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COMPUTING THE p-SELMER GROUP OF AN ELLIPTIC

CURVE

Z. DJABRI, EDWARD F. SCHAEFER AND N.P. SMART

Abstract. In this paper we explain how to bound the p-Selmer group of an

elliptic curve over K, a number �eld. Our method is an algorithm which is

relatively simple to implement, although it requires data such as units and

class groups from number �elds of degree at most p2 � 1. Our method is

practical for p = 3 but for larger values of p becomes impractical with current

computing power. In the examples we have calculated, our method produces

exactly the p-Selmer group of the curve, and so one can use the method to �nd

the Mordell-Weil rank of the curve when the usual method of 2-descent fails.

Let E denote an elliptic curve, de�ned over K, a number �eld, which we assume

is given by an equation of the form

y2 = x3 + ax+ b:

It is a fundamental question as to how to determine the Mordell-Weil rank of such

curves. The standard method is to perform a descent type argument and to bound

the size of E(K)=mE(K) for some integer m. This is usually done by determining

the mth Selmer group, Sm(E=K) which contains E(K)=mE(K). In the literature

this method is only completely explained in the case m = 2, see [3] and [4], for

which very e�cient programs exist to carry out the computation, for example [7].

For other prime values ofm the method, as it is described, requires one to extend the

ground �eld to the minimal algebraic number �eld, L, which contains them-division

points, [18, VIII Lemma 1.1.1]. The Selmer group, Sm(E=L), is then determined

and not Sm(E=K). The structure of Sm(E=K), and hopefully generators of E(K),

can then be obtained using a Galois descent argument.

This is unsatisfactory for several reasons. If we rely on the use only of m = 2,

then we lay ourselves open to the problem that we may not be able to determine

the rank as the curve may have a non-trivial 2-part of the Tate-Shafarevich group,

X(E=K). Further descents, [10], can then be carried out but again this is only

completely explicit for the case m = 4. Alternatively one can make use of the

Cassels-Tate pairing onX(E=K), [5].

Extending to a number �eld L also gives rise to problems. For exampleX(E=L)
could have a nontrivial m-part whenX(E=K) does not. So we could in fact make

matters worse by extending the ground �eld. It is also somewhat against the spirit

of the exercise to compute the generators of E(K) given the generators of E(L).
In this paper we hope to remedy the situation by giving an explicit method to

compute an approximation to the m-Selmer group, Sm(E=K), of an elliptic curve

over K, for values of m which are prime. For the rest of the paper we shall take

m = p, a prime number. We shall not need to extend the �eld of de�nition of the
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elliptic curve, but we will need to perform arithmetic in the �elds of de�nition of

the points of order p.
Our method shall be based on that found in [15], to which we refer the reader

for further details and proofs of some of the results. That paper gives a general

algorithm for computing Selmer groups of Jacobians. The algorithm relies on two

assumptions. The �rst requires there to be a rational divisor class of degree rela-

tively prime to the exponent of the kernel of the isogeny. This is guaranteed in our

case by the fact that an elliptic curve has a rational point. The second assumption

is shown to hold for elliptic curves and multiplication by p maps in section 3.

Our method will be unconditional on any conjectures. For �xed p our method

will have a conjectured sub-exponential complexity in the size of a and b. It will

be exponential if we measure the complexity in terms of p. Throughout we shall

illustrate the method with explicit equations for the familiar case of 2-descent and

the perhaps unfamiliar case of 3-descent. We shall end with an example where we

compute the 3-Selmer group of an elliptic curve over Q. A preliminary report on

our method in the case p = 3 appeared in [8], we now take the opportunity to

include full proofs of the necessary results.

The method is practical for the case p = 3, but for p = 5 the number �eld data

required approaches the limit of current computing power and techniques. Further

advances in algorithms for computing class groups and unit groups of number �elds

should allow the range of applicability of our method to be extended.

We stress that our method is not to be used as the preferred choice for computing

the rank of a curve. However it, hopefully, �lls in a gap in the methods which

require that the group X(E=K) has no elements of order 2 or 4. We note that

when X(E=K) has elements of order 2 or 4 and E has a K-rational p-isogeny
for a small prime p, then it is better to do a descent by p-isogeny than by the

multiplication by p map described here. If p = 2 or p = 3 there are well developed

techniques for descent via p-isogeny, see [18] and [20]. If p > 3, then use [21] to �nd

the isogenous elliptic curve and [15] to do the descent. The second assumption of

[15] holds since the sizes of the kernel of the p-isogeny and its automorphism group

are relatively prime.

Throughout this paper we let K denote a �eld. For our applications K will be

either a number �eld or the completion of a number �eld. We let K denote an

algebraic closure. For a Gal(K=K)-module N we let N(K) denote the Gal(K=K)-

invariants. We use the point at in�nity as the group identity of E and denote it

O. We denote by E[p], the p-torsion subgroup of E, considered in some algebraic

closure. We let E(K)[p] denote the set of p-torsion points de�ned over the �eld K
and let L = K(E[p]).

