(ﬁ/” HEWLETT®

PACKARD

Evaluating Content Management
Techniques for Web Proxy Caches

Martin Arlitt, Ludmila Cherkasova, John Dilley,
Richard Friedrich, Tai Jin

Internet Systems and Applications Laboratory
HP Laboratories Palo Alto

HPL-98-173

April, 1999

E-mail: [arlitt,cherkasova,jad,richf,tail@hpl.hp.com

World-Wide Web, The continued growth of the World-Wide Web and the
proxy caching, emergence of new end-user technologies such as cable
replacement policies, modems necessitate the use of proxy caches to reduce
trace-driven latency, network traffic and Web server loads. Current
simulation, Web proxy caches utilize simple replacement policies to
virtual caches determine which files to retain in the cache. We utilize

a trace of client requests to a busy Web proxy in an ISP
environment to evaluate the performance of several
existing replacement policies and of two new,
parameterless replacement policies that we introduce
in this paper. Finally, we introduce Virtual Caches, an
approach for improving the performance of the cache
for multiple metrics simultaneously.

Internal Accession Date Only

o Copyright Hewlett-Packard Company 1998



Evaluating Content Management Techniques for Web Proxy Caches

Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich and Tai Jin
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304

{arlitt, cherkasova, jad, richf, tai}@hpl.hp.com

1. ABSTRACT In general the research described in this paper addresses the
The continued growth of the World-Wide Web  following questions:

and the emergence of new end-user technolo- « How effective are current proxy cache replacement poli-
gies such as cable modems necessitate the use of cies for real workloads?

proxy caches to reduce latency, network traffic « What new replacement policies and approaches can

and Web server loads. Current Web proxy improve cache effectiveness?

caches utilize simple replacement policies to » How will higher speed access networks affect work-
determine which files to retain in the cache. We loads?

utilize a trace of client requests to a busy Web The results in this paper are _bas_ed on the most exten_sive Web
proxy in an ISP environment to evaluate the proxy workload characterization yet reported in the

‘L literature. All subscriber client Web accesses from a single
per.fo_rmance of several existing replacement ISP were measured for a duration of five months. During this
policies and of two new, parameterless replace- period 115 million requests for 1.3 terabytes of data were
ment policies that we introduce in this paper. measured and analyzed. Furthermore, all clients accessed

Finally, we introduce Virtual Caches, an this proxy using high-speed cable modems. This study may
approach for |mprOV|ng the performance Of the therefore prOVide a gllmpse of future Web traffic as access

; : : network speeds increase. The workload characterization
cache for multiple metrics simultaneously. itself is not described in detail in this paper but can be found

in [3].

2. INTRODUCTION Through our workload study we have discovered several
World-Wide Web requests have continued to grow at archaracteristics that affect proxy caches. Six of these are
exponential rate and are already the dominant workloadjiscussed in this paper. We use these characteristics in a
component for Internet traffic [21]. The implications of this simulator to evaluate current cache replacement policies with
are clear: without good systems design network elementgespect to two important performance metrics: hit rate and
and servers will become bottlenecks. Since the majority obyte hit rate. These two metrics correlate to decreased client
Web objects are static, caching them at HTTP proxies cafesponse time and decreased backbone network utilization
reduce both network traffic and response time. HTTP prOXieﬁespectiveW_ Both reduce the origin server load.

serve as intermediaries between the client browser and origin . ) ) ]
Web servers, which may be geographically distant.ThiS paper extends our previous results with the following.

However, current Web proxy cache servers are achievin§'om insights gained from the workload we developed two

relatively low hit rates and contribute additional delays ton€W replacement policies that are optimized for a single
servicing Web requests. metric and achieve the best performance for hit rate and byte

hit rate. These new replacement policies utilize frequency to
Our research has focused on developing a quantitativchieve higher performance but are neither susceptible to
understanding of Web traffic and its implications on servercache pollution nor require parameterization. Finally, we
and network design. These quantitative results yield insightgeveloped a new approach to Web cache management. This
into the behavior of current proxy caches and identifynovel approach uses a number of virtual caches (i.e., cache
improvements for next generation caching. partitions) to improve the global performance of the cache
across multiple metrics simultaneously.

Our workload characterization study [3] builds on previous
work in this area [10][12].  We use the identified
characteristics to evaluate the strengths and weaknesses of
different replacement policies. There have been a number of
recent efforts to design more effective replacement policies
for Web caches [6][17][23][24]. These studies have been
limited to either short-term traces of busy proxies [6] or



long-term traces of relatively inactive proxies [17][23][24]. recorded information included the client IP address, the

Caching is more important in busy environments where the time of the request, the client's request (method, URL,

connection to the Internet is the performance bottleneck. HTTP version), the response status from the proxy and the
Long-term traces are needed to evaluate how a replacementrigin server, the amount of header and content data
policy adapts to changes in the workload. Our study transferred, and the time required for the proxy to complete

explains the performance of the examined replacementits response. In total 117,652,652 requests were handled by
policies in terms of the underlying workload characteristics. the proxy during this five month period.

