p(z) is a prime of F,[z] which does not divide the discriminant D
then there is at most one prime divisor, D;, lying above p(z) such that ordp, (¢) >0
and it satisfies e; = f; = 1.

Proof. If p(z) is a prime as described and D; is a prime divisor lying above p(z) then
e; = 1. Soif f; > 1 then we have, by the above Lemma, that ordp;)(¢) < 0. (]

Hence decomposing ¢ = a(z) + b(z)y is trivial: We suppose that p(z)t exactly
divides Ng.

If p(z) is a prime of F,[z] which does not divide D we see that there is only one
prime divisor, D, lying above p(z) in the support of ¢. We set

re,y) =y - 5 (mod p(e))

This last definition will make sense because since a(z) and b(z) are coprime we
cannot have p(z) dividing b(z). We then put D = (p(z),r{z,y)), so D is a prime
divisor of residue class degree equal to one and ordp(¢) = 1.

If p(z) divides D and there is one prime divisor, D, lying above p(z) then we
have ordp(¢) = et/f, where e and f are the ramification and residue degrees of D.

For hyper- and super- elliptic curves these last two cases exhaust all possibilities.
For other curves any additional cases when p(z) divides D can be handled on an

ad hoc basis.

9.2. The Main Algorithm. We are now in a position to describe the main al-
gorithm for solving discrete logarithm problems in the divisor class group of our
curve. We assume we are given two reduced divisors D; and D> representing classes
in Picgq (C). We are asked to solve the equation

Dl = /\DQ
We let a = 1/+/2Zlogq and let b = 1/y/logq, we then set
S, = a(élogd)t/?,

S, = b(dlogd)2.
17




The algorithm we shall describe will be an index calculus type method, so the first
thing we shall need to do is to construct a factor base, F.
We shall place into F

1. all prime divisors which lie above primes of F, [z] which divide D,

2. all prime divisors which are in the support of D; and Ds.

3. all unramified prime divisors of residue class degree equal to one which lie
above a prime p(z) € F,[z] of norm less than or equal to ¢°'.

We expect the size of F to be roughly equal to the number of irreducible polynomials
of degree less than or equal to S;. So we have

#F < ¢5 = Les(1/2,c1)

where ¢; = \/l—"g—‘l. As long as S; > d (which is true for sufficiently large &) then,

by Theorem 14, F will generate the group Picgq (C).

Our first task is to find some relations linking D; and D, to the elements of F.
To do this we will possibly enlarge F a little. We generate random numbers ¢ and
compute

D1 + tD2 = D3

where D3 is an effective reduced divisor equivalent to D; + tD> in the divisor class
group. If the support of D; consists of prime divisors of residue class degree one
only, we enlarge the factor base, F, by these divisors if necessary and store the
relation between D;, Dy and F in a matrix. This step is carried out a number of
times until we have a small set, &~ 5, such relations between D;, D> and the rest of
F.

We do not expect such a method to take too long since the degree of D3 will
be less than or equal to g. Suppose the z-coordinates in the support of the divisor
D3 over the algebraic closure act like the roots of a random polynomial of degree
g with coefficients in F,. Then we expect, with probability roughly 1/g, that the
z-coordinates are the roots of an irreducible polynomial of degree g. In such a
situation the divisor D3 will be prime and have residue class degree one. So, on
average, we expect to try at most g such random values of ¢ until we find a suitable
D3. One problem which arises is that the factor base will now include some ‘large’
primes. We shall see that this is not a problem later.

We now need to construct relations on the factor base. There are a number of
relations which come for free, for example the decomposition of the ramified primes
of Fy [z] gives relations, as does the decomposition of primes in F, [z] of degree less
than S; which split completely into prime divisors in K of residue class degree one.

The other relations we require are created using ‘random’ values of a(z) and b(z)
of degree less than S, and then determining the prime divisors in the support of
the function

¢ = a(z) + b(z)y.
If all such prime divisors lie in F, which mainly depends on whether the polynomial
Ny has all its irreducible factors having degree less than Sy, we can store the relation
and continue.