We thank Michael Stoll for his helpful comments on an earlier draft of this article

and an anonymous referee for many useful comments.

1. The Selmer Group

In this and the next section, we let K be a number �eld and let r denote a place

of K, possibly in�nite. We let S denote the set of places of K which lie above the

prime p and the primes dividing the conductor of E. When p = 2, we also include

in S the set of real places of K. Clearly the set S will depend on the number

�eld K; to ease notation we will not make this dependence explicit but rely on the

context to convey which number �eld we are referring to.
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For an arbitrary �eld F and Gal( �F=F )-module N , we use H1(F;N) to denote

H1(Gal( �F=F ); N). We denote by H1(K;E[p];S), the subgroup of H1(K;E[p])
consisting of the cocycle classes that are unrami�ed away from S. We let � denote
the coboundary map from E(K) to H1(K;E[p]); it has kernel pE(K). Its image

is contained in H1(K;E[p];S). For any place r we let Kr denote the completion

of K at r and let �r denote the coboundary map from E(Kr) to H
1(Kr; E[p]), this

map has kernel pE(Kr). We let �r denote the restriction map from H1(K;E[p]) to
H1(Kr; E[p]).

We obtain the following commutative diagram.

E(K)=pE(K)
�
,! H1(K;E[p];S)

# #
Q

�sQ
s2S

E(Ks)=pE(Ks)

Q
�s

,!
Q
s2S

H1(Ks; E[p])

The p-Selmer group is de�ned to be

Sp(E=K) =
\
s2S

��1
s (�s(E(Ks)=pE(Ks))):

Clearly the image of E(K)=pE(K) in H1(K;E[p];S) is contained in Sp(E=K).

However we will require the consideration of the equivalent, but on �rst sight

weaker, commutative diagram

E(K)=pE(K)
�
,! H1(K;E[p];S)

# #
Q

�rQ
E(Kr)=pE(Kr)

Q
�r

,!
Q
H1(Kr; E[p])

where the products are now over all places, r, of K.

As it is di�cult to work in the group H1(K;E[p];S), we will instead work in

a group containing its isomorphic image, in which it is easier to do computations.

This group will be the quotient of the multiplicative groups of a product of number

�elds. Let us de�ne this group. When p 6= 2 we let  p(�) denote the pth division

polynomial and then let g(�; �) = �2��3� a�� b. We can then de�ne the algebra

A = K[�; � ]=( p(�); g(�; �)):

In other words we let (�; �) denote a generic point of order p. When p = 2 we de�ne

the algebra A by

A = K[�]=(�3 + a� + b);

since the generic point of order 2 is given by (�; 0).
Here we establish a map from the cohomology group to a quotient of the units

in A. Let A0 = A
K K. Let w denote the map

w : E[p]! �p(A
0) by R 7! ep(R; (�; �))

where ep denotes the p Weil pairing. Since A0 is isomorphic to a product of p2 � 1

copies of K, this is essentially the Weil pairing of R with all p2�1 points of order p
(see [15]). The map w is de�ned over K. Let coker denote the group which makes

the following an exact sequence of Gal( �K=K)-modules,

0! E[p]
w
! �p(A

0)! coker ! 0:
3



Let w denote the induced map from H1(K;E[p]) to H1(K;�p(A
0)). We shall also

make use of the Kummer map, which de�nes the following isomorphism,

k : H1(K;�p(A
0))! A�=A�p:

Now we have a map from E(K)=pE(K) to A�=A�p. Though the group A�=A�p

is easier to work in, the map k � w � � is not straightforward. So we would like to

replace that map also.

We let f 2 K(�; �)(E) denote a function on E whose divisor is p(�; �)�pO. This
can be computed via the method in [9, Chapter 5], which we describe in section 2.

There is an isomorphism of E with its degree 0 divisor classes by R 7! [R�O], where
brackets denote a divisor class. This map induces an isomorphism of E(K) and

the K-rational divisor classes. Every K-rational divisor class of degree 0 contains

a K-rational divisor of the form
nX
i=1

Pi �

nX
i=1

Qi;

where Pi; Qi 2 E(K) can be chosen to avoid any given �nite set. We use f to

de�ne a map on the K-rational degree 0 divisor classes instead of on E(K). Let

R 2 E(K). Let D be a K-de�ned divisor of degree 0 whose support is disjoint from

the support of f with the property that D is linearly equivalent to R�O. We let

F (R) = f(D). As is shown in [15], this is a well-de�ned group homomorphism from

E(K)=pE(K) to A�=A�p. In addition, F is equal to the composition k �w � �. For
r a prime of K, let Ar = A 
K Kr. We can similarly de�ne maps wr, wr, kr and
Fr. We also have Fr = kr � wr � �r.

At this point, we can write down a similar commutative diagram to the one we

traditionally think of for computing a Selmer group. We have

E(K)=pE(K)
F
! A�=A�p

# #
Q

�rQ
E(Kr)=pE(Kr)

Q
Fr
!

