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Market-Based Control (MBC) is a resource allocation and
control technique where multi-agent systems are built to
resemble free-market economies. The aim is that MBC
systems exhibit the same decentralization, robustness, and
capacity for self-organization as do real economies. MBC
systems are relevant to Artificial Intelligence (Al) and
robotics in at least two ways: first, the agents in a MBC
system need to be robot-like in their ability to autonomously
coordinate perception and action in dynamic and uncertain
environments that include other agents; second, MBC
systems could be used as the control technologies for robots
and other “intelligent” autonomous agents. We critically
review a selection of MBC systems. We argue that the MBC
systems reviewed here are either implicitly reliant on
centralized knowledge, or require human operators and
hence are not truly automatic. We identify a major issue in
creating truly decentralized and automatic MBC systems:
the need for the system's agents to be capable of bargaining
behaviors. Following this, we briefly summarize our current
results and ongoing work in creating multi-agent systems
where each autonomous agent has the ability to bargain with
other agents. We demonstrate that markets composed of
such agents exhibit desirable behaviors, and that such agents
could form the basis of truly decentralized MBC systems.
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ABSTRACT

Market-Based Control (MBC) is a resource allocation and
control technique where multi-agent systems are built to
resemble free-market economies. The aim is that MBC
systems cxhibit the same decentralization, robustness,
and capacity for self-organization as do real economies.
MBc systems are relevant to Artificial Intelligence (A1)
and robotics in at least two ways: first, the agents in a
MBC system need to be robot-like in their ability to au-
tonomously coordinate perception and action in dynamic
and uncertain environments that include other agents;
second, MBC systems could be used as the control tech-
nologies for robots and other “intelligent” autonomous
agents. We critically review a selection of MBC systems.
We argue that the MBC systems reviewed here are either
implicitly reliant on centralized knowledge, or require hu-
man operators and hence are not truly automatic. We
identify a major issue in creating truly decentralized and
automatic MBC systems: the need for the system’s agents
to be capable of bargaining behaviors. Following this, we
briefly summarize our current results and ongoing work
in creating multi-agent systems where each autonomous
agent has the ability to bargain with other agents. We
demonstrate that markets composed of such agents ex-
hibit desirable behaviors, and that such agents could form
the basis of truly decentralized MBC systems.

1 Introduction

We argue here that much current work in market-based
control (MBC) is flawed. MBC is an approach to auto-
matic resource allocation and control that draws inspira-
tion [rom free-market economics. Real free marketls are
self-organizing and decentralized, and a primary attrac-
tion of MBC is its potential for creating artificial systems
that also have these properties. Despite this, we show
here that much work in MBC relies on centralized pro-
cesses, often in an implicit manner. One likely reason
for this is that centralizing the market price-fixing pro-
cess avoids the need to create ‘trading agents’ capable of
bargaining with each other (i.e., agreeing a price for a
transaction). This need to create trading agents capable
of bargaining is undeniably challenging, but if the chal-
lenge is avoided by centralizing the market then one of
the primary advantages of MBC disappears, and so the
entire endeavor becomes questionable.

Yet if such trading agents could be developed, truly
decentralized MBC systems could be created. Such MBC
systems would have strong links with artificial intelligence
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and robotics in two ways. First, creating the necessary
trading agents requires addressing problems that research
in A1 and mobile robotics has studied for some time. Sec-
ond, if truly decentralized MBC systems can be created,
they could be of significant use in robotics and A1 ap-
plications. In both cases, developing solutions requires
intensive use of simulations of agent-environment inter-
action, where each trading agent’s environment consists
primarily of other trading agents.

In addition to presenting our critique of the MBC lit-
erature, we demonstrate here that simple trading agents,
using machine-learning techniques common in artificial
intelligence (A1), can give human-like trading behavior.
We show that our agents stabilize at an equilibrium that
is predictable from economic theory, and are robust with
respect to sudden changes in the market. Thus, our trad-
ing agents can be used in decentralized MBC applications.

The rest of this paper is structured as follows. Section 2
discusses the background to this paper; Section 3 presents
our critique of current MBC systems; and Section 4 gives
a briel overview of our simple trading agents thal can
bargain in decentralized markets.

2 Background

Recent work in A1 and robotics has addressed issues in cre-
ating systems that exhibit desirable complex “emergent”
behavior. Such systems are typically distribuled in the
sense that they are composed of a number of separate but
interacting autonomous subsystems. Crucially, the inter-
actions between the subsystems, and the specifications of
the subsystems themselves, are simple in comparison to
the behavioral complexity of the overall system. Thus,
the complex behavior emerges from simple interactions
between simple components. Often, inspiration is drawn
from biological systems. Two prominent cases of such
systems are arlificial neural networks in A1 and collective
behavior robotics systems.

