
Evaluating Content Management
Techniques for Web Proxy Caches

Martin Arlitt, Ludmila Cherkasova, John Dilley,
Richard Friedrich, Tai Jin
Internet Systems and Applications Laboratory
HP Laboratories Palo Alto
HPL-98-173
April, 1999

E-mail: [arlitt,cherkasova,jad,richf,tai]@hpl.hp.com

World-Wide Web,
proxy caching,
replacement policies,
trace-driven
simulation,
virtual caches

The continued growth of the World-Wide Web and the
emergence of new end-user technologies such as cable
modems necessitate the use of proxy caches to reduce
latency, network traffic and Web server loads. Current
Web proxy caches utilize simple replacement policies to
determine which files to retain in the cache. We utilize
a trace of client requests to a busy Web proxy in an ISP
environment to evaluate the performance of several
existing replacement policies and of two new,
parameterless replacement policies that we introduce
in this paper. Finally, we introduce Virtual Caches, an
approach for improving the performance of the cache
for multiple metrics simultaneously.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

the

li-

an

-

eb
e
le
is
re
sed
ay
ss
ion
nd

ral
re

in a
ith
nd
ent
tion

g.
o
le
yte
to
to

e
his

che
he

s

s of
r of
ies
en
r

Evaluating Content Management Techniques for Web Proxy Caches
Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich and Tai Jin

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

{arlitt, cherkasova, jad, richf, tai}@hpl.hp.com
1. ABSTRACT
The continued growth of the World-Wide Web
and the emergence of new end-user technolo-
gies such as cable modems necessitate the use of
proxy caches to reduce latency, network traffic
and Web server loads. Current Web proxy
caches utilize simple replacement policies to
determine which files to retain in the cache. We
utilize a trace of client requests to a busy Web
proxy in an ISP environment to evaluate the
performance of several existing replacement
policies and of two new, parameterless replace-
ment policies that we introduce in this paper.
Finally, we introduce Virtual Caches, an
approach for improving the performance of the
cache for multiple metrics simultaneously.

2. INTRODUCTION
World-Wide Web requests have continued to grow at an
exponential rate and are already the dominant workload
component for Internet traffic [21]. The implications of this
are clear: without good systems design network elements
and servers will become bottlenecks. Since the majority of
Web objects are static, caching them at HTTP proxies can
reduce both network traffic and response time. HTTP proxies
serve as intermediaries between the client browser and origin
Web servers, which may be geographically distant.
However, current Web proxy cache servers are achieving
relatively low hit rates and contribute additional delays to
servicing Web requests.

Our research has focused on developing a quantitative
understanding of Web traffic and its implications on server
and network design. These quantitative results yield insights
into the behavior of current proxy caches and identify
improvements for next generation caching.

In general the research described in this paper addresses
following questions:

• How effective are current proxy cache replacement po
cies for real workloads?

• What new replacement policies and approaches c
improve cache effectiveness?

• How will higher speed access networks affect work
loads?

The results in this paper are based on the most extensive W
proxy workload characterization yet reported in th
literature. All subscriber client Web accesses from a sing
ISP were measured for a duration of five months. During th
period 115 million requests for 1.3 terabytes of data we
measured and analyzed. Furthermore, all clients acces
this proxy using high-speed cable modems. This study m
therefore provide a glimpse of future Web traffic as acce
network speeds increase. The workload characterizat
itself is not described in detail in this paper but can be fou
in [3].

Through our workload study we have discovered seve
characteristics that affect proxy caches. Six of these a
discussed in this paper. We use these characteristics
simulator to evaluate current cache replacement policies w
respect to two important performance metrics: hit rate a
byte hit rate. These two metrics correlate to decreased cli
response time and decreased backbone network utiliza
respectively. Both reduce the origin server load.

This paper extends our previous results with the followin
From insights gained from the workload we developed tw
new replacement policies that are optimized for a sing
metric and achieve the best performance for hit rate and b
hit rate. These new replacement policies utilize frequency
achieve higher performance but are neither susceptible
cache pollution nor require parameterization. Finally, w
developed a new approach to Web cache management. T
novel approach uses a number of virtual caches (i.e., ca
partitions) to improve the global performance of the cac
across multiple metrics simultaneously.

Our workload characterization study [3] builds on previou
work in this area [10][12]. We use the identified
characteristics to evaluate the strengths and weaknesse
different replacement policies. There have been a numbe
recent efforts to design more effective replacement polic
for Web caches [6][17][23][24]. These studies have be
limited to either short-term traces of busy proxies [6] o

he
L,
the
ta
te
by

e
no

ch
on
le.

P
lient
ne
or

ate
et.
s are
of
e
he.
ing
w
rs,
.

oxy
a
to
ns
e
a

e
.,
ll
ing
too

ed
e

or

ode
log
e,

d
xy
se
d

or
sts
long-term traces of relatively inactive proxies [17][23][24].
Caching is more important in busy environments where the
connection to the Internet is the performance bottleneck.
Long-term traces are needed to evaluate how a replacement
policy adapts to changes in the workload. Our study
explains the performance of the examined replacement
policies in terms of the underlying workload characteristics.
There are other issues affecting Web proxy caches that are
not covered in this paper. For example, a cache should
provide users with objects that are consistent with those
available from the origin server. Several more efficient
solutions to this problem have been proposed [14][16].
Other researchers have investigated the performance of
actual proxy cache implementations [1][18].

The remainder of this paper is organized as follows. Section
3 introduces the data set utilized for our workload
characterization as well as our trace-driven simulations.
Section 4 discusses the results of our workload
characterization and the implications on proxy caches.
Section 5 provides the experimental design of our
simulations while Section 6 presents the results. Section 7
introduces Virtual Caches, a new method of managing Web
caches. We conclude in Section 8 with a summary of the
paper and a discussion of future work.