Q
A�

r=A
�p
r

where the products are over all primes r of K. We can improve on this. We can

write A as a product of number �elds
Q
Li. For each i, let Li(S; p) denote the

subgroup of elements of L�
i , modulo pth powers, with the property that if we adjoin

the pth root of such an element to Li, we get an extension unrami�ed outside of

primes in S. These groups can be computed in conjectured sub-exponential time

(with p �xed) using an obvious generalization of the method in [17]. Let A(S; p)
denote

Q
Li(S; p); it is a �nite group. We have the following commutative diagram.

E(K)=pE(K)
F
! A(S; p)

# #
Q

�rQ
E(Kr)=pE(Kr)

Q
Fr
! A�

r=A
�p
r

The group \
r ofK

��1
r (Fr(E(Kr)=pE(Kr)))

contains a quotient of the p-Selmer group. This is not satisfactory for three reasons:

the quotient, the containment and the fact that there are in�nitely many primes to

check. We will address all three of these problems but only satisfactorily resolve the

�rst and to some extent, the third. In section 3, we will show that the maps F and
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Fr are always injective. Thus that intersection will, in fact, contain the p-Selmer

group, not another quotient. In section 4, we will replace A(S; p) by a somewhat

smaller group and the new intersection will still contain the p-Selmer group. Then

we will show that we can compute the same intersection by using a �nite subset of

the primes of K.

2. The map F

In this section, we compare the two kinds of functions that have been tradition-

ally used to do descents and describe a practical algorithm for computing one of

them. Recall f is a function, de�ned over K, with divisor p(�; �) � pO. We notice

that f is only de�ned up to a constant multiple. Since F is de�ned on degree

zero divisors, that constant does not matter. We can �x this multiple of f so that

f � [p] = gp, where g 2 K(�; �)(E). When f has this property, we denote it by f .

Then, when R 2 E(K) is not in the support of f , we have F ([R�O]) = f(R). (see

[18, pp. 278, 320]). The advantage of using such an f is the following. When R is

not in the support of the divisor of f , then we can simply compute f(R) instead of

�nding a K-de�ned divisor linearly equivalent to R�O on which f is well-de�ned.

The disadvantage is the necessity of determining the correct constant multiple. If

found, one still needs to �nd linearly equivalent divisors when R is in the support

of the divisor of f . Thus, in practice, �nding such an f may not be so useful.

Here are two examples.

p = 2

When p = 2 we have, as mentioned before,

A = K[�]=(�3 + a� + b):

Let P denote a generic 2-torsion point, i.e. P = (�; 0). Then the divisor of the

function x� � is 2P � 2O, so we take f = x� �. We note that f � [2] is, indeed, a

square in K(�)(E) (see [18, p. 280]). Thus we can use f directly on points of E(K)

outside of E[2]. We have

F :

�
E(K)=2E(K) �! A�=A�2

(x; y) 7�! x� � when y 6= 0:

Let x1; x2; x3 be the roots of x3 + ax + b and assume that x1 2 K. From [13] we

also have

F : (x1; 0) 7�! (x1 � �) + (x2 � �)(x3 � �):

We hence recover the classical method of 2-descent which is explained in [4] and

[18].

p = 3

When p = 3 we have

A = K[�; � ]=( (�); g(�; �))

where

 (�) = 3�4 + 6a�2 + 12b� � a2;

g(�; �) = �2 � �3 � a� � b:

The algebra A decomposes into a sum of number �elds, A =
Pn

i=1 Li, and if we

assume that E possesses no rational 3-isogeny we have n = 1 or 2. We then de�ne

f(x; y) = �2�(� � y) + (3�2 + a)(� � x) (mod A�3);
5



which is a function such that div(f(x; y)) = 3(�; �)� 3O, as the line �2�(� � y) +
(3�2+ a)(��x) = 0 is the tangent line to E at an a�ne in
ection point (�; �) (i.e.
a non-trivial 3-torsion point). The map F : E(K)=3E(K)! A�=A�3 is given by

F :

�
E(K)=3E(K) �! A�=A�3Pn
i=1 Pi �

Pn
i=1Qi 7�!

Qn
i=1 f(Pi)=f(Qi)

where
Pn

i=1 Pi �
Pn

i=1Qi is a K-de�ned divisor, whose support is disjoint from

points in E[3] and which is linearly equivalent to R � O where R 2 E(K) is the

point whose image we want.

At this point let us discuss algorithms for �nding linearly equivalent divisors

avoiding certain points. Suppose we are given a point R 2 E(K). We will need

a method to �nd a divisor linearly equivalent to the divisor R �O that avoids all

points in the support of f .
If R is not a p-torsion point or a 2-torsion point then we proceed as follows.