In artificial neural networks, “intelligent” behaviors are
exhibited by computational systems composed of many
simple “neuron-like” processing units. Each unit typically
does nothing more than compute a threshold function of a
weighted sum of several scalar numeric input values, pro-
ducing a scalar output value. Appropriately confligured,
networks of such mnits can exhibit surprisingly sophisti-
cated processing behaviors: see c.g. |27, 21].

Collective many
species: flocking in birds; schooling in fish; swarming in
insects; and herding in terrestrial animals are all com-
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mon examples. In seminal simulation studies, Reynolds
[25] demonstrated that such coordinated group behaviors
could arise from simple agents moving so as to satisfy a
small set of simple constraints. Subsequently, a number
of researchers worked on collectives of simple robots coor-
dinating to achieve tasks that might otherwise have been
tackled by a single complex robot: sce e.g. [3, 20].

Systems can exhibit emergent behavior at multiple lev-
els. For example, a collective of robots could be engaging
in activity that is emergent at the group level; yet the
controller for cach robot could be a neural network, in
which case the behavior of an individual robot is itself
an emergent consequence of the interactions between the
‘neurons’ in that robot’s controller.

A primary advantage of distributed emergent systems
such as these is that they are decentralized: there is no
central coordinating component or process on which the
system relies. Such decentralization offers robustness in
the form of graceful degradation: the absence of central-
ization can lead to systems that show a progressive loss
of performance, rather than sudden catastrophic collapse,
when individual subsystems mallunction or fail. Often
this robustness is a consequence of the distributed emer-
gent system having some capacity for self-organization:
there is no need for explicit reprogramming when a sub-
system fails; rather, the remaining subsystems alter their
activity to accommodate the change in their operating en-
vironment. Sometimes this self-organization also extends
to the initial programming or calibration of the system.

It is beyond the scope of this paper to give a full re-
view of biologically-inspired emergent computation: see
Forrest [12] or Huberman [17] for significant collections.
Rather, our primary aim here is to emphasize that there is
another type of decentralized system that shows desirable
complex emergent behaviors. The distributed emergent
system that concerns us here is the free-market economy.
In the last few years, a small but growing number of re-
searchers have explored the prospect of using natural hu-
man economices and market mechanisms as metaphors for
constructing computational solutions to difficult problems
in resource allocation and control.

The allocation of scarce resources is a topic that has
long been studied in economics. In brief, if the quan-
tity of a resource demanded by consumers in a market is
greater than the quantity supplied, competition between
consumers causes the price of the resource to rise. This
can both reduce the quantity demanded (because some
consumers can no longer afford it) and also increase the
quantity supplied (because some suppliers may be more
interested i selling at higher prices). Similarly, when the
quantity supplied is greater than the quantity demanded,
competition among suppliers can lead to the price falling,
which may reduce the quantity supplied and increase the
quantity demanded. Thus, according to classical eco-
nomic theories ol markets, the market equilibrates: trans-

action prices approach an equilibrium value where the
quantity demanded matches the quantity supplied.

Advocates of free-market economics claim that the ac-
tions of groups of individuals, engaging in simple trad-
ing interactions driven by self-interest, can result in good
or optimal allocation of resources. Crucially, the market
mechanism does this in a decentralized fashion: there is
no central control process; rather, the allocation ‘crucrges’
from the interactions of the buyers and sellers.

Thus, economics can act as a valuable source of termi-
nology, inspiration, and metaphors flor developing solu-
tions to problems in distributed resource-allocation and
control. This theme forms the basis of the growing re-
search field known as market-based control (MBC).

In brief, the aim of MBC systems is that groups of
software agents or ‘traders’ interact within a market-like
framework. In general, the influence from market eco-
nomics is implemented by dividing the scarce resources
into units of ‘commodity’ and then providing a ‘currency’
that is exchanged when agents buy or sell the commodity.
Some agents act as ‘producers’ or ‘sellers’ of the commod-
ity (e.g., an agent may be assigned to a node or link i a
telecommunications network, charging for usc of that re-
source), while others act as ‘consumers’ or ‘buyers’ (e.g.,
an agent may be assigned to a data-packet on a network,
spending currency in order to route the packet from its
source to its destination). In principle, when supply is
greater than demand, the price of the commodity will fall;
and when demand exceeds supply, the price rises. The
aim then is that prices rise and fall, dynamically match-
ing the quantity demanded to the quantity supplied, while
either or both of these quantities also vary dynamically.