3. DATA COLLECTION AND REDUCTION

3.1 Data Collection Site
The site under study is an Internet Service Provider (ISP)
that offers interactive data services to residential and
business subscribers. These subscribers utilized cable
modems to connect to the ISP’s server complex. Several
thousand subscribers utilized the system during the data
collection period. All subscriber requests for Web objects
(e.g., HTTP, FTP, and Gopher requests) were forwarded to a
single server running a commercial proxy software package.
This proxy server includes a file cache so some of the client
requests were satisfied within the server complex. On a
cache miss the proxy retrieved the object from an origin
server on the Internet. All requests for the ISP’s own web
site issued by this group of subscribers went through the
proxy. Since this site was quite popular with the subscribers
the hit rate in the proxy cache is higher than traditionally
seen in proxy caches.

The cable modems utilized at this site had peak bandwidths
reaching several megabits per second. This is several orders
of magnitude more than is achieved by traditional dialup
modems. The increased access bandwidths made proxy
caching important for reducing user latency as the ISP’s
connection to the Internet was the main bottleneck in the
system.

3.2 Data Collection
The access logs of the proxy server described in Section 3.1
were collected for this study. These logs contain information
on all client requests made between Jan 3rd, 1997 and May
31st, 1997. Each entry in an access log contained
information on a single request received by the proxy. The

recorded information included the client IP address, t
time of the request, the client’s request (method, UR
HTTP version), the response status from the proxy and
origin server, the amount of header and content da
transferred, and the time required for the proxy to comple
its response. In total 117,652,652 requests were handled
the proxy during this five month period.

Unfortunately the access logs did not contain all of th
information of interest. For example, the logs contained
information that would allow us to correctly identify all
aborted requests or file modifications. Thus to identify su
occurrences we were forced to use heuristics based
observed changes in the size of the requested fi
Furthermore, we have limited information on the HTT
request and response headers exchanged between the c
and origin server. Because of this we cannot determi
which requests were marked as uncacheable by clients
which responses were tagged as uncacheable or priv
(e.g., contained cookies) by the origin servers. Feldmann
al. have shown that these types of requests and response
quite common and thus greatly reduce the effectiveness
proxy caching [11]. In this paper we do not consider th
impact of these headers on the performance of the cac
Instead our results should be seen as motivation for us
cache control headers correctly, or for developing ne
applications or technologies to meet the needs of use
access providers, cache operators, and content providers

3.3 Data Reduction
Due to the extremely large access logs created by the pr
(nearly 30 GB of data) we found it necessary to create
smaller, more compact log due to storage constraints and
ensure that our workload analyses and caching simulatio
could be completed in a reasonable amount of time. W
performed these reductions in two ways: by storing data in
more efficient manner (e.g., map all distinct URLs to uniqu
integers), and by removing information of little value (e.g
we kept only GET requests which accounted for 98% of a
requests and 99.2% of the content data transferred). Dur
the reduction process it became apparent that there were
many unique URLs to map all of them. Instead we mapp
only the cacheable URLs. We considered a URL to b
cacheable if it did not contain substrings such as ‘cgi-bin’
‘?’, if it did not have a file extension such as ‘.cgi’, and if the
origin server response contained an appropriate status c
(e.g., 200 Success). The overall statistics for the reduced
are given in Table 1. The reduced log is only 4.5 GB in siz
1.5 GB when compressed.

4. KEY WORKLOAD CHARACTERISTICS
This section introduces a number of Web proxy workloa
characteristics and discusses their potential impact on pro
caching and cache replacement decisions. The
characteristics are described in detail in our workloa
characterization study [3].

Cacheable Objects:In order for caching to improve Web
performance it is vital that most client requests be f
cacheable objects. Table 1 indicates that 92% of all reque

te
t.

y
t of
tly
hat
tive
ace

to
d
is

gn

of
uss

ce
of
1
ce
., 1
s.
set
ed

e
. In
t,
w

d

.
ell
rs
were for cacheable objects (9,020,632 requests, or 8%, were
uncachable), while 96% of the data transferred was
cacheable. As we mentioned in Section 3.2 this is an
estimate of how many cacheable requests we could see if
lower level issues such as consistency and privacy were
handled efficiently and correctly.

Object Set Size:Table 1 indicates that there were over 16
million unique cacheable objects requested during the
measurement period. This is several orders of magnitude
larger than the number of unique objects seen in Web server
workloads [4]. Due to the extremely large object set size the
proxy cache must be able to quickly determine whether a
requested object is cached to avoid adding excessive latency
to the response. The proxy must also be able to update its
state efficiently on a cache hit, miss or replacement.
Furthermore, Table 1 indicates that storing all requested
objects in cache (one approach for improving the hit rate)
would require an enormous amount of disk space; the 16
million unique cacheable objects have a cumulative size of
389 GB.

Object Sizes: One of the obstacles for Web caching is
working effectively with variable-sized objects. The object
size distribution in this data set is heavy-tailed with the tail
weight estimated atα=1.5. Thus while most of the
requested objects are small (the median object size in this
data set was 4 KB) some extremely large objects were
accessed. The largest object requested during the
measurement period was a 148 MB video. We also
observed requests for HTML objects over 10 MB in size and
images over 90 MB in size. We speculate that the higher
access speeds available to the clients are increasing the
number of large transfers as well as the maximum size of
transfers. The issue for the proxy cache is to decide whether
to cache a large number of small objects which could
potentially increase the hit rate, cache a few large objects
which could increase the byte hit rate, or some combination
of the two.

Recency of Reference:We found that one-third of all re-
references to an object occurred within one hour of the
previous reference to the same object. Approximately two-
thirds of re-references occurred within 24 hours of the
previous request. These results suggest that recency is an
important characteristic of Web proxy workloads.