There are other issues affecting Web proxy caches that are\Um‘ortunately the access logs did not contain all of the

not covered in this paper. For example, a cache should. : ; .
provide users with objects that are consistent with those!nform"’Itlon of interest. For example, the logs contained no

available from the origin server. Several more efficient information that Wou_ld aIIov_v_us_to correctly i_denti_fy all
solutions to this problem have been proposed [14][16] aborted requests or file modifications. Thus to identify such
Other researchers have investigated the performance of CCUITENCES WE Were forced to use heuristics based on

; ; observed changes in the size of the requested file.
actual proxy cache implementations [1][18]. Furthermore, we have limited information on the HTTP

The remainder of this paper is organized as follows. Sectionrequest and response headers exchanged between the client
3 introduces the data set utilized for our workload and origin server. Because of this we cannot determine
characterization as well as our trace-driven simulations. which requests were marked as uncacheable by clients or
Section 4 discusses the results of our workload which responses were tagged as uncacheable or private
characterization and the implications on proxy caches. (e.g., contained cookies) by the origin servers. Feldmann et.
Section 5 provides the experimental design of our al. have shown that these types of requests and responses are
simulations while Section 6 presents the results. Section 7quite common and thus greatly reduce the effectiveness of
introduces Virtual Caches, a new method of managing Web proxy caching [11]. In this paper we do not consider the
caches. We conclude in Section 8 with a summary of the impact of these headers on the performance of the cache.

paper and a discussion of future work. Instead our results should be seen as motivation for using
cache control headers correctly, or for developing new
3. DATA COLLECTION AND REDUCTION applications or technologies to meet the needs of users,

3.1 Data Collection Site access providers, cache operators, and content providers.

The site under study is an Internet Service Provider (ISP) 3.3 Data Reduction

that offers interactive data services to residential and pue to the extremely large access logs created by the proxy
business subscribers. These subscribers utilized cablgnearly 30 GB of data) we found it necessary to create a
modems to connect to the ISP’s server complex. Severalsmaller, more compact log due to storage constraints and to
thousand subscribers utilized the system during the datagnsure that our workload analyses and caching simulations
collection period. All subscriber requests for Web objects could be completed in a reasonable amount of time. We
(e.9., HTTP, FTP, and Gopher requests) were forwarded to aperformed these reductions in two ways: by storing data in a
single server running a commercial proxy software package. more efficient manner (e.g., map all distinct URLS to unique
This proxy server includes a file cache so some of the clientintegers), and by removing information of little value (e.g.,
requests were satisfied within the server complex. On awe kept only GET requests which accounted for 98% of all
cache miss the proxy retrieved the object from an origin requests and 99.2% of the content data transferred). During
server on the Internet. All requests for the ISP's own web the reduction process it became apparent that there were too
site issued by this group of subscribers went through the many unique URLSs to map all of them. Instead we mapped
proxy. Since this site was quite popular with the subscribers only the cacheable URLs. We considered a URL to be
the hit rate in the proxy cache is higher than traditionally cacheable if it did not contain substrings such as ‘cgi-bin’ or
seen in proxy caches. “?", if it did not have a file extension such as ‘.cgi’, and if the

The cable modems utilized at this site had peak bandwidthsC19in Server response contained an appropriate status code
reaching several megabits per second. This is several orderé€-9:, 200 Success). The overall statistics for the reduced log
of magnitude more than is achieved by traditional dialup @re given in Table 1. The reduced log is only 4.5 GB in size,
modems. The increased access bandwidths made proxy-> GB when compressed.

caching important for reducing user latency as the ISP's 4 kKey WORKLOAD CHARACTERISTICS

gogtr;e#]:tlon to the Internet was the main bottleneck in the This section introduces a number of Web proxy workload
y ' characteristics and discusses their potential impact on proxy
3.2 Data Collection caching and cache replacement decisions.  These

The access logs of the proxy server described in Section 3.16haracteristics are described in detail in our workload
were collected for this study. These logs contain information characterization study [3].

on all client requests made between Jan 3rd, 1997 and MayCacheable Objects:In order for caching to improve Web
31st, 1997. Each entry in an access log containedperformance it is vital that most client requests be for
information on a single request received by the proxy. The cacheable objects. Table 1 indicates that 92% of all requests



were for cacheable objects (9,020,632 requests, or 8%, were Table 1: Summary of Trace Characteristics
uncachable), while 96% of the data transferred was

cacheable. As we mentioned in Section 3.2 this is an Access Log Duration January 3rd - May 31st, 1997
estimate of how many cacheable requests we could see if

lower level issues such as consistency and privacy were | Total Requests 115,310,904
handled efficiently and correctly. Total Content Bytes 1328 GB

Object Set Size:Table 1 indicates that there were over 16 Unique Cacheable Requests 16.255.621

million unique cacheable objects requested during the
measurement period. This is several orders of magnitude | Total Uncacheable Requests 9,020,632
larger than the number of unique objects seen in Web server -

- . Unique Cacheable Content Bytes 389 GB
workloads [4]. Due to the extremely large object set size the q y
proxy cache must be able to quickly determine whether a Total Uncacheable Content Bytes 56 GB
requested object is cached to avoid adding excessive latency

to the response. The proxy must also be able to update its. . N
state efficiently on a cache hit, miss or replacement. timers. Thus, a replacement policy that can discriminate

Furthermore, Table 1 indicates that storing all requested 29@inst one-timers should outperform a policy that cannot.

objects in cache (one approach for improving the hit rate) Turnover: One final characteristic that could impact proxy

would require an enormous amount of disk space; the 16 cache replacement decisions is turnover in the active set of
million unique cacheable objects have a cumulative size of pbjects (i.e., the set of objects that users are currently
389 GB. interested in). Over time the active set changes; objects that

Object Sizes: One of the obstacles for Web caching is were once popular are no longer requested. These inactive
working effectively with variable-sized objects. The object °Pi€cts should be removed from the cache to make space

size distribution in this data set is heavy-tailed with the tail available for new objects in the active set.