The classical theoretical picture of price-equilibration
dictates that the number of trading agents (buyers and
sellers) in the market is practically infinite, or very large
at least. Yet, in a series of experiments commencing in
the late 1950’s, Smith (e.g. [28]) demonstrated that mar-
kets consisting of surprisingly small numbers of human
traders could rapidly converge on the theoretical equi-
librium price. Smith demonstrated that stable equilib-
ria could be reached with fewer than twenty traders. In
Smith’s experiments, human subjects were told to be ei-
ther buyers or sellers. Each seller was given a number of
units of an arbitrary commodity to scll and cach buyer
was given the right to buy some units, and some cur-
rency. For each unit, each trader was given a limul price
that was private (known only to that trader). A buyer
couldn’t pay more than her limit price for a unit of the
commodity, and a seller couldn’t sell a unit for less than
her Timit price. Typically, different traders had different
limit prices: the distribution of limit prices determined
the market supply and demand curves. In each experi-
ment, time was divided into discrete periods of 5 to 10
consecutive sessions known as ‘days’. Al Lhe start of each
day, the rights to buy or sell units ol commodity were



distributed between the subjects. Each day came to a
close either when no more traders were willing or able to
trade, or when a pre-set time-limit expired (typically a
‘day’ lasted 5-10 minutes). During each day, the traders
operated within a specific market structure: in many of
Smith’s experiments, the cDA was used, but he also ex-
perimented with ‘retail’ markets (where only sellers quote
prices). In the early experiments, the traders communi-
cated orally, but Smith subsequently developed methods
where the traders communicated with each other via a
network of computer terminals. Smith’s work helped es-
tablish the field now known as Ezperimental Economics.
The intention of the work described here is to develop
intelligent trading agents with the bargaining capabili-
ties necessary for small groups of traders to show price-
equilibration in market scenarios similar to those Smith
studied with human subjects.

The speed or stability of equilibration in a market can
be affected by altering its structure, and markets can
be structured in many ways. For example, in so-called
English-auction markets, sellers remain silent while the
buyers quote increasing bid-prices: bid-prices ascend un-
til only one buyer remains, at which point a transaction
occurs. At the center of this process is an auctioneer,
without whom the market cannot operate.

Yet real markets operate efficiently without centralized
auctioneers. The fastest and most efficient market struc-
ture is the continuous double-auction (CDA) market. In
a cDA market, a seller can quote an offer-price at any
time, and a buyer can quote a bid-price at any time. A
transaction occurs whenever one trader accepls an of-
fer or a bid quoted by another trader. At any time,
any trader may quote a new price that supersedes that
trader’s previously-quoted price. The CDA is an attrac-
tive market structure: it is fundamentally asynchronous,
and examples of distributed cDAs pervade real markets:
for example, the cDA is the basis of trading at many in-
ternational financial derivatives exchanges.

The intention in MBC is that, by building multi-agent
systems based on free-market economies, the control sys-
tems exhibit the same decentralization, robustness, and
capacity for self-organization as real economies.

Superficially, it may appear that little work in MBC is
relevant to Al or robotics: examples from the MBC litera-
ture discussed later in this paper include allocating band-
width in telecommunications networks, allocating mem-
ory in a computer operating system, controlling an air-
conditioning system, distributing pollution controls, and
job-shop scheduling. However, this superficial dissimilar-
ity should not be allowed to mask some deep and impor-
tant issues that are common o MBC systems, Al systems,
and robotics. 'T'here are two main points to note:

First, the operating enviromments of trading agents in
a decentralized MBC system are similar to those of robot
ageénts in a collective behavior system. In both cases, the

agents interact with a complex, dynamically varying en-
vironment that includes other agents. For a MBC trading
agent, there are issue of co-adaptation, co-operation, and
competition; and the value of an action has to be judged
in terms of the likely response from the other agents.

Second, when appropriately configured, MBC systems
could be used in Al applications including robotics. As
more complex robots are developed, issues such as ‘at-
tention’ (i.e., where next to point directional sensors such
as active-vision heads, or which mission goal or subgoal
to satisfy next), can be cast in MBC terms, where differ-
ent processes compete via a market to consume resources
that are scarce within the robot. Also, as the sensory
bandwidth of robots increases, there is a growing need
for specialized operating-systems capable of rapid trans-
port and processing of frame-rate color video data: MBC
may offer new solutions to this problem.

As with robotics and a1, the development cycle of MBC
systems is often heavily reliant on extensive simulation
studies in order to thoroughly debug the system before
final implementation in the target environment.