Setting P1 = [2]R we obtain

[R�O] = [P1 �R] ;

as required. We now assume that R is a p-torsion point or a 2-torsion point. We

�nd a line through �R and some K-rational point S (which does not need to lie

on the curve). This line should not pass through any (other) p-torsion point. We

then let P1 and P2 denote the two other points of intersection of this line with the

curve. Let c denote an element in the �eld, K, which is not the x-coordinate of a
p-torsion point. We then de�ne two points Q1 = (c; d) and Q2 = (c;�d) of E; it
does not matter whether d is in K as the set fQ1; Q2g is K-rational. We have

[R�O] = [P1 + P2 �Q1 �Q2] ;

and f can be evaluated on the divisor on the right.

p > 3

For larger values of p, while it is possible to compute an explicit function such as

those above, this is probably not a good idea. Instead we can use the following

adaption of an algorithm of Miller, [11] and [9].

Let Q = (�; �) 2 E(A) denote the generic point of order p considered above. We

wish to carry around another piece of information with points in E(A)[p], which

we shall represent as a third coordinate (we stress that this is not a projective

representation). We set (P1; f1) = (P2; f2) = (Q; 1). We can then compute [p](Q; 1)
using an addition chain (or binary) method using the following function Add.

Add

DESCRIPTION:Modified addition algorithm

INPUT: Two pairs (P1; f1), (P2; f2) with Pi 2 E[p] and fi 2 K(�; �)(E).
OUTPUT: The sum (P3; f3)

1. Set P3 = P1 + P2 using the usual addition formulae on the curve.

2. Let l(X;Y ) 2 K(�; �)[X;Y ] be such that l(X;Y ) = 0 is an equation of

the line through P1 and P2. Let x and y denote the coordinate

functions on E then l(x; y) 2 K(�; �)(E).
3. Let v(x) = x� x(P3) if P3 6= O and v(x) = 1 if P3 = O.

4. Put f3 = f1f2l(x; y)=v(x).
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The divisor of the function l(x; y)=v(x) is P1+P2�P3�O. At the end of a given

iteration, let P3 = [n]Q, with 2 � n � p. Then, by induction, the divisor of f3 is

nQ� [n]Q� (n� 1)O. When P3 = [p]Q = O, then f = f3 is the required element

in K(�; �)(E). We note that the divisor of f is indeed pQ � pO. In practice, it

is not necessary to simplify f in the function �eld. Here we present a good way

to evaluate f . We can store the l's and v's from the above algorithm with their

appropriate exponents. To evaluate f on a divisor class, we must �nd a K-rational

divisor in that class whose support is disjoint from the supports of the divisors of

all of the l's and v's (which contain only p-torsion points). Then we can evaluate

each l and v on that divisor and get numbers which we multiply together with the

appropriate exponents. This requires little storage and avoids the di�cult symbolic

manipulations required to �nd a representation of f in the function �eld which can

be evaluated on any point other than O and Q.

3. The map H1(K;E[p])
w
! H1(K;�p(A

0))

In this section we let K be a number �eld or the completion of a number �eld.

The map F is equivalent to k � w � �. The maps � and k are injections. So if w is

an injection then F is also. We show that in the case under consideration, that of

elliptic curves and the multiplication by p map, that w is always an injection. This

is the second assumption of [15]. Those readers who are prepared to take this fact

on trust can skip this section if they wish. See [1] as a reference on the results from

group cohomology that we will use. This result has been shown for p = 2 in [13],

so we will assume that p is odd.
The following two sequences are exact. Recall L = K(E[p]).

0! E[p](K)
w
! �p(A

0)(K)! coker(K)!

H1(Gal(L=K); E[p])! H1(Gal(L=K); �p(A
0))

and

0! E[p](K)
w
! �p(A

0)(K)! coker(K)! H1(K;E[p])
w
! H1(K;�p(A

0)):

We will show that H1(Gal(L=K); E[p]) maps injectively into

H1(Gal(L=K); �p(A
0)). Therefore �p(A

0)(K) maps surjectively onto coker(K) and

so the map H1(K;E[p])
w
! H1(K;�p(A

0)) is injective.

Lemma 1. If p does not divide #Gal(L=K) then w is injective.

Proof. Since the orders of Gal(L=K) and E[p] are co-prime, H1(Gal(L=K); E[p]) =
0.

From now on we assume that p divides the order of Gal(L=K). We know

Aut(E[p]) �= GL(2; Fp ) and #Aut(E[p]) = p(p � 1)2(p + 1). Let Sy be a p-Sylow
subgroup of Gal(L=K).

Lemma 2. If Sy is not normal in Gal(L=K) then Gal(L=K) contains SL(2; Fp ).

Proof. [16, Proposition 15]

Lemma 3. H1(SL(2; Fp ); E[p]) = 0.
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Proof. Let h�1i denote the group generated by the negative of the identity matrix.

Let J denote the quotient of SL(2; Fp ) by h�1i. The in
ation-restriction sequence

then is

0! H1(J;E[p]h�1i)! H1(SL(2; Fp ); E[p])! H1(h�1i; E[p]):

Since E[p]h�1i is trivial and the orders of E[p] and h�1i are co-prime, the �rst and

third cohomology groups are trivial. Thus the second one is also.