(rje(iuest(—:d obJeAcftsKgre small (thte me(Ijlaln objecé_smte n th'SThe next step in our study utilized trace-driven simulation to
ala Set was ) some extremely largeé ODJECIS WETE g ) ate  the importance of the identified workload
accessed. The largest object requested during the

measurement period was a 148 MB video. We also char'acteristic;s in making_replacement de'cisions. T'his
: o section provides an overview of the experimental design

observed requests for HTML objects over 10 MB in size and used for this simulation study.

images over 90 MB in size. We speculate that the higher ‘

access speeds available to the clients are increasing thé&.1 Factors and Levels

number of large transfers as well as the maximum size of |n our simulation study we focus on two factors: the size of

transfers. The issue for the proxy cache is to decide whetherine cache and the cache replacement policy. We discuss
to cache a large number of small objects which could gzch of these factors in turn.

potentially increase the hit rate, cache a few large objects ] o
which could increase the byte hit rate, or some combination Cache Size:The cache size indicates the amount of space
of the two. available for storing Web objects. We examine a range of

) sizes: 256 MB, 1 GB, 4 GB, 16 GB, 64 GB, 256 GB and 1
Recency of ReferenceWe found that one-third of all re- TR, The smallest size (256 MB) represents the performance
references to an object occurred within one hour of the of 3 memory cache. The intermediate cache sizes (e.g., 1
previous reference to the same object. Approximately two- GB to 16 GB) indicate likely cache sizes for Web proxies.
thirds of re-references occurred within 24 hours of the The |argest cache size (1 TB) can store the entire object set

previous request. These results suggest that recency is agngd thus approximates the performance of an infinite-sized
important characteristic of Web proxy workloads. cache.

Frequency of ReferenceSeveral recent studies [4][8] have  cache Replacement Policy:A replacement policy is an
found that some Web objects are more popular than othersygorithm for determining which objects to evict from the
(i.e., Web referencing patterns are non-uniform). Our cache when space is needed for a newly requested object. In
characterization study of the Web proxy workload revealed this paper we restrict ourselves to examining four different,

similar results. These findings suggest that popularity, or previously proposed replacement policies and two new
frequency of reference, is a characteristic that should bepgjicies that utilize frequency:

considered in a cache replacement decision.

i Least-Recently-Used (LRU) replaces the object requested
In our study we found that many objects are extremely |gast recently.

unpopular. In fact over 60% of the distinct objects (i.e., ) N o ) _
unique requests) seen in the proxy |Og were requested 0n|y aThlS.tradltlona.l pOllcy is the most often used in praCtlce.
single time (we refer to these objects as “one-timers” [4]). Previous studies have found that LRU does not work as well
Similar results have been reported by other researchersas other policies for Web proxy caches since it considers
[5][15][17]. Obviously there is no benefit in caching one- only a single workload characteristic [6][23].



SIZE [6]- replaces the largest object. we do not include the S-LRU and LRU-K results in this

This strategy tries to minimize the miss ratio by replacing Paper.

one large object rather than many smaller ones. However,During our examination of these existing policies we made
some of the small objects brought into the cache may neverseveral observations that led to the development of two new
be accessed again. The SIZE strategy does not provide anyparameterless (i.e., no manual tuning required to achieve
mechanism to evict such objects, which leads to pollution of good performance) replacement policies. These two new
the cache. policies are:

GreedyDual-Size (GD-Size)6]- replaces the object with  GreedyDual-Size with Frequency (GDSF)

the lowest utility. The GD-Size policies perform well, but do have one

This strategy replaces the object with the smallest key valuesignificant shortcoming: they do not take into account how

for a certain utility (cost) function. When an objerctis many times the object was accessed in the past. For

requested it is given a priority ké§f computed as follows: example, consider how GD-Size(1) handles two different
objects of the same size. If they are requested at about the

Ki=G/§+L same time, they are inserted into a priority queue with about

the same key value. The objefgf which was accessed n
times in the past will get the sank& value as the objedp
accessed for the first time. In the worst case scerignvaill
be replaced instead tf

where

* G is the cost associated with bringing objédhto the
cache.

* S is the object size.
e L is a running age factor that starts at 0 and is updated

for each replaced (evicted) objedi the priority key of
this object in the priority queue: i.é. = K;.

The GD-Size algorithm can be improved to reflect object
access patterns by incorporating a frequency céuiri the
computation ofK;: An analysis of this policy can be found
in [7].

Cao and Irani identified several variations of the 7l o

GreedyDual-Size policy. To get the best hit rate with GD- Ki=Fi*Ci/§+L

Size the Cost function for each object is set to 1. In this . . . .
way, larger objects have a smaller priority key than smaller Th|s policy achieves the best hit rate whegr1. We denote
ones, and are more likely to be replaced if they are not this strategy as GDSF-Hits.

referenced again in the near future. To maximize the hit rate | east Frequently Used with Dynamic Aging (LFU-DA)

it is more “profitable” to replace one large object than many i ) )

small objects. This strategy is denoted GD-Size(1). To get The results from [2] (summarized in Section 6) show that
the best byte hit rate with GD-Size the Cost function is set to frequency-based policies (e.g., LFU-Aging) achieve the

2 + S/536. This function estimates the number of network highest byte hit rates. These policies accomplish this by
retaining the most popular objects, regardless of object size.

packets sent and received to satisfy a cache miss for aU fortunatelv. all of the f based policies that
requested object, and therefore tries to minimize network ~"niortunately, ail ot thé irequency-basead policies that we
examined in [2] require parameterization to perform well.

traffic. This strategy is denoted GD-Size(Packets). )

Parameterless policies are preferable as they are generally
LFU - replaces the least frequently used object. less complex and easier to manage. Thus, we replaced the
tuneable aging mechanism of the LFU-Aging policy with a
dynamic mechanism (i.e., the inflation factbr,used by the
GD-Size policy). We call this new policy Least Frequently
Used with Dynamic Aging. LFU-DA calculates the key
aluekK; for object i using the following equation:

The LFU policy maintains a frequency count for each object
in the cache. We also examine the LFU-Aging policy [20],
which avoids cache pollution by reducing the frequency
count of each cached object by a factor of 2 whenever the
average frequency count exceeds a threshold parametely
Since some objects may be extremely popular, they might Ki=G*F;+L

stay in the cache for longer than desired or have significant

influence on the current frequency count. To prevent this With C; set to 1 this equation uses only the frequency count
situation a second parameter limits the maximum frequency and the inflation factor (for aging objects) to determine the
count an object can accumulate. To achieve good key value of an object. (We did not examine other values for
performance these parameters should be set based upon aB.) The LFU-DA policy may prove useful in other caching

analysis of the workload offered to the cache. environments where frequency is an important characteristic
We chose these policies because each one considers at lea8tt where LFU has not been utilized due to cache pollution
one of the proxy workload characteristics when making a CONcerns.

replacement decision. We also examined two policies5 2 Performance Metrics

designed for other computer systems (S-LRU [13] and The two most common metrics used to evaluate proxv cache
LRU-K [19]). We found both of these policies had similar W S IcS us valuate proxy

performance to LFU-Aging [2]. Due to space constraints performance are:



e Hit rate - the number of requests satisfied from the 6. SMULATION RESULTS
proxy cache as a percent of total requests. o o
« Byte hit rate - the number of bytes that the proxy cache 6-:_[ Performanpe of EXI_StIng.POIICIGS
served directly as a percent of the total number of bytes This section provides the simulation results of the proxy

for all requests. cache replacement policy study. Figure 1 consists of two
_ graphs, with the graph on the left indicating the achieved hit
5.3 Other Design Issues rate for a cache of a particular size while the graph on the

When monitoring a system only the steady-state behaviourright shows the achieved byte hit rate for a similarly
is of interest. During the initial or transient state of the configured cache. We have also sorted the legend in each
simulation many of the cache misses occur simply becausegraph by the performance of the policies with a cache size
the cache is empty (i.e., cold misses). After monitoring the of 256 MB. For example, in Figure 1(a), the GD-Size(1)
influence of cold misses on the overall miss rate on a day-to-policy achieved the highest hit rate. LRU obtained the
day basis we chose to use the initial three weeks of the datdowest hit rate of the policies that we examined.

set to warm-up the simulator. We use this same Warm-Up e requits indicate that the hit rate achieved with an

period for all simulations. infinite-sized cache is 67% (obtained by all policies with a
In this study all requests except for aborted transfers (aboutcache size of 1 TB). The remaining 33% of requests are for
10% of all requests) were used to drive the simulations. All uncacheable objects (e.g., output from dynamic or cgi
uncacheable requests are counted as cache misses. Afbjects), the initial requests for objects or the updates for
cacheable requests, including those with status 3040bjects which have been modified and cannot be served
responses are used to update the state informationfrom the cache. Figure 1(a) shows that even small caches
maintained by the cache for the requested object. In the casean perform quite well if the correct replacement policy is
of 304 responses only the hit rate is affected as no contentused. For example, a 256 MB cache using the GD-Size(1)
data is transferred. We believe that using this information policy achieved a hit rate of 35% which is 52% of the hit
helps the replacement policy to better determine the activerate that is obtained with an infinite-sized cache. This rate
set of objects. was achieved while allowing for only 0.06% of the entire

. . . object set size to be cached.
In this study we do not investigate the performance J

implications of the proxy having to perform validations. All  The results in Figure 1 show the performance of five of the
file modifications that we determined from the logs result in policies examined by Cao and Irani [6]: GD-Size(1), GD-
consistency misses in the simulations. As we discussed inSize(P), SIZE, LRU and LFU. We have also included the
Section 3.2 we do not have any information on cache LFU-Aging policy to show how the turnover characteristic
control headers. Since our simulator does not provide all of impacts cache performance. Our results, in terms of the
the functionality of a real proxy cache our results (e.g., hit relative ordering of the policies is consistent with those of
rates and byte hit rates) will be optimistic. However, we Cao and Irani. Figure 1(a) shows that the GD-Size(1) policy
believe our results indicate the level of performance that is superior to all of the other policies tested when
could be achieved if other issues, such as the proper use ofonsidering only the hit rate metric, followed by LFU-
cache control headers, can be resolved. Aging, GD-Size(P), SIZE, LRU and finally LFU. Neither
LFU-Aging nor LRU consider the size of an object when
making replacement decisions which is why these policies
require significantly more cache space to achieve hit rates

70 70

60 60

50 —~ 50
— S
g @
> 40 2 40
T 14
T 30 T 30
I I

- >
20 o 5
10 10
&
o
‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
256 MB  1GB 4GB 16GB  64GB 256 GB 1T8B 256 MB  1GB 4GB 16 GB 64GB 256 GB 1TB
Cache Size Cache Size
—— GD-Size(1) e SIZE % GD-Size(P) ——— LFU-Agin —=— LRU —— GD-Size(T
> LFU-Aging e LFU —*— LRU ke GD-Sizge(g) - LFU @ SIZE @
(a) Hit Rate (b) Byte Hit Rate

Figure 1. Comparison of existing Replacement Policies



similar to GD-Size(1). However, both of these policies are obtains the highest byte hit rates. This policy works well for
able to prevent cache pollution from occurring. Since LFU- this metric as it does not discriminate against the large
Aging retains popular objects for longer periods of time and objects which are responsible for a significant amount of the
discriminates against one-timers it outperforms LRU. GD- network traffic. LFU-Aging also retains popular objects
Size(P) achieves lower hit rates than GD-Size(1) as GD- (both small and large) longer than recency-based policies,
Size(P) retains larger files in order to improve the byte hit while the aging mechanism prevents cache pollution, the
rate. Both the SIZE and LFU policies restrict the turnover of reason why LFU-Aging achieves higher byte hit rates than
the cached object set, so the performance of these policied. FU.

suffers due to cache pollution. To understand the impact of . .