We present here a critical review of a representative
selection of MBC systems, concentrating on the degree to
which they are truly decentralized. We argue that the
MBC systems reviewed here are either implicitly reliant
on centralized knowledge, or are not fully automatic in-
sofar as they require human operators (who tend to be
expensive and/or error-prone). Thus, we identify a cen-
tral problem in creating truly decentralized MBC systeins:
the need for bargaining behaviors in the system’s agents.

3 Market-Based Control: A Critical Review

To reiterate, two primary reasons for adopting a MBC ap-
proach are the prospects of automation and decentraliza-
tion of resource-allocation or control processes. lFor the
process to be automatic, it should devolve power from hu-
man operators: once the system is operational, human in-
put should be reduced to a minimum. And for the process
to be decentralized, there should be minimal reliance on
central control mechanisms, processes, or databases (e.g.,
models of the entire network). Ideally, the system should
not rely on the operation of any single critical component
or sub-system. In much the same way that the national
market for bread does not collapse when one baker goes
bankrupt, so the failure of any one trading agent in a MBC
system should result in only a minor impairment (if any)
to the overall behavior of the system, rather than a total
breakdown.

Yet, to the best of our knowledge, no current MBC sys-
tems are both automatic and decentralized in the senses

just deseribed. In the applications published in the liter

ature, there is areliance cither on centralized ‘auctioneer’
processes or on human mtervention. In the case where a
centralized auctioneer process is used, in addition to the
brittleness caused by failure of the central process, there



are the issues of imposing synchrony on a fundamentally
asynchronous system, and the costs of maintaining the
central auctioneer’s database (i.e., its ‘knowledge’ of how
many traders there are, their interconnections, etc.).

Moreover, in the few truly peer-to-peer decentralized
systems discussed in the literature, ideas from economics
arc uscd as a weak metaphor and there is nothing that ap-
proximates to a currency or price mechanism. Yet, surely,
for the influence from economics to be more than a very
weak metaphor, there should be a meaningful price mech-
anism: a currency should be available for expressing rel-
ative utility, indifference, substitution between commodi-
ties, and so on. For example, Malone et al [18] report
on Enterprise, a decentralized system for task scheduling
in distributed computing systems, where ‘bids’ indicate
estimated completion times for tasks: this is sufficient for
‘transactions’ where clients select servers and vice versa,
but there is no equivalent of competitive price-bargaining
in this system. Also, the recent work of Epstein and Ax-
tell [11] on “artificial societies” has attracted much atten-
tion but there is no money or price mechanism in their
models [L1, p.101], and so their work is of little relevance
here. Furthermore, Cliff and Bruten [6, 7] discuss the lack
of relevant work in experimental economics, and Ciff [6]
notes the lack of related work in “biologically inspired”
computing such as in“artificial life” rescarch.

Despite the attractions of MBC, it is important to note
that there are a number of theoretical studies that raise
difficult issues. In particular, there are indications that
the dynamics of some decentralized markets populated
by simple traders acting purely to serve their own self-
interest may converge to stable but highly sub-optimal
equilibria (e.g., [14]), or may exhibit complex chaotic and
hyperchaotic dynamics, (e.g., [13, 29]). The extent to
which such theoretical models are applicable to real mar-
ket systems is a matter for current empirical rescarch; and
the degree to which these results apply to MBC systems
1s also not clear, because all MBC systems with which we
are familiar exclude one or more fundamental features of
real decentralized narkets.

Early methodological arguments for the field now
known as MBC can be found in a range of disparate publi-
cations. It is beyond the scope of this paper to provide a
full historical review of the field: in addition to the Enter-
prise project discussed above, which was in turn inspired
by earlier ideas in coniract nets (e.g. [9]), the theme of us-
ing ideas from microeconomics in controlling distributed
systems was explored in depth by Miller and Drexler in
three seminal papers [22, 23, 10].

I the remainder of this section, we hriefly disenss five
recently-published works in MBcC, to demonstrate their
centralization or reliance on human operators. All five
come {rom a book edited by Clearwater [4]; which is the
first-ever published collection that deals explicitly with
MBC.