Frequency of Reference:Several recent studies [4][8] have
found that some Web objects are more popular than others
(i.e., Web referencing patterns are non-uniform). Our
characterization study of the Web proxy workload revealed
similar results. These findings suggest that popularity, or
frequency of reference, is a characteristic that should be
considered in a cache replacement decision.

In our study we found that many objects are extremely
unpopular. In fact over 60% of the distinct objects (i.e.,
unique requests) seen in the proxy log were requested only a
single time (we refer to these objects as “one-timers” [4]).
Similar results have been reported by other researchers
[5][15][17]. Obviously there is no benefit in caching one-

timers. Thus, a replacement policy that can discrimina
against one-timers should outperform a policy that canno

Turnover: One final characteristic that could impact prox
cache replacement decisions is turnover in the active se
objects (i.e., the set of objects that users are curren
interested in). Over time the active set changes; objects t
were once popular are no longer requested. These inac
objects should be removed from the cache to make sp
available for new objects in the active set.

5. EXPERIMENTAL DESIGN
The next step in our study utilized trace-driven simulation
evaluate the importance of the identified workloa
characteristics in making replacement decisions. Th
section provides an overview of the experimental desi
used for this simulation study.

5.1 Factors and Levels
In our simulation study we focus on two factors: the size
the cache and the cache replacement policy. We disc
each of these factors in turn.

Cache Size:The cache size indicates the amount of spa
available for storing Web objects. We examine a range
sizes: 256 MB, 1 GB, 4 GB, 16 GB, 64 GB, 256 GB and
TB. The smallest size (256 MB) represents the performan
of a memory cache. The intermediate cache sizes (e.g
GB to 16 GB) indicate likely cache sizes for Web proxie
The largest cache size (1 TB) can store the entire object
and thus approximates the performance of an infinite-siz
cache.

Cache Replacement Policy:A replacement policy is an
algorithm for determining which objects to evict from th
cache when space is needed for a newly requested object
this paper we restrict ourselves to examining four differen
previously proposed replacement policies and two ne
policies that utilize frequency:

Least-Recently-Used (LRU)- replaces the object requeste
least recently.

This traditional policy is the most often used in practice
Previous studies have found that LRU does not work as w
as other policies for Web proxy caches since it conside
only a single workload characteristic [6][23].

Table 1: Summary of Trace Characteristics

Access Log Duration January 3rd - May 31st, 1997

Total Requests 115,310,904

Total Content Bytes 1,328 GB

Unique Cacheable Requests 16,255,621

Total Uncacheable Requests 9,020,632

Unique Cacheable Content Bytes 389 GB

Total Uncacheable Content Bytes 56 GB

s

e
ew
ve

ew

e
w

For
nt
the
ut

ct

at
e

by
ze.
e

ll.
rally
the

a

y

nt
e
or

tic
on

he
SIZE [6]- replaces the largest object.

This strategy tries to minimize the miss ratio by replacing
one large object rather than many smaller ones. However,
some of the small objects brought into the cache may never
be accessed again. The SIZE strategy does not provide any
mechanism to evict such objects, which leads to pollution of
the cache.

GreedyDual-Size (GD-Size)[6]- replaces the object with
the lowest utility.

This strategy replaces the object with the smallest key value
for a certain utility (cost) function. When an objecti is
requested it is given a priority key Ki computed as follows:

Ki = Ci / Si + L

where

• Ci is the cost associated with bringing objecti into the
cache.

• Si is the object size.

• L is a running age factor that starts at 0 and is updated
for each replaced (evicted) objectf to the priority key of
this object in the priority queue: i.e.,L = Kf.

Cao and Irani identified several variations of the
GreedyDual-Size policy. To get the best hit rate with GD-
Size the Cost function for each object is set to 1. In this
way, larger objects have a smaller priority key than smaller
ones, and are more likely to be replaced if they are not
referenced again in the near future. To maximize the hit rate
it is more “profitable” to replace one large object than many
small objects. This strategy is denoted GD-Size(1). To get
the best byte hit rate with GD-Size the Cost function is set to
2 + Si/536. This function estimates the number of network
packets sent and received to satisfy a cache miss for a
requested object, and therefore tries to minimize network
traffic. This strategy is denoted GD-Size(Packets).

LFU - replaces the least frequently used object.

The LFU policy maintains a frequency count for each object
in the cache. We also examine the LFU-Aging policy [20],
which avoids cache pollution by reducing the frequency
count of each cached object by a factor of 2 whenever the
average frequency count exceeds a threshold parameter.
Since some objects may be extremely popular, they might
stay in the cache for longer than desired or have significant
influence on the current frequency count. To prevent this
situation a second parameter limits the maximum frequency
count an object can accumulate. To achieve good
performance these parameters should be set based upon an
analysis of the workload offered to the cache.

We chose these policies because each one considers at least
one of the proxy workload characteristics when making a
replacement decision. We also examined two policies
designed for other computer systems (S-LRU [13] and
LRU-K [19]). We found both of these policies had similar
performance to LFU-Aging [2]. Due to space constraints

we do not include the S-LRU and LRU-K results in thi
paper.

During our examination of these existing policies we mad
several observations that led to the development of two n
parameterless (i.e., no manual tuning required to achie
good performance) replacement policies. These two n
policies are:

GreedyDual-Size with Frequency (GDSF)

The GD-Size policies perform well, but do have on
significant shortcoming: they do not take into account ho
many times the object was accessed in the past.
example, consider how GD-Size(1) handles two differe
objects of the same size. If they are requested at about
same time, they are inserted into a priority queue with abo
the same key value. The objectf1, which was accessed n
times in the past will get the sameKi value as the objectf2
accessed for the first time. In the worst case scenario,f1 will
be replaced instead off2.

