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1 Introduction

The fast development of digital information technology, combined with the simplicity of duplication

and distribution of digital data, has recently stimulated many research e�orts towards the design

and study of sophisticated copyright protection and information hiding methodologies (see, e.g.,

[1],[2],[4] and references therein).

Relatively little attention, however, has been devoted to the problem of information hiding

from an information-theoretic perspective. An exception is a recent work by O'Sullivan, Moulin,

and Ettinger [7], who characterized the highest achievable information rate of watermarking codes

for the following system model: A secret message, encoded at rate R, is hidden in a memoryless

covertext message within small degradation of quality, symbolized by distortion level D1 w.r.t.

some distortion measure. An active attacker may introduce additional distortion D2 in attempt to

disrupt the watermark. Finally, the resulting data set is analyzed using information shared with

the information hider (i.e., the original covertext message) to extract the watermark. In [7], the

highest information rate R has been found (as a function of D1 and D2) for which, even in the

presence of optimum attack, there exist block encoders and decoders that guarantee arbitrarily

small probability of erroneous watermark decoding.

In this paper, we go one step further and provide a single-letter characterization of the best

achievable random coding error exponent under this model. Our results are based heavily on a

fact, proved in Section 3, that for a memoryless covertext source and a memoryless random coding

distribution, an optimum attack strategy subject to the above-mentioned distortion constraint, is to

implement a memoryless channel on the watermarked data set. It is then clear that this memoryless

channel is the one that minimizes the random coding error exponent subject to the single-letter
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distortion constraint. We also show in Section 4 the dual property that if the attack strategy is

given be a memoryless channel, then the optimal random coding distribution is memoryless as

well. It turns out then that there is a minimax{maximin saddle point in the game between the

information hider and the attacker, where in the presence of a memoryless covertext source, both

parties implement memoryless channels.

2 Notation, Problem Formulation, and Preliminaries

Throughout this paper, we adopt the following notation conventions.

Scalar random variables will be denoted by captial letters (e.g., X) and speci�c values they may

take will be denoted by the corresponding lower case letters (e.g., x). All scalar random variables in

this paper are assumed to take on values in the same �nite alphabet A. Similarly, random vectors of

length n (n { positive integer) will be denoted by boldface capital letters (e.g., X = (X1; : : : ;Xn)),

and speci�c values that they take will be denoted by the respective boldface lower case letters (e.g.,

x = (x1; : : : ; xn)), where it is understood that the alphabet of each such vector is always An, the

nth order Cartezian power of A.

Probability mass functions (PMF's) of single letters will also be denoted by capital letters with

probabilities of speci�c letters denoted by the respective lower case letters (e.g., Q = fq(x); x 2 Ag).

Similarly, vector sources, or joint PMF's of n-vectors, will be denoted by boldface capital letters with

probabilities of speci�c vector values denoted by the corresponding boldface lower case letters (e.g.,

Q = fq(x); x 2 Ang). A sourceQ over An is said to assume a product form ifQ(x) =
Qn
i=1 q(xi) for

all x 2 An. For shorthand notation, this fact will be denoted by Q = Qn, where Q = fq(x); x 2 Ag

will be referred to as the single-letter component of Q.
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Similar conventions apply to conditional PMF's of channels: Single-letter conditional PMF's

will be denoted by capital letters that symbolize matrices of conditional probabilities (e.g., W =

fw(yjx); x; y 2 Ag) and vector channels will be denoted by the respective boldface letters (e.g.,

W = fw(yjx); x;y 2 Ang. A channelW is said to admit a product form ifw(yjx) =
Qn
i=1 w(yijxi)

for all x;y 2 An. For shorthand notation, this fact will be denoted by W = W n, where W =

fw(yjx); x; y 2 Ag will be referred to as the single-letter component of W .

The probability of an event E will be denoted by PrfEg whenever the underlying probability

measure is clear from the context, and the expectation operator will be denoted by Ef�g. Summa-

tions and products of indexed terms over the entire index set will be sometimes subscripted only by

the symbol of that index. For example,
P

x f(x) will mean that the summation is over the entire

alphabet A,
Q
i q(xi) means that the product is taken from i = 1 to n, etc.

Let P = P n designate a stationary, memoryless vector source generating random vectors U =

(U1; : : : ; Un) over A
n. The data vector U will designate the covertext message within which the

watermark will be hidden. Let d1 : A�A ! IR+ denote a single-letter distortion measure.

A rate R watermarking code of size n, subject to distortion level D1, is a triple (Mn; fn; gn)

with the following ingredients. The set Mn is the watermarking message set whose size is b2nRc.

The function fn : An �Mn ! An is the encoder that maps every combination of a covertext

data set u 2 An and a watermark message m 2 Mn into a stegotext message (or, watermarked

message) x 2 An such that Ed1(ui;Xi) � D1 for all u 2 An, 1 � i � n, that is, the conditional

expected distortion in each coordinate given U = u never exceeds D1 for all u.1 The function

gn : An � An !Mn is the decoder, which maps the original covertext message (shared with the

1Although these constraints seem quite restrictive, note that for stationary additive channels and di�erence dis-

tortion measures, d1(u; x) = d(x � u), they all boil down to a single constraint Ed(V ) � D1, where V = X � U

designates the additive noise.
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encoder) together with a stegotext message (possibly modi�ed or corrupted by an attacker) back

to a watermark message.