3.1 Network Bandwidth

Miller et al [24] discuss a system for automated auction
of ATM (asynchronous transfer mode) telecommunications
network bandwidth. 'The intention is thal bandwidth
(a scarce resource) is traded as a commodity by a com-
munity of software agents. In times of low network us-
age, high-bandwidth network connections may have a low
‘price’: as usage increases, so the demand for bandwidth
increases and the price of the resource rises. Once de-
mand has increased, users of the system have to make
a simple decision between maintaining the previous level
of expenditure (and consequently accepting reduced qual-
ity of service) or maintaining the prior quality of service
(at a higher price). The system is sophisticated, and its
components include mechanisms of banking and currency,
bidding agents, auctioneers, delivery agents, and applica-
tion and user interfaces. However, as is implied by Miller
al al [24] and made explicit in a technical report subse-
quently published by the developers [I, p.21], the system
relies on a centralized auctioneer process, known as Ne-
tAuctioneer. The developers acknowledge that this is un-
realistic because “...it is a single centralized entity which
requires a centralized global model of the network, rather
than a distributed network of auctioneers each of whom
have local knowledge only of parts of the net.” [1, p.21].
The need for a global model of the network in NetAuc-
tioneer may incur high maintenance costs in large or com-
plex networks: presumably, any change to the network
structure (including sudden failure of nodes or links) has
to be reflected in the model for the auctioneer process
to operate successfully. Moreover, there is the manifest
danger that the entire bandwidth allocation system will
collapse if the machine running NetAuctioneer fails.

3.2 Memory Allocation

Harty and Cheriton [16] describe the application of a mar-
ket approach to memory allocation in a computer oper-
ating system. In their system, there is no increase in the
price of memory in response to high demand. Rather,
they use a tiered pricing system that allows the requestor
to indicate the urgency or priority of a request [16, p.152].
When demand exceeds supply, the memory allocation
scheme gives initial priority to those applications which
have sufficient money to pay for their requested memory:
when there is more than one such application, “...the al-
location scheme gives priority to those applications that
request an amount of space-time that is less than or equal
to their ‘fair share’.” [16, p.153]. Again, this notion of
‘fair share’ requires a global view of the system: the ‘fair
share’ of any one application can only be determined by
telerence Lo the needs and expenditure ol all other applh

cations.
3.8

Clearwater et al [5] demonstrate the use of market-based

Awr Conditioning

technmques for control of air-conditioning ventilation and



temperature in 53 offices within one building. Software
agents representing individual temperature controllers
bid to buy or sell conditioned air. Unlike conventional
building encrgy management systems, this system can
take account of the interactions and connectivity between
offices, and results indicate that the market-based system
gives better distribution of temperatures and uses fewer
resources. Again, a central computerized auctioneer pro-
cess is employed: “A central auctioneer collects the bids
and computes the supply and demand curves and sets the
[equilibrium] price for the auction. Agents whose bids
were not too high or low have their trade consummated.
.. All other traders must wait for another auction to at-
tempt having their bid consummated.” [5, pp-256-257].

3.4 Pollution Regulalion

Marron and Bartels [19] recount their experiences in de-
veloping computer-assisted auctions for the allocation of
tradable pollution permits. A pollution perinit gives a
firm the right to emit some specified amount of pollution
over a specific period of time. By giving firms an initial
allocation of permits and then allowing them to trade
them in an active free market, each firin acts as a par-
ticipant in a distributed decision-making process. If the
cost of reducing pollution by some amount is less than
the market-price of a permit to produce that amount of
pollution, it is profitable for a firm to reduce its pollution
output and sell the corresponding permit. Firms that are
unable to reduce pollution can buy extra permits from
seller-firms, to avoid punitive financial penalties iinposed
on firms that produce pollution without a permit. The
process is distributed in the sense that there is a reduced
emphasis on government regulations that specify detailed
standards covering equipment, operations, and so on (19,
p-275]. However, once more, a centralized computerized
auction mechanism is employed [19, p.283].

3.

Finally, Baker [2] reports on the development of a fully
distributed computer architecture for factory control,
based on a market-driven contract net. In this system, a
network connects software agents that each control one or
more aspects of a manufacturing system, such as partic-
ular machines, inventory storage, material-handling, and
so on. Also connected to the network are ‘sales’ agents
that allow (human) customers to request'a product.
Although there are agents within the contract-net,
there is no bargaining, or even a centralized auctioneer:
the internal agents calculate ‘bids’ for various aspects of
the manufacturing process involved in satisfying a cus-
tomer’s request, but the decision of which bid is acted
upon is made by the customer. The sales agent handling

r

5 Job-Shop Scheduling

a customer’s request combines information received from
other agents and presents it to the customer. The infor-
mation given to the customer summarizes many possible
ways of satisfying the request: it is a multi-dimensional

o

item of data, which is illustrated [2, p.190] as a 3-d sur-
face relating lot-size (number of units), delivery-time, and
cost per unit. It is then the responsibility of the customer
10 choose a combination of lol-size and delivery-time that
gives an acceptable unit cost.