The GD-Size algorithm can be improved to reflect obje
access patterns by incorporating a frequency countFi in the
computation ofKi: An analysis of this policy can be found
in [7].

Ki = Fi * Ci / Si + L

This policy achieves the best hit rate whenCi=1. We denote
this strategy as GDSF-Hits.

Least Frequently Used with Dynamic Aging (LFU-DA)

The results from [2] (summarized in Section 6) show th
frequency-based policies (e.g., LFU-Aging) achieve th
highest byte hit rates. These policies accomplish this
retaining the most popular objects, regardless of object si
Unfortunately, all of the frequency-based policies that w
examined in [2] require parameterization to perform we
Parameterless policies are preferable as they are gene
less complex and easier to manage. Thus, we replaced
tuneable aging mechanism of the LFU-Aging policy with
dynamic mechanism (i.e., the inflation factor,L, used by the
GD-Size policy). We call this new policy Least Frequentl
Used with Dynamic Aging. LFU-DA calculates the key
valueKi for object i using the following equation:

Ki = Ci * Fi + L

With Ci set to 1 this equation uses only the frequency cou
and the inflation factor (for aging objects) to determine th
key value of an object. (We did not examine other values f
Ci.) The LFU-DA policy may prove useful in other caching
environments where frequency is an important characteris
but where LFU has not been utilized due to cache polluti
concerns.

5.2 Performance Metrics
The two most common metrics used to evaluate proxy cac
performance are:

y
o

hit
he
y
ach
ize
)
e

n
a
for
gi
for
ed
es

is
(1)
it
te
e

e
-
e
c
he
of
cy
n
-

n
es
tes
• Hit rate - the number of requests satisfied from the
proxy cache as a percent of total requests.

• Byte hit rate - the number of bytes that the proxy cache
served directly as a percent of the total number of bytes
for all requests.

5.3 Other Design Issues
When monitoring a system only the steady-state behaviour
is of interest. During the initial or transient state of the
simulation many of the cache misses occur simply because
the cache is empty (i.e., cold misses). After monitoring the
influence of cold misses on the overall miss rate on a day-to-
day basis we chose to use the initial three weeks of the data
set to warm-up the simulator. We use this same warm-up
period for all simulations.

In this study all requests except for aborted transfers (about
10% of all requests) were used to drive the simulations. All
uncacheable requests are counted as cache misses. All
cacheable requests, including those with status 304
responses are used to update the state information
maintained by the cache for the requested object. In the case
of 304 responses only the hit rate is affected as no content
data is transferred. We believe that using this information
helps the replacement policy to better determine the active
set of objects.

In this study we do not investigate the performance
implications of the proxy having to perform validations. All
file modifications that we determined from the logs result in
consistency misses in the simulations. As we discussed in
Section 3.2 we do not have any information on cache
control headers. Since our simulator does not provide all of
the functionality of a real proxy cache our results (e.g., hit
rates and byte hit rates) will be optimistic. However, we
believe our results indicate the level of performance that
could be achieved if other issues, such as the proper use of
cache control headers, can be resolved.

6. SIMULATION RESULTS

6.1 Performance of Existing Policies
This section provides the simulation results of the prox
cache replacement policy study. Figure 1 consists of tw
graphs, with the graph on the left indicating the achieved
rate for a cache of a particular size while the graph on t
right shows the achieved byte hit rate for a similarl
configured cache. We have also sorted the legend in e
graph by the performance of the policies with a cache s
of 256 MB. For example, in Figure 1(a), the GD-Size(1
policy achieved the highest hit rate. LRU obtained th
lowest hit rate of the policies that we examined.

The results indicate that the hit rate achieved with a
infinite-sized cache is 67% (obtained by all policies with
cache size of 1 TB). The remaining 33% of requests are
uncacheable objects (e.g., output from dynamic or c
objects), the initial requests for objects or the updates
objects which have been modified and cannot be serv
from the cache. Figure 1(a) shows that even small cach
can perform quite well if the correct replacement policy
used. For example, a 256 MB cache using the GD-Size
policy achieved a hit rate of 35% which is 52% of the h
rate that is obtained with an infinite-sized cache. This ra
was achieved while allowing for only 0.06% of the entir
object set size to be cached.

The results in Figure 1 show the performance of five of th
policies examined by Cao and Irani [6]: GD-Size(1), GD
Size(P), SIZE, LRU and LFU. We have also included th
LFU-Aging policy to show how the turnover characteristi
impacts cache performance. Our results, in terms of t
relative ordering of the policies is consistent with those
Cao and Irani. Figure 1(a) shows that the GD-Size(1) poli
is superior to all of the other policies tested whe
considering only the hit rate metric, followed by LFU
Aging, GD-Size(P), SIZE, LRU and finally LFU. Neither
LFU-Aging nor LRU consider the size of an object whe
making replacement decisions which is why these polici
require significantly more cache space to achieve hit ra

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

H
it

R
at

e
(%

)

Cache Size

GD-Size(1)
LFU-Aging

SIZE
LFU

GD-Size(P)
LRU

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

B
yt

e
H

it
R

at
e

(%
)

Cache Size

LFU-Aging
GD-Size(P)