cache pollution we can compare the performance of LFU 6.2 Performance of New Policies

with LFU-Aging. Figure 1(a) clearly shows that LFU- In Figure 2 we compare the performance of the GDSF-Hits
Aging, which uses an aging mechanism, consistently ahd LFU-DA policies with the GD-Size(1), GD-Size(P),
outperforms LFU, which does not. The performance of LFU LFU-Aging and LRU policies. We removed the SIZE and
is similar to LFU-Aging in only two situations. When cache LFU policies in order to keep the graphs comprehensible.
sizes are very small (e.g., 256 MB), adding a single large We chose to remove these two policies since they both
file to the cache can result in the removal of many smaller suffered from cache pollution, and were not the best policy
objects from the cache, reducing the effects of cache for either metric.

pollution. When cache sizes are large (€.9., 256 GB), few rjg e 2(a) shows that the GDSF-Hits policy achieves
replacement decisions are needed and thus cache po”“t'o'i‘\igher hit rates than the GD-Size(1) policy which had the
has less impact on performance. highest hit rate of all the policies in Figure 1(a). For small

Figure 1(b) shows the achieved byte hit rates for the cache sizes GDSF-Hits requires only half of the cache space
replacement policies under study. Figure 1(b) reveals anto achieve the same hit rates as the GD-Size(1) policy, and
achieved byte hit rate of 62% for an infinite-sized cache. almost 16 times less space than the LRU policy. With a 256
The remaining 38% of the data needed to be transferredMB cache (0.06% of the object set size) the GDSF-Hits
across the external network link. The results also indicate Policy achieves a hit rate of more than 39% which is 58% of
that it is more difficult to achieve high byte hit rates than the hit rate obtained with an infinite-sized cache. This result
high hit rates. For example, a 256 MB cache achieves a byteis significant as it means that a proxy cache could

hit rate of 15% which is only one quarter of the byte hit rate Potentially satisfy many cache hits directly from its memory
obtained with an infinite-sized cache. cache without having to read from its disk cache. This could

) ) o ) . have a significant, positive impact on the performance of the
The relative ordering of the policies in Figure 1(b) is proxy cache. Figure 2(b) indicates that the GDSF-Hits
consistent with the results of Cao and Irani [6] for the five gjicy also achieves a higher byte hit rate than does GD-
common policies. GD-Size(P) and LRU, which have almost sjze(1). However, the byte hit rate of GDSF-Hits is still
identical performance, achieved the highest byte hit rates ofgjgnificantly lower than several of the other policies.
the common policies, followed by LFU, GD-Size(1), and o o )
finally SIZE. LFU performs poorly due to cache pollution. The results in Figure 2 indicate that the LFU-DA policy
GD-Size(1) achieves lower byte hit rates than GD-Size(P) achleve_s hit rates and byte hit rates that are quite qlose to the
because GD-Size(1) discriminates against large objects. Thd-FU-Aging policy, even though the LFU-Aging policy was
SIZE policy performance is extremely poor because of parameterized for the workload used to drive the
discrimination against large objects and cache pollution. simulations ~ while the LFU-DA policy was not.
The sixth policy that we examine, namely LFU-Aging, Furthermore, the dynamic aging mechanism of the LFU-DA

70 ‘ ‘ ‘ ‘ ; , 70
60 60
50 ~ 50
. X
S Y
> 40 5 40
g ) po
T 30 poer I 30
T L Q
>
20 @ 20
10 10 &
0 ‘ ‘ ‘ ‘ ! 0 ‘ ‘ ‘ ! s
256 MB  1GB 4GB 16GB  64GB 256GB  1TB 256 MB  1GB 4GB 16GB  64GB 256 GB 17B
Cache Size Cache Size
——-— GDSF-Hits ——— LFU-Aging ~x— GD-Size(P) ——— LFU-Aging % GD-Size(P) ——o-- GDSF-Hits
—+— GD-Size(1) e LFUDA = = LRU e LFU-DA = LRU —+— GD-Size(1)
(a) Hit Rate (b) Byte Hit Rate

Figure 2. Comparison of Proposed Policies to Existing Replacement Policies



policy is more efficient computationally than that of LFU- just described. Figure 3 also includes the results for the
Aging. With the exception of LFU-Aging, LFU-DA  GDSF-Hits, LFU-DA and LRU policies when each manages
achieved higher byte hit rates than all of the other tested 100% of the total cache space.

policies. The results in Figure 3 indicate that the use of the VC

7. VIRTUAL CACHES management approach does in fact improve the performance

In Section 5.1 we introduced two new replacement policies, of the _cache across multiple metrics. Both the hit rate and

neither of which requires parameterization. In Section 6.2 byte hit rate of the VC management approach appear to be
we showed how GDSF-Hits achieved high hit rates while Pounded by those of the policies used to manage each of the
LFU-DA achieved hit byte hit rates. A drawback of having individual VCs (we do not have a theoretical proof that this

two policies is that a decision must be made on which |s_always true). As the percentage of space dedicated to th_e
metric is most important and therefore which replacement Hits VC decreases the hit rate also decreases although it
policy should be used. In some situations the choice may befémains higher than the policy used to manage the Bytes

obvious; in others both high hit rates and high byte hit rates Partition. At the same time the byte hit rate increases,
may be important. nearing that achieved by the policy used to manage the

Bytes partition. These improvements can be explained from
We developed an approach that can focus on both of thesehe characteristics of the proxy workload. Due to the non-
metrics simultaneously. This approach logically partitions yniform popularity distribution a cache is able to achieve
the cache into N virtual caches. Each virtual cache (VC) is relatively high hit rates with a very small amount of storage
then managed with its own replacement policy. Initially all space. However, as the cache gets larger, the rate of
objects are added to C Replacements from ViCare  improvement in hit rate declines as it becomes increasingly
moved to VG,;. Replacements from V/C, are evicted difficult to identify objects that will continue to improve the

from the cache. All objects that are reaccessed while in the hit rate (the diminishing returns effect). A similar argument
cache (i.e., cache hits) are reinserted ingVThis allows  can be made regarding the objects that affect the byte hit

in-demand objects to stay in the cache for a longer period of fate. By partitioning the cache we are retaining most of the
time. For example, to achieve high hit rates and high byte hit Penefit of a cache that is dedicated to a single metric while
rates simultaneously, two VCs are used. One VC focuses onmaking more effectwe use of the remaining space relative to
obtaining high hit rates using a replacement policy such as S&cond metric.