Thus, in Baker’s system, the agents contribute to the
size-time-cost surface of the final bid in a distributed fash-
ion, but there is no place for an auction mechanism or any
bargaining behaviors. The system presents all options
to the human user, who is then responsible for deciding
which, il any, of the options will be chosen. Thus, any
market is ezxternal to the contract-net in Baker’s system.

3.6 Summary

From this brief review, it is clear that although decentral-
ization and sell-organizatlion are strong motivating lactors
for the development of MBC systems, the applications re-
viewed above are all lacking in some respect: central-
ized auction processes were used by the first four systems
[24, 16, 5, 19]; while Baker’s work [2], although inspired
by real markets, employs no auction mechanism at all.
Thus, despite the promise of MBC, automatic decentral-
ized systems are yet to be constructed. To do so, there
is a need for computational ‘bargaining’ mechanisms that
allow a software agent to decide what price to agree on
for a transaction. Clearly, the price quoted by an agent
(either a seller or a buyer) is likely to be influenced by the
prices quoted by other agents in the market. In the next
section, we sumiarize our ongoing work aimed at devel-
oping agents capable of such market-based behavior.

4 ZIP Trading Agents

The emphasis in our work is on creating simple au-
tonomous software agents for bargaining in market-based
environments. This ciuphasis on simplicity comes not
only from a desire for computational efficiency (important
if hundreds or thousands of such agents are aclive on a
network), but also in a speculative attempt at sketching
the minimum mechanistic complexity necessary and sul-
ficient for explaining human bargaining behaviors in spe-
cific market environments. The potential use of such bar-
gaining agents is not limited to MBC applications. "There
are at least two other significant application areas in
which autonomous software agents with bargaining abil-
ities could be profitably employed: internct commerce,
and economic modeling. These issues are discussed fur-
ther by CIiff [6].

Although it may seem intuitively obvious thal some
form of ‘intelligence’ or adaptation is necessary in bar-
gaining agents, Gode and Sunder [15] presented influen-
tial results that appear to indicate that zero-intelligence
agents can exhibit nman-like hehavior in ¢pa markets.
Gode and Sunder’s zero-intelligence trading agents sim-
ply generated random prices for bids or offers, subject Lo
the constraint thal they could not enter into loss-making
deals. However, Chfl and Bruten [6, 8] demonstrated that



Gode and Sunder’s result only holds in very specific cir-
cumstances and that, in general, some ‘intelligence’ in
the form of adaptivity or sensitivity to previous and cur-
rent events in the market is necessary. Hence, we give our
trading agents adaptive capabilities by employing elemen-
tary machine-learning techniques. Because our agents are
intended to have minimal intelligence, but not zero intel-
ligence, they are referred to as “zip”™ traders: ZIP is an
acronym for “zero-intelligence-plus”.

Space restrictions prevent us from presenting a full dis-
cussion of the rationale for the current design of Z1P trader
agents, and from presenting full results. The intention
here is to briefly summoarize key aspects of the design and
present some illustrative results. CIiff [6] gives a complete
discussion of the design, shows results from many exper-
iments in different styles of market environment, and in-
cludes all the C source-code for the system. A recent the-
sis by van Montfort [30] discusses experiences in using our
z1P traders in spatially distributed markets where there
may be potentially hundreds or thousands of traders.

Each z1p trader operates by maintaining a profil margin
that it uses for calculating the price it ‘quotes’ (offers or
bids) in the market: the profit margin determines the
difference between the price the agent quotes and the Ll
price for the commodity the agent is trading. For agents
designated as sellers (i.e., resource-producers), the limit
price is the price below which they may not sell a unit
of the commodity. For agents designated as buyers (i.e.,
resource-consumers), the limit price is the price above
which they may not buy a unit of the commodity.

The ‘aun’ of each z1P agent is to maximize profit gener-
ated by trading in the market. If an agent’s profit margin
1s set too low, it will miss out on potential profit when it
makes a transaction with another agent, so all agents are
constantly trying to increase their profit margins. But if
an agent sets its profit margin too high, it may miss the
opportunity to make transactions with other agents, be-
cause the price it offers is less attractive than the prices
offered by competing agents. Clearly, what it means for
the profit margin to be “too high” or “too low” is depen-
dent on the context of the market conditions, and varies
dynamically. Thus, the problem of designing a trading
agent can be considered as a combination of two issues:
the qualitative issue of deciding when to increase or de-
crease the profit margin, and the quantitative issue of
deciding by how much the margin should be altered.