LRU
LFU

GD-Size(1)
SIZE

(a) Hit Rate (b) Byte Hit Rate
Figure 1. Comparison of existing Replacement Policies

r
ge
he
s
es,
he
an

its
,
d
le.
th

cy

s
e
ll

ace
nd

56
ts
of
ult
ld
y
ld
he
ts
D-
ll

y
the

e

A

similar to GD-Size(1). However, both of these policies are
able to prevent cache pollution from occurring. Since LFU-
Aging retains popular objects for longer periods of time and
discriminates against one-timers it outperforms LRU. GD-
Size(P) achieves lower hit rates than GD-Size(1) as GD-
Size(P) retains larger files in order to improve the byte hit
rate. Both the SIZE and LFU policies restrict the turnover of
the cached object set, so the performance of these policies
suffers due to cache pollution. To understand the impact of
cache pollution we can compare the performance of LFU
with LFU-Aging. Figure 1(a) clearly shows that LFU-
Aging, which uses an aging mechanism, consistently
outperforms LFU, which does not. The performance of LFU
is similar to LFU-Aging in only two situations. When cache
sizes are very small (e.g., 256 MB), adding a single large
file to the cache can result in the removal of many smaller
objects from the cache, reducing the effects of cache
pollution. When cache sizes are large (e.g., 256 GB), few
replacement decisions are needed and thus cache pollution
has less impact on performance.

Figure 1(b) shows the achieved byte hit rates for the
replacement policies under study. Figure 1(b) reveals an
achieved byte hit rate of 62% for an infinite-sized cache.
The remaining 38% of the data needed to be transferred
across the external network link. The results also indicate
that it is more difficult to achieve high byte hit rates than
high hit rates. For example, a 256 MB cache achieves a byte
hit rate of 15% which is only one quarter of the byte hit rate
obtained with an infinite-sized cache.

The relative ordering of the policies in Figure 1(b) is
consistent with the results of Cao and Irani [6] for the five
common policies. GD-Size(P) and LRU, which have almost
identical performance, achieved the highest byte hit rates of
the common policies, followed by LFU, GD-Size(1), and
finally SIZE. LFU performs poorly due to cache pollution.
GD-Size(1) achieves lower byte hit rates than GD-Size(P)
because GD-Size(1) discriminates against large objects. The
SIZE policy performance is extremely poor because of
discrimination against large objects and cache pollution.
The sixth policy that we examine, namely LFU-Aging,

obtains the highest byte hit rates. This policy works well fo
this metric as it does not discriminate against the lar
objects which are responsible for a significant amount of t
network traffic. LFU-Aging also retains popular object
(both small and large) longer than recency-based polici
while the aging mechanism prevents cache pollution, t
reason why LFU-Aging achieves higher byte hit rates th
LFU.

6.2 Performance of New Policies
In Figure 2 we compare the performance of the GDSF-H
and LFU-DA policies with the GD-Size(1), GD-Size(P)
LFU-Aging and LRU policies. We removed the SIZE an
LFU policies in order to keep the graphs comprehensib
We chose to remove these two policies since they bo
suffered from cache pollution, and were not the best poli
for either metric.

Figure 2(a) shows that the GDSF-Hits policy achieve
higher hit rates than the GD-Size(1) policy which had th
highest hit rate of all the policies in Figure 1(a). For sma
cache sizes GDSF-Hits requires only half of the cache sp
to achieve the same hit rates as the GD-Size(1) policy, a
almost 16 times less space than the LRU policy. With a 2
MB cache (0.06% of the object set size) the GDSF-Hi
policy achieves a hit rate of more than 39% which is 58%
the hit rate obtained with an infinite-sized cache. This res
is significant as it means that a proxy cache cou
potentially satisfy many cache hits directly from its memor
cache without having to read from its disk cache. This cou
have a significant, positive impact on the performance of t
proxy cache. Figure 2(b) indicates that the GDSF-Hi
policy also achieves a higher byte hit rate than does G
Size(1). However, the byte hit rate of GDSF-Hits is sti
significantly lower than several of the other policies.

The results in Figure 2 indicate that the LFU-DA polic
achieves hit rates and byte hit rates that are quite close to
LFU-Aging policy, even though the LFU-Aging policy was
parameterized for the workload used to drive th
simulations while the LFU-DA policy was not.
Furthermore, the dynamic aging mechanism of the LFU-D

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

H
it

R
at

e
(%

)

Cache Size

GDSF-Hits
GD-Size(1)

LFU-Aging
LFU-DA

GD-Size(P)
LRU

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

B
yt

e
H

it
R

at
e

(%
)

Cache Size

LFU-Aging
LFU-DA

GD-Size(P)
LRU

GDSF-Hits
GD-Size(1)

(a) Hit Rate (b) Byte Hit Rate
Figure 2. Comparison of Proposed Policies to Existing Replacement Policies

he
s

C
nce
nd
be
the
is
the
h it
tes
s,

the
m

n-
e
e
of

gly

t
hit

he
ile
to

to
e

ent

ted
he
by
a
1)
nd
e
er
policy is more efficient computationally than that of LFU-
Aging. With the exception of LFU-Aging, LFU-DA
achieved higher byte hit rates than all of the other tested
policies.

7. VIRTUAL CACHES
In Section 5.1 we introduced two new replacement policies,
neither of which requires parameterization. In Section 6.2
we showed how GDSF-Hits achieved high hit rates while
LFU-DA achieved hit byte hit rates. A drawback of having
two policies is that a decision must be made on which
metric is most important and therefore which replacement
policy should be used. In some situations the choice may be
obvious; in others both high hit rates and high byte hit rates
may be important.

We developed an approach that can focus on both of these
metrics simultaneously. This approach logically partitions
the cache into N virtual caches. Each virtual cache (VC) is
then managed with its own replacement policy. Initially all
objects are added to VC0. Replacements from VCi are
moved to VCi+1. Replacements from VCn-1 are evicted
from the cache. All objects that are reaccessed while in the
cache (i.e., cache hits) are reinserted in VC0. This allows
in-demand objects to stay in the cache for a longer period of
time. For example, to achieve high hit rates and high byte hit
rates simultaneously, two VCs are used. One VC focuses on
obtaining high hit rates using a replacement policy such as
GDSF-Hits. The other VC aims to achieve high byte hit
rates by utilizing a replacement policy such as LFU-DA.