This last step can be speeded up using techniques from factoring algorithms such
as lattice sieving, see [21] for details in the context of the current paper. Lattice
sieving will allow us to hopefully force any rogue factor base element into a relation
and hence using lattice sieving increases the chances of getting a relation matrix of
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full rank. Indeed it is using lattice sieving which allows us to deduce relations on
the ‘large’ primes in the factor base which we produced above.

At this stage we meet with a problem, since the full relation lattice may not be
generated by elements in the function field of the specific form

¢ = a(z) + b(z)y.
This could cause our algorithm to fail to terminate and leads to one of the reasons
why our analysis below is only heuristic. However, in practice this can be overcome.
We choose many elements 8 € K (C), whose minimal polynomial, Cg(z, 8) over F, [z]

is non-singular. Each such € can be expressed as a polynomial in y and we can use
the curve defined by Cg(z,8) to find more relations of the form

a+ bl.

One would expect that if enough such 6 were chosen we would eventually cover the
entire relation lattice. Another advantage of this approach is to provide an inherent
parallelism for the computation. If the algorithm was to be distributed over a
network of workstations each workstation could sieve with a different polynomial
Co{z,8).

To simplify the complexity analysis below we shall, however, assume that a(z)
and b(z) are random polynomials of degree less than or equal to S». Since factoring
polynomials over finite fields (and hence factoring Ng) can be accomplished in
random polynomial time, see [3] and the discussion in [2], this is no theoretical
barrier to our method.

We will need to produce a little over #F such relations. However once this has
been accomplished the discrete logarithm problem can be solved using standard
matrix techniques. Given that our matrices will be sparse we can even apply sparse
matrix techniques. Since this step is common to all index calculus methods we shall
not explain it further here but see [5].

9.3. The Overall Complexity. We let N,(r, s) denote the number of monic poly-
nomials of degree less than or equal to r over F; which have all their irreducible
factors of degree less than or equal to s. The complexity will depend heavily on
the following result of Lovorn-Bender and Pomerance [14]

Theorem 18 (Lovorn-Bender and Pomerance). Let v = r/s and assume that 1 <
s < r. Then, uniformly for all prime powers such that ¢ > (r log® r)'/*, we have

Nqlr,s) = g" fult+o"
as s = 00 and u — 00.

We use this to analyse the probability that a randomly chosen pair of polyno-
mials, a(z) and b(z), of degree less than S, give rise to a relation as above. In our
situation this is given by taking r = & + nS; and s = S; in the above theorem.
Since n = O(d) we see that

1 log é _ (2logqlogd 172
s (8logd)1/2 ) ’
Hence the requirement that ¢ > (r log® r)!/* in our situation becomes, approxi-

mately,

(logr + log’r) =~ "

2logd
logg > (:Sg-
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In such a situation the probability of attaining a relation is approximately given by

S (140(1))r/5:
P <_1.> )

r

But we will need to generate roughly ¢°* relations so this will require approximately
T = ¢ P~} different random choices of a(z) and b(zx). We notice that

é ]
logT =~ Silogg+(1+ o(l))S—logS—1
1

1 51/2
< a(510g5)1/2logq+(1+o(1))%
= (dlogd)l/? (alogq+§%+o(l)>
= (y/2logq+ 0(1))(8logd)/?

To ensure we have enough random choices of a(z) and b(z) we will require that
¢*%2 > T which means that

2b(6log 8)*/? logq > log T.

And so, approximately,

b v2logg +o(1) 1
2logq = V2logq’

which certainly holds with the above choice of b. Since the time needed to factor
the polynomials Ny over F,[z] can be discounted the complexity of determining
enough relations is

0 (Le5(1/2, 2logq + 0(1))) :

All that remains is to estimate the time needed to perform the matrix step. If w
denotes the number of rows of a matrix then we let k denote the exponent such that
w* is the roughly proportional to the time needed to perform the matrix step. Since
our matrices are sparse we should be able to achieve k = 2, but for completeness

we let k be variable.
Our matrix has roughly ¢5' rows and so the matrix step should take roughly

q*S steps, which is
| O (Lus(1/2,ker)) .
Hence our overall complexity estimate is

O(L.s(1/2,0)),

where ¢ is given by
]
max ( 2logg +o(1),k 25—(1) .

So if sparse matrix techniques are used and k = 2 we obtain ¢ = v/2logq + o(1).
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