For reasons discussed in detail by Clff [6], each zIP
trader makes the qualitative decision of when to alter its
margin on the basis of four factors. The first factor is
whether the agent is active in the marketl: agents are
active until they have sold or bought their full entitlement
of units of the commodity. The remaining three factors
concern the last quote by any agent in the market: we
refer to this as Q. Bach zip trader notes whether Q) was
an offer or a bid, whether Q was accepted (i.e., led to

a transaction) or rejected (ignored by the traders in the
market), and whether @’s price, ¢(t), is greater than or
less than the price the z1p trader would currently quote.
We refer to the price a zIp trader i would quote at time ¢
as that trader’s quote-price, p;(t), which is calculated from
©’s limit price A; ; (for ©’s jth unit of commodity) and ’s
current profit margin p;(¢) using p;(t) = Ay ; (1 + pi(l)).
A z1p seller raises its profit margin whenever () was
accepted and p;(1) < ¢(t). It lowers its margin only if
it is still active and @ was an offer with p;(¢t) > ¢(¢),
or if @ was a bid that was accepted and p;(t) > ¢(¢).
Similarly, a ZIP buyer raises its profit margin whenever
was accepted and pi(L) > ¢(1), and it lowers ils margin
when it is active and either @ was a rejected bid with
pi(t) < g(t) or @ was an accepted offer with p;(t) < ¢(¢).

The quantitative issue of by how much the profit mar-
gin p;(t) should be altered is addressed by using a sim-
ple machine-learning algorithm. Specifically, the learn-
ing rule we use is Widrow-Hoff with momentum, which
also underlies back-propagation learning in neural net-
works [26]. Briefly, this adjusts the actual output of a
system toward some target output value, at a speed de-
termined by a learning rate g, and with a simple ‘mem-
ory’ or ‘momentum’ parameter y. In cach zip trader the
target value 7;(1) is given by a stochastic perturbation
of ¢(t), and each trader 7 uses this in combination with
Bi and 7v; to adjust its profit-margin p;(¢). The profit-
margin update rule is g; (¢ + 1) = (p:s(¢) + Ui(t))/Xi; — 1
where T';(t) = yi[i(t — 1) + (1 — 7:)Bi(mi(t) — pi(t)), and
I';(0) = 0 : Vi. For further details of how learning is
implemented in ziP traders, see Cliff and Bruten [6, 7].

To demonstrate the eflectiveness of this simple strategy,
we present some illustrative results from 22 z1p traders in-
teracting in a ¢pA market. In these experiments, we used
11 buyers and 11 sellers, each with the right to engage
in one transaction. The limit prices for both the buy-
ers and the sellers ranged from $0.75 to $3.25 in steps of
$0.25: the supply and demand curves induced by this dis-
tribution of limit prices intersect at an equilibrium price
of $2.00. We start the traders with random initial profit
margins, and record the transaction-prices over ten trad-
ing sessions or ‘days’. Then, at the end of the tenth day,
we add a ‘shock’ increase in demand. We do this using
the method developed by Smith [28]: in some of his ex-
periments, at the end of a day a new set of limit prices
was distributed to the buyers, sellers, or both. Typically,
the human traders would adapt, converging to the new
market equilibrium values. This rapid, robust, and de-
centralized adaptation is one of the attractions of using
the ¢pa ag aomarket organization. Thus, it i important
to explore the behavior of z1e traders when supply or de-
mand alter (cither increase or decrease): for 210 traders to
be of genuine use in applications of market-based control
or internet-based commerce, they should exhibit smooth
and fast convergence to the new equilibrinm that resulis



from shifts in supply or demand.

Figure 1A shows a transaction-price time-series from
one experiment. From the random initial profit-margins,
the z1p traders rapidly self-organize to give transaction
prices that approach and stabilize at the predicted equi-
librium of $2.00. At the end of Day 10, an increase in
demand is imposed: the demand curve is shifted upwards
by adding $0.50 to each buyer’s limit price (the equilib-
rium price increases to $2.25), and the experiment, con-
tinues for another five days. After this “shock change” in
the market, the traders rapidly adapt to stable trading at
the new equilibrium price. Figure 1B shows the average
results from fifty such experiments. Similar results for
increases in supply are shown by CIiff [6]. These figures
clearly demonstrate that zip-trader CDA markets can self-
organize, are capable of rapidly adapting to new equilib-
rium values resulting from changes in supply or demand,
and are well-damped in the sense that a shock-change in
supply or demand does not induce severe transients be-
fore the system settles. Thus, in experimental markets
such as these, the results from zIP traders are very sim-
ilar to those from Smith’s [28] human subjects: a point
explored in detail by CIiff [6].