We simulated this cache management policy to evaluate its
effectiveness when utilizing two VCs. Our first experiment
used the GDSF-Hits policy to manage VC0 (we refer to this
as the Hits VC) while VC1 (the Bytes VC) employed the
LFU-DA policy. We examined several different allocations
of the cache space: 75% for the Hits VC, 25% for the Bytes
VC (denoted VC-HB-75/25); 50% for each VC (VC-HB-
50/50); and 25% for the Hits VC, 75% for the Bytes VC
(VC-HB-25/75). Figure 3 shows the performance of the VC
management policy for the different configurations we have

just described. Figure 3 also includes the results for t
GDSF-Hits, LFU-DA and LRU policies when each manage
100% of the total cache space.

The results in Figure 3 indicate that the use of the V
management approach does in fact improve the performa
of the cache across multiple metrics. Both the hit rate a
byte hit rate of the VC management approach appear to
bounded by those of the policies used to manage each of
individual VCs (we do not have a theoretical proof that th
is always true). As the percentage of space dedicated to
Hits VC decreases the hit rate also decreases althoug
remains higher than the policy used to manage the By
partition. At the same time the byte hit rate increase
nearing that achieved by the policy used to manage
Bytes partition. These improvements can be explained fro
the characteristics of the proxy workload. Due to the no
uniform popularity distribution a cache is able to achiev
relatively high hit rates with a very small amount of storag
space. However, as the cache gets larger, the rate
improvement in hit rate declines as it becomes increasin
difficult to identify objects that will continue to improve the
hit rate (the diminishing returns effect). A similar argumen
can be made regarding the objects that affect the byte
rate. By partitioning the cache we are retaining most of t
benefit of a cache that is dedicated to a single metric wh
making more effective use of the remaining space relative
a second metric.

To see how the VC management policy performs relative
the other replacement policies not included in Figure 3 w
rely on comparisons with the GDSF-Hits and LFU-DA
policies. Since the hit rates for the tested VC managem
policies are bounded below by the LFU-DA policy, the VC
approach achieves higher hit rates than all of the other tes
replacement policies except for GD-Size(1). However, t
byte hit rate of the tested VC policies are bounded below
the performance of the GDSF-Hits policy, which achieves
higher byte hit rate than does GD-Size(1). Thus GD-Size(
does not achieve higher performance for both hit rate a
byte hit rate compared to any of the VC policies that w
examined. Similar analogies can be made for the oth

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

H
it

R
at

e
(%

)

Cache Size

GDSF-Hits
VC-HB-75/25

VC-HB-50/50
VC-HB-25/75

LFU-DA
LRU

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

B
yt

e
H

it
R

at
e

(%
)

Cache Size

LFU-DA
VC-HB-25/75

VC-HB-50/50
VC-HB-75/25

LRU
GDSF-Hits

(a) Hit Rate (b) Byte Hit Rate
Figure 3. Analysis of Virtual Cache Performance; VC0 using GDSF-Hits, VC1 using LFU-DA

eb
ad
re
he
the
es
le
ze-
es.
ce
y-

hit
o
re,
ide

s

xy
ay
ly
use
policies.

Our next experiment analyzed the importance of the
ordering of the VCs. Figure 4 shows the results when the
Bytes VC is the first partition (VC0) and the Hits VC is the
second (VC1). The results in Figure 4 show that once again
the performance of the VC management approach is
bounded by the performance of the replacement policies
selected to manage each individual VC.

Figure 5 compares the performance between the Hits-Bytes
ordering of VCs (Figure 3) with the performance of the
Bytes-Hits ordering of VCs (Figure 4). The results in Figure
5 indicate that the ordering of the VCs does have some
effect on the overall performance of the cache. More
specifically, VC1 appears to have more impact on the overall
performance than does VC0. This occurs because the
objects in VC1 are moved back into VC0, in order that these
objects can remain in the cache for a longer period of time.
This action influences the replacement decisions of VC0, as
it must remove some of its preferred objects in order to add
the objects passed from VC1.

8. CONTRIBUTIONS AND FUTURE WORK
This paper has presented a performance study of a W
proxy cache based on the most significant proxy worklo
characterization to date. Trace-driven simulations we
used to evaluate the performance of different cac
replacement policies for proxy caches. We then used
workload results to develop two new replacement polici
that built upon the strengths of the existing policies whi
avoiding the weaknesses. Our results indicate that si
based policies achieve higher hit rates than other polici
Further improvements in hit rate result by giving preferen
to frequency of reference. We also found that frequenc
based policies are more effective at improving the byte
rate of a proxy cache. With either metric it is important t
consider turnover in the active set of objects. Furthermo
we have developed virtual caches as an approach to prov
optimal cache performance for multiple metric
simultaneously.

There are many open issues regarding Web pro
performance and caching. Future work in this area m
include designing new replacement policies, particular
ones that can achieve higher byte hit rates (through the

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

H
it

R
at

e
(%

)

Cache Size

GDSF-Hits
VC-BH-25/75

VC-BH-50/50
VC-BH-75/25

LFU-DA
LRU

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

B
yt

e
H

it
R

at
e

(%
)

Cache Size

LFU-DA
VC-BH-75/25

VC-BH-50/50
VC-BH-25/75

LRU
GDSF-Hits

(a) Hit Rate (b) Byte Hit Rate
Figure 4. Analysis of Virtual Cache Management; VC0 using LFU-DA, VC1 using GDSF-Hits

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

H
it

R
at

e
(%

)

Cache Size

VC-BH-25/75
VC-HB-75/25

VC-BH-50/50
VC-HB-50/50

VC-BH-75/25
VC-HB-25/75

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

B
yt

e
H

it
R

at
e

(%
)