GDSF-Hits.  The other VC aims to achieve high byte hit 1o see how the VC management policy performs relative to
rates by utilizing a replacement policy such as LFU-DA.  the other replacement policies not included in Figure 3 we

We simulated this cache management policy to evaluate its'€!y on comparisons with the GDSF-Hits and LFU-DA
effectiveness when utilizing two VCs. Our first experiment Policies. Since the hit rates for the tested VC management
used the GDSF-Hits policy to manage y@ve refer to this policies are bounded below by the LFU-DA policy, the VC

. . approach achieves higher hit rates than all of the other tested
as the Hits VC) while VG (the Bytes VC) employed the replacement policies except for GD-Size(1). However, the

LFU-DA policy. We examined several different allocations e hit rate of the tested VC policies are bounded below b

of the cache space: 75% for the Hits VC, 25% for the Bytes tf?e performance of the GDSFp-Hits policy, which achieves g
VC (denoted VC-HB-75/25); 50% for each VC (VC-HB-  pigher pyte hit rate than does GD-Size(1). Thus GD-Size(1)
50/50); and 25% for the Hits VC, 75% for the Bytes VC  joeq not achieve higher performance for both hit rate and
(VC-HB-25/75). Figure 3 shows the performance of the VC e it rate compared to any of the VC policies that we
management policy for the different configurations we have oy omined. Similar analogies can be made for the other

70

70

60 60
50 = 50
< s
X - o
5 40 5 40
I S o
30 Frosilm? T 30
T T ]
>
20 Oo20p
10 10 £
O L L L L L 0 L L L L L
256 MB  1GB 4GB 16GB  64GB 256GB  1TB 256 MB  1GB 4GB 16GB  64GB 256 GB 17B
Cache Size Cache Size
——o-- GDSF-Hits ——— VC-HB-50/50 -+ LFU-DA ‘» ~ LFU-DA ——— VC-HB-50/50 = LRU
—+— VC-HB-75/25  -x- VC-HB-25/75  --=-- LRU % VC-HB-25/75  —+— VC-HB-75/25  --o-- GDSF-Hits
(a) Hit Rate (b) Byte Hit Rate

Figure 3. Analysis of Virtual Cache Performance; V(@ using GDSF-Hits, VC,; using LFU-DA



70 70
60 60
50 = 50
= S
S °
S 40 g7 £ 40
T LT x
?_5 30 furi T 30
T 2
e >
20 @ 20
10 10
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
256 MB  1GB 4GB 16GB 64GB 256GB  1TB 256 MB  1GB 4GB 16GB 64GB 256GB  1TB
Cache Size Cache Size
--o-- GDSF-Hits ----x-—- \/C-BH-50/50 -~ LFU-DA ~e- LFU-DA ——— VC-BH-50/50 —*-— LRU
—— VC-BH-25/75 -+~ VC-BH-75/25  -——=-- LRU ‘ ~ox- VC-BH-75/25 __—— VC-BH-25/75  --o-- GDSF-Hits
(a) Hit Rate (b) Byte Hit Rate
Figure 4. Analysis of Virtual Cache Management; V@using LFU-DA, VC, using GDSF-Hits
policies. 8. CONTRIBUTIONS AND FUTURE WORK

This paper has presented a performance study of a Web
ordering of the VCs. Figure 4 shows the results when the PrOXY cache based on the most significant proxy workload
Bytes VC is the first partition (V) and the Hits VC is the characterization to date. Trace-driven smulaﬂons were
second (VQ). The results in Figure 4 show that once again used to evalua_tg the performance of different cache
) . _replacement policies for proxy caches. We then used the
the performance of the VC management approach isyyorkjoad results to develop two new replacement policies
bounded by the performance of the replacement policiesnat puilt upon the strengths of the existing policies while
selected to manage each individual VC. avoiding the weaknesses. Our results indicate that size-

Figure 5 compares the performance between the Hits-BytesPased policies achieve higher hit rates than other policies.
ordering of VCs (Figure 3) with the performance of the Furtherimprovements in hit rate result by giving preference
Bytes-Hits ordering of VCs (Figure 4). The results in Figure t0 frequency of reference. We also found that frequency-
5 indicate that the ordering of the VCs does have some based policies are more effective at improving the byte hit
effect on the overall performance of the cache. More rate of a proxy cache. With either metric it is important to

Speciﬁca”y, Vq appears to have more impact on the overall consider turnover in the active set of Objects. Furthermor.e,
performance than does \C This occurs because the we have developed virtual caches as an approach to provide

: . : : imal h f f ltipl [
objects in VG are moved back into V§; in order that these optimal cache performance for multiple  metrics