Lemma 4. If Sy is not normal in Gal(L=K), then w is injective.

Proof. From Lemma 2, if Sy is not normal in Gal(L=K) then SL(2; Fp ) is normal

in Gal(L=K) since it is the kernel of the determinant on Gal(L=K). Let J denote

the quotient of Gal(L=K) by SL(2; Fp ). We have the following in
ation-restriction

sequence

0! H1(J;E[p]SL(2;Fp))! H1(Gal(L=K); E[p])! H1(SL(2; Fp ); E[p]):

Since E[p]SL(2;Fp) is trivial, the �rst cohomology group is trivial. From Lemma 3,

the third cohomology group is trivial. Thus the second one is also.

Lemma 5. If Sy = Gal(L=K), then w is injective.

Proof. Let Sy be generated by �. Let N be a Sy-module. Since Sy is cyclic, the

group H1(Sy;N) is isomorphic to Ĥ�1(Sy;N). The latter group is the quotient of

the kernel of Norm� on N by the image of �� 1 on N . When N = E[p], the kernel
of Norm� is all of E[p] and the image of ��1 is E[p]Sy. It is then a straightforward

veri�cation that the image of a non-trivial element in Ĥ�1(Sy;E[p]) is not in the

image of � � 1 on �p(A
0).

Lemma 6. If Sy is normal in Gal(L=K), then w is injective.

Proof. Let J denote the quotient of Gal(L=K) by Sy and let m be a Gal(L=K)-

module of exponent p. We have the following extended in
ation-restriction sequence

0! H1(J;mSy)! H1(Gal(L=K);m)! H1(Sy;m)J ! H2(J;mSy):

Since p does not divide the size of J , we have H i(J;mSy) = 0 for all i. Thus

H1(Gal(L=K);m) �= H1(Sy;m)J . From Lemma 5, H1(Sy;E[p]) maps injectively

to H1(Sy; �p(A
0)). This still holds when we compute J-invariants. Thus

H1(Gal(L=K); E[p]) maps injectively to H1(Gal(L=K); �p(A
0)).

Proposition 7. Let K be a number �eld or the completion of a number �eld. The

map F from E(K)=pE(K) to A�=A�p is injective.

Proof. The map w has been shown to be injective in all possible cases in Lemmas 1,4

and 6.

4. The image of H1(K;E[p];S) in A(S; p)

In this and the next section, we again let K be a number �eld. Since the map

w is injective (see section 3), we can embed H1(K;E[p];S) in A(S; p) � A�=A�p.

The image of H1(K;E[p];S) in A(S; p) is equal to

U = KerfA(S; p)! H1(K; coker)g:

Here we run into a (possible) obstruction to computing the Selmer group. We

need to �nd U . Let us �rst assume that we want to �nd U before doing local
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computations. The only algorithm that the authors are aware of would be tedious

for p > 2. Note A(S; p) is a �nite group contained in H1(K;�p(A
0)). We can �nd

an explicit description of the map w from E[p] to �p(A
0) and hence an explicit de-

scription of the map from �p(A
0) to coker. Now we want to determine if an element

of A(S; p) maps trivially to H1(K; coker). We can pick a cocycle representing the

element of A(S; p). We know that it factors through the �nite group Gal(M=K)

where M is the maximal abelian p-extension of L = K(E[p]) that is unrami�ed

outside of primes in S. We can then check to see if this cocycle is a coboundary

going from the �nite group Gal(M=K) to the �nite group coker. If we do the above,

then we will not create an obstruction to computing the Selmer group. We have

the following commutative diagram.

E(K)=pE(K)
F
,! U

# #
Q

�sQ
s2S

E(Ks)=pE(Ks)

Q
Fs
,!

Q
s2S

A�
s=A

�p
s

We note that

Sp(E=K) �=
\
s2S

��1
s (Fs(E(Ks)=pE(Ks))):

The main problem here seems how to e�ciently write down all the cocycles from

Gal(M=K) to �p(A
0) and then test which ones are coboundaries. The only tech-

nique known to us is e�ective but akin to exhaustive search and therefore totally

impractical.

If we want to avoid the above computation, then we can at least replace A(S; p)
by a smaller group as we see in the following proposition.

Proposition 8. We have

U � G = KerfNA=K : A(S; p)! K�=K�p
g:

Proof. We identify A(S; p) with a subgroup of H1(K;�p(A
0)), and K�=K�p with

H1(K;�p( �K)). Recall that coker = �p(A
0)=w(E[p]). The norm map is trivial on

the image of E[p] since the Weil pairing is additive and we are pairing with all

non-trivial elements of E[p]. Thus we can restrict the norm map

N : �p(A
0)! �p( �K)

to coker in an obvious way. Hence there is an induced norm map

N 0 : H1(K; coker) �! H1(K;�p( �K));

and the composition of N 0 and the map A(S; p) ! H1(K; coker) commutes with

NA=K . Thus any element of U is contained in G.