Cache Size

VC-HB-25/75
VC-BH-75/25

VC-HB-50/50
VC-BH-50/50

VC-HB-75/25
VC-BH-25/75

(a) Hit Rate (b) Byte Hit Rate
Figure 5. Analysis of Virtual Cache Management; Effects of VC Order on Performance

f

r

-

et
”,
ies

in

y

ng

nt

t

of future knowledge we have determined that significantly
higher byte hit rates than those achieved by the LFU-DA
policy are possible). We have implemented the new
replacement policies in a proxy cache and are examining the
effects that a replacement policy has on system performance
[9]. More investigation into the VC approach is needed,
including a theoretical description of its operation. We
intend to continue our investigation of Web caching and its
role in providing more predictable end-to-end performance.
Other issues include examining the relationship between hit
rates and latency reduction for end users, implementing a
more efficient consistency mechanism [14][16], and adding
more functionality to Web proxy caches (e.g., accounting
and security),. Finally, much effort will be required to
ensure that the majority of Web objects remain cacheable as
the Web evolves while providing users and content
providers with the functionality they desire.

9. ACKNOWLEDGEMENTS
The authors would like to thank Mike Rodriquez of
Hewlett-Packard Laboratories and all the people in HP’s
Telecommunication Platforms Division (TPD) who supplied
us with the access logs used in this research. The authors
are grateful to Greg Oster of the University of Saskatchewan
for his assistance with the development of the simulator, and
to Godfrey Tan of UC-Berkeley for his work on validating
the proposed replacement policies. We would also like to
thank the anonymous reviewers for their many constructive
comments.

10. REFERENCES

[1] J. Almeida and P. Cao, “Measuring Proxy Performance with
the Wisconsin Proxy Benchmark”, Technical Report, Univer-
sity of Wisconsin Department of Computer Science, April
1998.

[2] M. Arlitt, R. Friedrich and T. Jin, “Performance Evaluation of
Web Proxy Cache Replacement Policies”, to appear inPerfor-
mance Evaluation Journal, 1999.

[3] M. Arlitt, R. Friedrich, and T. Jin, “Workload Characteriza-
tion of a Web Proxy in a Cable Modem Environment”, to
appear inACM SIGMETRICS Performance Evaluation
Review,August 1999.

[4] M. Arlitt and C. Williamson, “Internet Web Servers: Work-
load Characterization and Performance Implications”,IEEE/
ACM Transactions on Networking, Vol. 5, No. 5, pp. 631-645,
October 1997.

[5] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P.
Sturm, “Enhancing the Web’s Infrastructure: From Caching to
Replication”,IEEE Internet Computing, Vol. 1, No. 2, pp. 18-
27, March-April 1997.

[6] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching
Algorithms”, Proceedings of USENIX Symposium on Internet
Technologies and Systems (USITS), Monterey, CA, pp. 193-
206, December 1997.

[7] L. Cherkasova, “Improving WWW Proxies Performance with
Greedy-Dual-Size-Frequency Caching Policy”, Technical
Report HPL-98-69R1, Hewlett-Packard Laboratories,
November 1998.

[8] C. Cunha, A. Bestavros, and M. Crovella, “Characteristics o
WWW Client-based Traces”, Technical Report TR-95-010,
Boston University Department of Computer Science, April
1995.

[9] J. Dilley, M. Arlitt and S. Perret, “Enhancement and Valida-
tion of the Squid Cache Replacement Policy”, submitted fo
publication, January 1999.

[10] B. Duska, D. Marwood, and M. Feeley, “The Measured
Access Characteristics of World-Wide Web Client Proxy
Caches”,Proceedings of USENIX Symposium of Internet
Technologies and Systems (USITS), Monterey, CA, pp. 23-35,
December 1997.

[11] A. Feldmann, R. Cáceres, F. Douglis, G. Glass and M.
Rabinovich, “Performance of Web Proxy Caching in Hetero
geneous Bandwidth Environments”,Proceedings of IEEE
Infocom‘99, New York, NY, pp. 107-116, March 1999.

[12] S. Gribble and E. Brewer, “System Design Issues for Intern
Middleware Services: Deductions from a Large Client Trace
Proceedings of USENIX Symposium on Internet Technolog
and Systems (USITS), Monterey, CA, pp. 207-218, December
1997.

[13] R. Karedla, J. Love and B. Wherry, “Caching Strategies to
Improve Disk System Performance”,IEEE Computer, Vol.
27, No. 3, pp. 38-46, March 1994.

[14] B. Krishnamurthy and C. Wills, “Study of Piggyback Cache
Validation for Proxy Caches in the World-Wide Web”,Pro-
ceedings of USENIX Symposium on Internet Technologies
and Systems (USITS), Monterey, CA, pp. 1-12, December
1997.

[15] M. Kurcewicz, W. Sylwestrzak and A. Wierzbicki, “A Filter-
ing Algorithm for Proxy Caches”,3rd International Web
Cache Workshop, http://wwwcache.ja.net/events/workshop/.

[16] C. Liu and P. Cao, “Maintaining Strong Cache Consistency
the World-Wide Web”,Proceedings of the 17th IEEE Interna-
tional Conference on Distributed Computing Systems, May
1997.

[17] P. Lorenzetti and L. Rizzo, “Replacement Policies for a Prox
Cache”, Technical Report, Universita di Pisa, December
1996.

[18] C. Maltzahn and K. Richardson, “Performance Issues of
Enterprise Level Web Proxies”,Proceedings of the 1997 ACM
SIGMETRICS Conference on the Measurement and Modeli
of Computer Systems, Seattle, WA, pp. 13-23, June 1997.