) o ) ) simultaneously.
objects can remain in the cache for a longer period of time. ) )
This action influences the replacement decisions of\¢8 ~ There are many open issues regarding Web proxy

it must remove some of its preferred objects in order to add Performance and caching. Future work in this area may
the objects passed from YC include designing new replacement policies, particularly

ones that can achieve higher byte hit rates (through the use

Our next experiment analyzed the importance of the

70
60
< 50
é/
5 Q
< < 40
o &
© =
% I 30
z g
20 0 20
10 10
O L L L L L O L L L L 1
256 MB 1GB 4GB 16 GB 64 GB 256 GB 1TB 256 MB 1GB 4GB 16 GB 64 GB 256 GB 1TB
Cache Size Cache Size
& VC-BH-25/75  --=—- VC-BH-50/50 --o-- VC-BH-75/25 %= VC-HB-25/75 —-x— VC-HB-50/50 —— VC-HB-75/25
—— VC-HB-75/25 - \C-HB-50/50 % VC-HB-25/75 --o-- VC-BH-75/25 = --=-- VC-BH-50/50 o VC-BH-25/75
(a) Hit Rate (b) Byte Hit Rate

Figure 5. Analysis of Virtual Cache Management; Effects of VC Order on Performance



of future knowledge we have determined that significantly
higher byte hit rates than those achieved by the LFU-DA
policy are possible). We have implemented the new

replacement policies in a proxy cache and are examining the

2

effects that a replacement policy has on system performanc
[9]. More investigation into the VC approach is needed,
including a theoretical description of its operation. We
intend to continue our investigation of Web caching and its
role in providing more predictable end-to-end performance.

Other issues include examining the relationship between hit

[8] C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of
WWW Client-based Traces”, Technical Report TR-95-010,
Boston University Department of Computer Science, April
1995.

J. Dilley, M. Arlitt and S. Perret, “Enhancement and Valida-
tion of the Squid Cache Replacement Policy”, submitted for
publication, January 1999.

[10] B. Duska, D. Marwood, and M. Feeley, “The Measured
Access Characteristics of World-Wide Web Client Proxy
Caches”Proceedings of USENIX Symposium of Internet
Technologies and Systems (USIT&3nterey, CA, pp. 23-35,
December 1997.

rates and latency reduction for end users, implementing a[;1) A Feldmann, R. Caceres, F. Douglis, G. Glass and M.

more efficient consistency mechanism [14][16], and adding
more functionality to Web proxy caches (e.g., accounting
and security),. Finally, much effort will be required to

ensure that the majority of Web objects remain cacheable ad12]

the Web evolves while providing users and content
providers with the functionality they desire.

9. ACKNOWLEDGEMENTS

The authors would like to thank Mike Rodriquez of
Hewlett-Packard Laboratories and all the people in HP’s
Telecommunication Platforms Division (TPD) who supplied

us with the access logs used in this research. The authors
are grateful to Greg Oster of the University of Saskatchewan
for his assistance with the development of the simulator, and

to Godfrey Tan of UC-Berkeley for his work on validating
the proposed replacement policies. We would also like to

thank the anonymous reviewers for their many constructive

comments.

10. REFERENCES

[1] J. Almeida and P. Cao, “Measuring Proxy Performance with
the Wisconsin Proxy Benchmark”, Technical Report, Univer-
sity of Wisconsin Department of Computer Science, April

1998.

M. Arlitt, R. Friedrich and T. Jin, “Performance Evaluation of
Web Proxy Cache Replacement Policies”, to appe&eirtor-
mance Evaluation Journal999.

M. Arlitt, R. Friedrich, and T. Jin, “Workload Characteriza-
tion of a Web Proxy in a Cable Modem Environment”, to
appear ilACM SIGMETRICS Performance Evaluation
ReviewAugust 1999

M. Arlitt and C. Williamson, “Internet Web Servers: Work-
load Characterization and Performance ImplicatioltsEZE/
ACM Transactions on Networkingol. 5, No. 5, pp. 631-645,
October 1997.

M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P.
Sturm, “Enhancing the Web’s Infrastructure: From Caching to
Replication”,|EEE Internet Computingvol. 1, No. 2, pp. 18-
27, March-April 1997.

P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching
Algorithms”, Proceedings of USENIX Symposium on Internet
Technologies and Systems (USIT&)nterey, CA, pp. 193-
206, December 1997.

L. Cherkasova, “Improving WWW Proxies Performance with
Greedy-Dual-Size-Frequency Caching Policy”, Technical
Report HPL-98-69R1, Hewlett-Packard Laboratories,
November 1998.

(2]

(4]

(5]

(6]

(7]

Rabinovich, “Performance of Web Proxy Caching in Hetero-
geneous Bandwidth Environment®roceedings of IEEE
Infocom‘99 New York, NY, pp. 107-116, March 1999.

S. Gribble and E. Brewer, “System Design Issues for Internet

Middleware Services: Deductions from a Large Client Trace”,

Proceedings of USENIX Symposium on Internet Technologies

and Systems (USIT.S)lonterey, CA, pp. 207-218, December

1997.

[13] R. Karedla, J. Love and B. Wherry, “Caching Strategies to
Improve Disk System PerformancéZEE ComputerVol.

27, No. 3, pp. 38-46, March 1994.

[14] B. Krishnamurthy and C. Wills, “Study of Piggyback Cache

Validation for Proxy Caches in the World-Wide WeB'tp-

ceedings of USENIX Symposium on Internet Technologies

and Systems (USIT,3onterey, CA, pp. 1-12, December

1997.

[15] M. Kurcewicz, W. Sylwestrzak and A. Wierzbicki, “A Filter-
ing Algorithm for Proxy Caches3rd International Web
Cache Workshgphttp://wwwcache.ja.net/events/workshop/.

[16] C. Liu and P. Cao, “Maintaining Strong Cache Consistency in
the World-Wide Web”Proceedings of the 17th IEEE Interna-
tional Conference on Distributed Computing Systevtesy
1997.

[17] P. Lorenzetti and L. Rizzo, “Replacement Policies for a Proxy
Cache”, Technical Report, Universita di Pisa, December
1996.

[18] C. Maltzahn and K. Richardson, “Performance Issues of
Enterprise Level Web ProxiesProceedings of the 1997 ACM
SIGMETRICS Conference on the Measurement and Modeling
of Computer SystemSeattle, WA, pp. 13-23, June 1997.