Figure 1: A: Transaction-price time series for one experiment
with a sudden increase in demand. The initial market has an equi-
librium price of $2.00. After 10 trading sessions or ‘days’, demand
is increased (raising the equilibrium price to $2.25) and the experi-
ment continues for another 5 days. In each day, 5 or 6 transactions
occur. B: Mean zIP transaction prices per day,, averaged over 50
such increased-demand experiments. Solid points indicate the av-
erage mean transaction price for the day, with hollow points above
and below indicating plus and minus one standard deviation.

CIiff and Bruten [6, 7] show similar results illustrat-
ing z1P traders operating successfully in CDA markets
where Gode and Sunder’s [15] zero-intelligence traders
fail. These examples include markets where there are
asymmetric supply and demand functions and imbalances
between the number of buyers and sellers. The recent
work of van Montfort [30] shows our zIP traders operating
successfully in more sophisticated markets: where there
may be spatial structure or segmentation in the market
(e.g., the traders are distribuled over some space, and
each trader can only transact with other traders in its
local spatial neighborhood); and where agents are per-

mitted to engage in arbitrage (i.e., selling units when the
price is high, with the intention of buying them back when
the price falls; or similarly buying units of a commodity
for subsequent re-sale).

Thus, current indications are that our ZIP traders form
a firmm foundation for further work in decentralized MBC.
In the current zIP specification, the profit-margin update
rule is discrete-time: our current research is directed at
extending our approach to continunous-time domains, al-
lowing for fully asynchronous operation. Iivaluation and
testing of all future developinents requires extbensive siiu-
lation experiments in a wide varicty of market structures.
The importance of this is highlighted by our critique (8]
of Gode and Sunder’s [15] zero-intelligence traders: we
demonstrated problems with zero-intelligence traders by
testing them in a wider variety of market simulations than
had originally been used by Gode and Sunder. Thus, in
MBC research such as this, it is worth investing eflort in
refining the simulation methods and techniques employed,
to maximize computational efficiency, because many sim-
ulation experiments will be required.

5 Conclusion

The primary aims of this paper have been: (1) to em-
phasize that, for MBC systems to be truly distributed and
self-organizing, it is necessary to develop computation-
ally efficient mechanisins that endow autonomous ‘trader’
software agents with the ability to interact through bar-
gaining behaviors; (2) to argue that current work in MBC
often evades or avoids this issue; and (3) to demonstrate
that the bargaining abilities of zir traders give desirable
collective behavior in ¢DA markets.

Because DA trading agents need to interact with a dy-
namic environment that includes other agents, where in-
formation may be noisy, uncertain, or delayed, and which
is unforgiving of mistakes, there are similarities between
the requirements of a trading agent and those of a mobile
robot. Adaptation or learning will be necessary, possi-
bly on multiple time-scales, to allow the agents to adjust
to changes in market conditions: methods developed in
artificial intelligence may offer a solution.

We presented a critique of recent MBCG applications,
demonstrating that the need for bargaining behaviors was
avoided either by introducing a centralized auctioneer, by
relying on a human operator, or by having no price mech-
anism. We also noted that, although Gode & Sunder [15]
argue to the contrary, cDA trading agents do need to have
some ‘intelligence’ or adaptive capability [8].

We described simple bargaining agents that adapt their
profit margins to the prevailing market conditions, via el-
ementary machine learning techniques. We demonstrated

»

that groups of these “z1p” software agenls can, in a CDA
market, exhibit collective behaviors comparable to those
of human traders: transaction-prices rapidly approach

the equilibrium price, are stable about the equilibrium,



and respond well to shock changes. Simple bargaining
mechanisms such as these could realistically be used in
future MBC applications, allowing for truly distributed
systems with the same decentralization, robustness, and
self-organizing properties as real free-market economies.

Thus, the primary contributions of this paper are our
critique of current MBC systems and our demonstration
that the simple z1P traders have the capabilities necessary
to form a foundation on which future, truly decentralized,
MBC systems can be built.

Our current research is directed at testing the capabil-
ities of zip traders in more realistic and challenging en-
vironments, and extending them to the point where they
can be used in resource allocation and control applica-
tions where time is continuous, trading is asynchronous,
and information propagates with uncertainty and delays.
At that point, the implementation of truly decentralized
MBC systems in industrial-scale applications becomes a
realistic prospect. It is likely that such systems will both
draw from and find use in Al and robotics. Clearly, test-
ing and evaluating such MBC systems will require intensive
simulation experiments.
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