For p = 2, we note that U = G (see [13, p. 220]).

4.1. Using G instead of U . Let us assume that we will start our computations

by �nding G and not U . So we can assume that p is odd. We have the following

commutative diagram

E(K)=pE(K)
F
,! G

# #
Q

�rQ
E(Kr)=pE(Kr)

Q
Fr
,!

Q
A�

r=A
�p
r
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where the products are over all primes r of K. Let

Zp(E=K) =
\
��1
r (Fr(E(Kr)=pE(Kr))):

We note Sp(E=K) is contained in Zp(E=K). We will present an example in sec-

tion 6 where they are equal. In Corollary 12 we show that we can intersect over

a �nite set of primes of K and still get Zp(E=K). Readers who are only inter-

ested in implementing the algorithm can skip the rest of this section and just read

Corollary 12, since in practice we will only compute Zp(E=K).

For a prime t of K, let Mt denote the completion of M at a prime over t.

Lemma 9. Letm be one of the Gal(K=K)-modules E[p], �p(A
0) or coker. We have

H1(K;m;S) �= H1(Gal(M=K);m). For any prime t 2 S we have H1(Kt;m) �=
H1(Gal(Mt=Kt);m) and for t 62 S we have H1(Gal(Kunr

t =Kt);m)
�= H1(Gal(Mt=Kt);m).

Proof. Note L = K(E[p]) = K(�p(A
0)) � K(coker). We have the following

in
ation-restriction sequence

0! H1(Gal(L=K);m)! H1(Gal(K=K);m;S)! Hom(Gal(K=L);m):

Consider the restriction of a cocycle inH1(Gal(K=K);m;S) to Hom(Gal(K=L);m).

Since m has exponent p, this restricted map is trivial on Gal(K=M). The proofs

for the local cases are similar.

For the remainder of this section, we will replace the cohomology groups on

Gal(K=K) by Gal(M=K), and on Gal(Kt=Kt) by Gal(Mt=Kt). Note that for

t 62 S, this is in order since the images of both E(Kt)=pE(Kt) and H
1(K;E[p];S)

in H1(Kt; E[p]) are contained in the subgroup H1(Gal(Kunr
t =Kt); E[p]). By abuse

of notation, let �t also denote the map

�t : H
1(Gal(M=K); �p(A

0)) �! H1(Gal(Mt=Kt); �p(A
0)):

Assume that t and v are primes of K, outside of S, with the same splitting

behaviour inM . This means that the conjugacy classes of decomposition subgroups

of primes over t and of primes over v are the same. Choose an isomorphism � :
Gal(Mt=Kt) ! Gal(Mv=Kv) such that if � 2 Gal(Mt=Kt) and P 2 E[p], then
�(P ) = (��)(P ). Note, by the de�nition of �p(A

0), that if � 2 Gal(Mt=Kt) and

� 2 �p(A
0), then �(�) = (��)(�). The map � induces isomorphisms on cohomology

groups and the following is a commutative diagram.

E(Kt)=pE(Kt) E(Kv)=pE(Kv)

# #

H1(Gal(Mt=Kt); E[p])
�
! H1(Gal(Mv=Kv); E[p])

# wt # wv

H1(Gal(Mt=Kt); �p(A
0))

�
! H1(Gal(Mv=Kv); �p(A

0))

" �t % �v

H1(Gal(M=K); �p(A
0))

(1)

Lemma 10. Let t be a prime of K outside of S. The map from E(Kt)=pE(Kt) to

H1(Gal(Mt=Kt); E[p]) is an isomorphism.

Proof. Since E(Kt)=pE(Kt) maps injectively into H1(Gal(Mt=Kt); E[p]), it suf-

�ces to show that they have the same size. Since t does not lie over p, the

sizes of E(Kt)=pE(Kt) and E(Kt)[p] are the same (see Lemma 14). The group

10



Gal(Mt=Kt) is cyclic of order pn and generated by some �, where n is some pos-

itive integer. Therefore, the group H1(Gal(Mt=Kt); E[p]) has the same size as

Ĥ0(Gal(Mt=Kt); E[p]). The latter group is the quotient of the kernel of � � 1 on

E[p] by the image of Norm� . The kernel of � � 1 is E(Kt)[p] and the image of

Norm� is trivial.

Proposition 11. Assume that t and v are primes of K, outside of S, with the

same splitting behaviour in M . Let g denote a cocycle class in H1(K;�p(A
0);S).

Then �t(g) is in the image of E(Kt)=pE(Kt) if and only if �v(g) is in the image

of E(Kv)=pE(Kv)

Proof. This follows from Lemma 10 and a diagram chase in diagram (1).

Let T be a set of primes of K that contains S and one prime outside S with each

possible splitting behaviour in M .