[19] E. O’Neil, P. O’'Neil and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Bufferingio-
ceedings of SIGMOD ‘93Nashington, DC, May 1993.

[20] J. Robinson and M. Devarakonda, “Data Cache Management
Using Frequency-Based ReplacemeRthceedings of the
1990 ACM SIGMETRICS Conference on the Measurement
and Modeling of Computer SysterBsulder, CO, pp. 134-
142, May 1990.

[21] K. Thompson, G. Miller and R. Wilder, “Wide-Area Internet
Patterns and Characteristicl2EE Network\Vol. 11, No. 6,
November/December 1997.

[22] D. Wessels, “Squid Internet Object Cache” http://
squid.nlanr.net.

[23] S. Williams, M. Abrams, C. Standridge, G. Abdulla, and E.
Fox, “Removal Policies in Network Caches for World-Wide
Web Documents™Proceedings on ACM SIGCOMM ‘96
Stanford, CA, pp. 293-305, August 1996.

[24] R. Wooster and M. Abrams, “Proxy Caching that Estimates
Page Load DelaysRroceedings of the 6th International
World-Wide Web Conferenc8anta Clara, CA, April 1997.



	Evaluating Content Management Techniques for Web Proxy Caches
	Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich and Tai Jin
	Hewlett-Packard Laboratories
	1501 Page Mill Road
	Palo Alto, CA 94304

	{arlitt, cherkasova, jad, richf, tai}@hpl.hp.com
	1. ABSTRACT
	The continued growth of the World-Wide Web and the emergence of new end-user technologies such as...

	2. Introduction
	3. Data Collection and Reduction
	3.1 Data Collection Site
	3.2 Data Collection
	3.3 Data Reduction

	4. Key Workload Characteristics
	5. Experimental Design
	Table 1: Summary of Trace Characteristics

	Access Log Duration
	January 3rd - May 31st, 1997
	Total Requests
	115,310,904
	Total Content Bytes
	1,328 GB
	Unique Cacheable Requests
	16,255,621
	Total Uncacheable Requests
	9,020,632
	Unique Cacheable Content Bytes
	389 GB
	Total Uncacheable Content Bytes
	56 GB
	5.1 Factors and Levels
	5.2 Performance Metrics
	5.3 Other Design Issues
	6. Simulation Results
	6.1 Performance of Existing Policies
	Figure 1. Comparison of existing Replacement Policies

	6.2 Performance of New Policies
	Figure 2. Comparison of Proposed Policies to Existing Replacement Policies


	7. Virtual Caches
	Figure 3. Analysis of Virtual Cache Performance; VC0 using GDSF-Hits, VC1 using LFU-DA
	Figure 4. Analysis of Virtual Cache Management; VC0 using LFU-DA, VC1 using GDSF-Hits
	Figure 5. Analysis of Virtual Cache Management; Effects of VC Order on Performance

	8. Contributions and Future Work
	9. Acknowledgements
	10. References
	[1] J. Almeida and P. Cao, “Measuring Proxy Performance with the Wisconsin Proxy Benchmark”, Tech...
	[2] M. Arlitt, R. Friedrich and T. Jin, “Performance Evaluation of Web Proxy Cache Replacement Po...
	[3] M. Arlitt, R. Friedrich, and T. Jin, “Workload Characterization of a Web Proxy in a Cable Mod...
	[4] M. Arlitt and C. Williamson, “Internet Web Servers: Workload Characterization and Performance...
	[5] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm, “Enhancing the Web’s Infrastruct...
	[6] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algorithms”, Proceedings of USENIX Symposi...
	[7] L. Cherkasova, “Improving WWW Proxies Performance with Greedy-Dual-Size-Frequency Caching Pol...
	[8] C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of WWW Client-based Traces”, Techni...
	[9] J. Dilley, M. Arlitt and S. Perret, “Enhancement and Validation of the Squid Cache Replacemen...
	[10] B. Duska, D. Marwood, and M. Feeley, “The Measured Access Characteristics of World-Wide Web ...
	[11] A. Feldmann, R. Cáceres, F. Douglis, G. Glass and M. Rabinovich, “Performance of Web Proxy C...
	[12] S. Gribble and E. Brewer, “System Design Issues for Internet Middleware Services: Deductions...
	[13] R. Karedla, J. Love and B. Wherry, “Caching Strategies to Improve Disk System Performance”, ...
	[14] B. Krishnamurthy and C. Wills, “Study of Piggyback Cache Validation for Proxy Caches in the ...
	[15] M. Kurcewicz, W. Sylwestrzak and A. Wierzbicki, “A Filtering Algorithm for Proxy Caches”, 3r...
	[16] C. Liu and P. Cao, “Maintaining Strong Cache Consistency in the World-Wide Web”, Proceedings...
	[17] P. Lorenzetti and L. Rizzo, “Replacement Policies for a Proxy Cache”, Technical Report, Univ...
	[18] C. Maltzahn and K. Richardson, “Performance Issues of Enterprise Level Web Proxies”, Proceed...
	[19] E. O’Neil, P. O’Neil and G. Weikum, “The LRU-K Page Replacement Algorithm for Database Disk ...
	[20] J. Robinson and M. Devarakonda, “Data Cache Management Using Frequency-Based Replacement”, P...
	[21] K. Thompson, G. Miller and R. Wilder, “Wide-Area Internet Patterns and Characteristics”, IEE...
	[22] D. Wessels, “Squid Internet Object Cache” http:// squid.nlanr.net.
	[23] S. Williams, M. Abrams, C. Standridge, G. Abdulla, and E. Fox, “Removal Policies in Network ...
	[24] R. Wooster and M. Abrams, “Proxy Caching that Estimates Page Load Delays”, Proceedings of th...