[19] E. O’Neil, P. O’Neil and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering”,Pro-
ceedings of SIGMOD ‘93, Washington, DC, May 1993.

[20] J. Robinson and M. Devarakonda, “Data Cache Manageme
Using Frequency-Based Replacement”,Proceedings of the
1990 ACM SIGMETRICS Conference on the Measuremen
and Modeling of Computer Systems, Boulder, CO, pp. 134-
142, May 1990.

[21] K. Thompson, G. Miller and R. Wilder, “Wide-Area Internet
Patterns and Characteristics”,IEEE Network, Vol. 11, No. 6,
November/December 1997.

[22] D. Wessels, “Squid Internet Object Cache” http://
squid.nlanr.net.

[23] S. Williams, M. Abrams, C. Standridge, G. Abdulla, and E.
Fox, “Removal Policies in Network Caches for World-Wide
Web Documents”,Proceedings on ACM SIGCOMM ‘96,
Stanford, CA, pp. 293-305, August 1996.

[24] R. Wooster and M. Abrams, “Proxy Caching that Estimates
Page Load Delays”,Proceedings of the 6th International
World-Wide Web Conference, Santa Clara, CA, April 1997.

	Evaluating Content Management Techniques for Web Proxy Caches
	Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich and Tai Jin
	Hewlett-Packard Laboratories
	1501 Page Mill Road
	Palo Alto, CA 94304

	{arlitt, cherkasova, jad, richf, tai}@hpl.hp.com
	1. ABSTRACT
	The continued growth of the World-Wide Web and the emergence of new end-user technologies such as...

	2. Introduction
	3. Data Collection and Reduction
	3.1 Data Collection Site
	3.2 Data Collection
	3.3 Data Reduction

	4. Key Workload Characteristics
	5. Experimental Design
	Table 1: Summary of Trace Characteristics

	Access Log Duration
	January 3rd - May 31st, 1997
	Total Requests
	115,310,904
	Total Content Bytes
	1,328 GB
	Unique Cacheable Requests
	16,255,621
	Total Uncacheable Requests
	9,020,632
	Unique Cacheable Content Bytes
	389 GB
	Total Uncacheable Content Bytes
	56 GB
	5.1 Factors and Levels
	5.2 Performance Metrics
	5.3 Other Design Issues
	6. Simulation Results
	6.1 Performance of Existing Policies
	Figure 1. Comparison of existing Replacement Policies

	6.2 Performance of New Policies
	Figure 2. Comparison of Proposed Policies to Existing Replacement Policies

	7. Virtual Caches
	Figure 3. Analysis of Virtual Cache Performance; VC0 using GDSF-Hits, VC1 using LFU-DA
	Figure 4. Analysis of Virtual Cache Management; VC0 using LFU-DA, VC1 using GDSF-Hits
	Figure 5. Analysis of Virtual Cache Management; Effects of VC Order on Performance

	8. Contributions and Future Work
	9. Acknowledgements
	10. References
	[1] J. Almeida and P. Cao, “Measuring Proxy Performance with the Wisconsin Proxy Benchmark”, Tech...
	[2] M. Arlitt, R. Friedrich and T. Jin, “Performance Evaluation of Web Proxy Cache Replacement Po...
	[3] M. Arlitt, R. Friedrich, and T. Jin, “Workload Characterization of a Web Proxy in a Cable Mod...
	[4] M. Arlitt and C. Williamson, “Internet Web Servers: Workload Characterization and Performance...
	[5] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm, “Enhancing the Web’s Infrastruct...
	[6] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algorithms”, Proceedings of USENIX Symposi...
	[7] L. Cherkasova, “Improving WWW Proxies Performance with Greedy-Dual-Size-Frequency Caching Pol...
	[8] C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of WWW Client-based Traces”, Techni...
	[9] J. Dilley, M. Arlitt and S. Perret, “Enhancement and Validation of the Squid Cache Replacemen...
	[10] B. Duska, D. Marwood, and M. Feeley, “The Measured Access Characteristics of World-Wide Web ...
	[11] A. Feldmann, R. Cáceres, F. Douglis, G. Glass and M. Rabinovich, “Performance of Web Proxy C...
	[12] S. Gribble and E. Brewer, “System Design Issues for Internet Middleware Services: Deductions...
	[13] R. Karedla, J. Love and B. Wherry, “Caching Strategies to Improve Disk System Performance”, ...
	[14] B. Krishnamurthy and C. Wills, “Study of Piggyback Cache Validation for Proxy Caches in the ...
	[15] M. Kurcewicz, W. Sylwestrzak and A. Wierzbicki, “A Filtering Algorithm for Proxy Caches”, 3r...
	[16] C. Liu and P. Cao, “Maintaining Strong Cache Consistency in the World-Wide Web”, Proceedings...
	[17] P. Lorenzetti and L. Rizzo, “Replacement Policies for a Proxy Cache”, Technical Report, Univ...
	[18] C. Maltzahn and K. Richardson, “Performance Issues of Enterprise Level Web Proxies”, Proceed...
	[19] E. O’Neil, P. O’Neil and G. Weikum, “The LRU-K Page Replacement Algorithm for Database Disk ...
	[20] J. Robinson and M. Devarakonda, “Data Cache Management Using Frequency-Based Replacement”, P...
	[21] K. Thompson, G. Miller and R. Wilder, “Wide-Area Internet Patterns and Characteristics”, IEE...
	[22] D. Wessels, “Squid Internet Object Cache” http:// squid.nlanr.net.
	[23] S. Williams, M. Abrams, C. Standridge, G. Abdulla, and E. Fox, “Removal Policies in Network ...
	[24] R. Wooster and M. Abrams, “Proxy Caching that Estimates Page Load Delays”, Proceedings of th...