Corollary 12. We have

Zp(E=K) =
\
r2T

��1
r (Fr(E(Kr)=pE(Kr))):

Proof. This follows immediately from Proposition 11.

The previous corollary makes the computation of Zp(E=K) a �nite task. The

group Zp(E=K) contains the desired group Sp(E=K).

5. The p-Descent Algorithm

Our �rst task is to �nd a basis for A(S; p), considered as a vector space over Fp .

As noted earlier, this can be done, assuming �xed p, in conjectured sub-exponential

time using a simple adaptation of the method in [17]. However, we note that since

the algebra A is created using relative extensions, the relevant number �eld data

could be created using relative algorithms such as those in [6]. This last paper is

particularly relevant since the algebra, A, is a relative quadratic extension of the

algebra K[�]=( p(�)), when p is odd.
Earlier we de�ned S as the set of primes of K lying above p, those dividing the

conductor of E, and if p = 2, the real primes also. However, we note that we can

remove from S �nite primes s, not lying over p, for which p does not divide the

Tamagawa number E(Ks)=E
0(Ks) (see [14, x3]).

Then we make a decision and compute U or G, as described in section 4. In

practice the group G is easier to �nd, even though this may add an obstruction to

our method for computing the Selmer group.

If we are using the group U , then we can take T = S. If we are using G, we
determine, if possible, the set of primes T , which will consist of the primes in S plus

one prime outside S for each possible splitting behaviour in the �eld M . This may

be a di�cult task due to the possibly large degree of the �eld M . We shall note

below that it is possible to take random primes in turn until one obtains no further

reduction in the size of the group. This is particularly e�ective if after a few such

primes we already �nd a group whose size is equal to a known lower bound on the

size of the Selmer group.

Then we �nd bases for the groups A�
t =A

�
t
p for each prime t in T . We then

describe the maps �t from A(S; p) to A�
t =A

�
t
p in terms of bases of each. In order

to do this, we must decide which elements of A�
t are pth powers. We know that At

11



is a product of completions of number �elds; let Lt be one of those factors of At.

Given an element � 2 Lt, we need to determine if � is a pth power in Lt. If t is an

in�nite place then the solution is trivial, so we assume that t is �nite. Clearly we

can reduce the problem to the case where vt(�) = 0. We assume that t lies above

the rational prime t. The problem is resolved using the following lemma.

Lemma 13. Let � 2 L�
t with vt(�) = 0 and let

r =

�
1 vt(p) = 0;

bet=(t� 1)c+ et + 1 vt(p) 6= 0:

Then � is a pth power in L�
t if and only if � is a pth power modulo t

r.

Proof. The case where vt(p) = 0 follows from Hensel's Lemma. Applying Hensel's

Lemma in the case vt(p) 6= 0 would lead us to r = 2et + 1. The improved bound

given in the Lemma we deduce using the following argument.

If � is a pth power in L�
t , then, since reduction modulo t

r is a homomorphism,

� is a pth power modulo t
r.

Conversely, suppose that � is a pth power modulo t
r, and let � denote a uni-

formizing parameter for L�
t . We have � = bp + b0�r where b is a unit and b0 is an

integer in Lt. So if we set 
 = �=bp, we obtain 
 = 1 + c0�r with c0 an integer in

Lt. Clearly it su�ces to show that 
 is a pth power in L�
t .

Recall that log(1+z) is convergent in L�
t when vt(z) > 0, so we �nd that log 
 =

log(1+c0�r) is well de�ned. Further exp(z) converges in L�
t when vt(z) > et=(t�1),

and in such a situation we have vt(log(1 + z)) = vt(z). Therefore

vt

�
log 


p

�
= vt

�
log(1 + c0�r)

p

�

= vt(c
0�r)� vt(p) � r � vt(p)

> et=(t� 1);

since vt(p) = et. So exp(
1
p
log 
) converges in L�

t , and hence 
1=p 2 L�
t , as required.

If the value of r from this theorem is equal to 1, then the problem can be solved

by polynomial factorization techniques over �nite �elds. However if r > 1, then we

need to lift the solution modulo t to a solution modulo t
2; : : : ; tr. However there

may not be unique lifts as Hensel's Lemma does not apply in the range of r under
consideration. This means we need to apply a technique like that in [12].

Let us return to the larger algorithm. We then �nd a representation for F as

described in section 2. At this point we require the enumeration of groups of the

form E(Kt)=pE(Kt). We can compute the order of such groups using the following

result.

Lemma 14.

� If pjp then #E(Kp)=pE(Kp) = p[Kp:Qp]#E(Kp)[p].
� #E(R)=2E(R) = #E(R)[2]=2.
� If t does not divide p or 1 then #E(Kt)=pE(Kt) = #E(Kt)[p].

Proof. See [15].

Given we know the order of #E(Kt)=pE(Kt) for some prime t ofK, to enumerate

such a group we need to select random elements in E(Kt). We use the injective maps

Ft : E(Kt)=pE(Kt) ,! A�
t =A

�
t
p to determine the size of the group generated by the

12



chosen elements of E(Kt). A deterministic algorithm for �nding the generators

can also be created along the lines of that in [19], which for �xed p and K will

not a�ect any overall complexity estimate depending only on the coe�cients of E.
In practice, when K = Q, generators are not di�cult to �nd. This part is also

simpli�ed by the fact that the required groups are usually cyclic.

Now we have found the groups E(Kt)=pE(Kt) and have mapped them, via Ft,

to A�
t =A

�p
t . We then intersect their inverse images through ��1

t and get Sp(E=K)

or Zp(E=K).

If our primary goal is in �nding E(K)=pE(K), and we started with G instead

of U , then we may not need to use all primes of T or even �nd a full set of primes

making T . We can �nd one prime at a time in T (starting, perhaps, with primes

in S). Then we �nd the inverse image of Ft(E(Kt)=pE(Kt)), for each prime, and

intersect each with the previous ones. After using only a non-trivial subset of T ,
the intersection may have the same size as the subgroup of E(K)=pE(K) generated

by known points of E(K). Of course the image of E(K)=pE(K) in A(S; p) is

contained in this intersection. Thus at this point we could quit as we would have

found E(K)=pE(K).

6. Example

We present an example to illustrate the methods of the previous sections. We

show that the 3-Selmer group of the elliptic curve

E : y2 = x3 + 12x� 35

over Q has dimension 0 as an F3 -vector space. This example is interesting be-

cause the 2-Selmer group has dimension 2 as an F2 -vector space which shows (as

E(Q)tors = 0) that the 2-part of the Tate-Shafarevich group has dimension 2.

We �rst carried out a 2-descent using mwrank, [7]. This proved ine�ective, for

although we found that the 2-Selmer group has dimension 2 as an F2 -vector space,

the program was unable to determine whether the associated homogeneous spaces

actually had a rational point, even after a couple of hours of computing time. Thus

we were unable to determine the rank.

We are able to resolve this using our descent algorithm for p = 3. Let us �nd

the algebra A. The third division polynomial for E is 3(x4 + 24x2 � 140x � 48).

The roots are the x-coordinates of the 3-torsion points. Denote a root by �. Then
�2 = �3 + 12� � 35 is the square of the corresponding y-coordinates. We �nd

�8 � 280�6 + 26658�4 � 59220747 = 0. Since x8 � 280x6 + 26658x4 � 59220747 is

irreducible over Q, we see Q(�) is isomorphic to the algebra A. Note, for other

elliptic curves, the octic polynomial produced by this method can be non-separable

over K and other techniques must be used to describe the algebra A as a product

of number �elds.

To simplify the computations, we note that the �eld Q(� ) is isomorphic to the

�eld obtained by adjoining to Q a root � of

z8 � 4z7 + 7z6 � 7z5 � 68z4 + 143z3 � 288z2 + 216z � 486;

the isomorphism being given by

� 7! 1=5211(�7 � 644�6 + 580�5 + 160�4 � 13976�3 + 20482�2 + 288�� 3537):

The generic point of order 3 has coordinates (�; �), where � is as above and

� = 1=27(�6 � 3�5 + 4�4 � 3�3 � 71�2 + 72�� 162):
13



The function f(x; y), as described in section 2, is given by

(2316�6 � 6948�5 � 1158�4 + 13896�3 � 185280�2 + 177174�+ 125064)x

+(368�7 � 1288�6 + 1160�5 + 320�4 � 27952�3 + 40964�2 + 576�� 7074)y

�6176�6 + 18528�5 � 31652�4 + 32424�3 + 487132�2 � 500256�+ 2178198:

Using PARI/GP, [2], we note that the class group of A is trivial and the unit

group has rank 4 and torsion f�1g. The primes dividing the conductor of E are 2,

3 and 1481. However, the Tamagawa numbers at 2 and 1481 are both 1. So as the

set S, we simply take S = f3g. The ideal (3) splits in the following manner in A,

(3) = p
2

1
p
2

2
p
2

3
p4p5;

where p1; : : : ; p5 all have norm 3. We see that A(S; 3) has dimension 9 as an

F3 -vector space, and the group

G = KerfNA=Q : A(S; 3)! Q�=Q� 3
g

has dimension 8.

We can demonstrate that Z3(E=Q) = 0 by �nding a set of primes P for which

the largest subgroup of G that maps to the image of Fp for all p 2 P is trivial. We

�nd that the set of primes

P = f5; 7; 11; 17; 23; 29; 31g

has this property. These primes simplify the computation since at each of these

primes, the group E(Qp )=3E(Qp ) is trivial. We can conclude that S3(E=Q) =

0, and that the rank of the curve is 0. Thus we deduce that the dimension of

X(E=Q)[2] is indeed 2.

Notice that in this example we have used primes outside of S to determine the

Selmer group. This does not occur in the better-known case of computing 2-Selmer

groups for elliptic curves.
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