Let d2 : A�A ! IR+ denote a single-letter distortion measure. An attack subject to distortion

D2 is a (possibly randomized) map hn : An ! An that satis�es Ed2(xi; Yi) � D2 for every x 2 A
n,

1 � i � n. We will also assume throughout the paper that maxfmaxu;x d1(u; x);maxx;y d2(x; y)g
�
=

Dmax <1.

Given distortion levels D1 and D2 w.r.t. distortion measures d1 and d2, respectively, the error

probability is de�ned as

Pe(fn; gn; hn) = Prfgn(U ; hn(fn(U ;M)) 6=Mg; (1)

where M designates a random variable in Mn with a uniform PMF independently of U .

An achievable rate R is one for which there exists a sequence of rate R watermarking codes

f(Mn; fn; gn)gn�1 subject to distortion level D1 such that

lim
n!1

sup
hn

Pe(fn; gn; hn) = 0; (2)

where the supremum is over all attack strategies subject to distortion D2. The capacity of the

system, C = C(D1;D2), is the supremum of all achievable rates.

Similarly as in [7],2 it can be shown that for a memoryless covertext source P = P n, the capacity

is given by

C(D1;D2) = maxmin I(X;Y jU) (3)

where the maximin is taken over all Markov chains U 	X 	 Y such that: (i) the marginal PMF of

U is given by P , (ii) Ed1(u;X) � D1 for all u 2 A, and (iii) Ed2(x; Y ) � D2 for all x 2 A.

2The above-described model assumptions are somewhat di�erent from those of [7].
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In this paper, we re�ne the analysis of the probability of error at a given information rate R <

C(D1;D2). To this end, we assume a random coding regime and we focus on the average probability

of error w.r.t. the ensemble of randomly chosen codes givenU . To meet theD1 distortion constraint,

we adopt the following random coding mechanism: For each u 2 An, we generate independently,

at random 2nR codewords by using a certain channel Q = fq(xju); u;x 2 Ang 2 Qn(D1) fed by

u, where

Qn(D1)
�
= fQ :

X
x
q(xju)d1(ui; xi) � D1 8u 2 An; 1 � i � ng:

The channel Q will be referred to as the watermarking channel [7]. For n = 1, Qn(D1) = Q1(D1),

which is a set of single-letter channels Q, will be abbreviated by Q(D1).

Since the attacker is allowed to use a randomized map, we will symbolize the attack strategy

by a channel W = fw(yjx); x;y 2 Ang, henceforth referred to as the attack channel [7]. The fact

that the attack is subjected to distortion constraint D2 means that W lies in the set

Wn(D2) = fW :
X
y
w(yjx)d2(xi; yi) � D2 8x 2 An; 1 � i � ng:

For n = 1, Wn(D2) = W1(D2), which is a set of single-letter channels W , will be abbreviated by

W(D2).

The average error probability �Pe(Q;W ) is de�ned as the expectation of Pe w.r.t. the joint

ensemble of random codes drawn by Q and the randomized attacks governed by W .

We will be interested in the quantities

min
Q2Qn(D1)

max
W 2Wn(D2)

�Pe(Q;W )

and

max
W 2Wn(D2)

min
Q2Qn(D1)

�Pe(Q;W )
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as well as on a characterization of pairs (Q;W ) that achieve these minimax and maximin criteria.

However, since an exact expression of �Pe(Q;W ) is unavailable, we will focus on a Gallager{type

upper bound [6] on �Pe(Q;W ).

3 The Worst Attack Channel is Memoryless

In this section, we con�ne attention to the minimax criterion, corresponding to the assumption

that the attacker has perfect knowledge of the watermarking channel, which is assumed here to

admit a product form Q = Qn. Generally speaking, a more plausible assumption would be that

the attacker knows not only Q, but also the speci�c watermark code in use. Our above assumption

on knowing Q but not the code itself is suitable, for example, if the random choice of the code is

controlled by a secret key shared by the encoder and decoder, but not the attacker.

The �rst observation to make is that the problem at hand is no di�erent from an ordinary

channel coding problem with side information at both encoder and decoder: A message m 2 Mn

of length nR bits is mapped to a codeword x 2 An depending on the side information u 2 An. (In

other words, there is a di�erent codebook for every u.) Then, x is transmitted across a channel

W , whose output y is processed in the presence of u to decode the message.

Assuming the random coding regime described in Section 2 and maximum likelihood decoding,

the following upper bound on the average error probability is easily derived as a straightforward

extension of [6, Theorem 5.6.1, p. 135] to the case where side information is available at both

encoder and decoder:

�Pe(Q;W ) � B(�;Q;W )
�
= 2�nRF (�;Q;W ); 0 � � � 1 (4)
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where

F (�;Q;W )
�
=
X
u
p(u)

X
y

"X
x
q(xju)w(yjx)1=(1+�)

#
1+�

(5)

with P = fp(u); u 2 Ang being a given memoryless source P n, Q 2 Qn(D2), and W 2 Wn(D2).

The objective function hereafter will be the upper bound on the average error probability

B(�;Q;W ). This function invloves the auxiliary parameter �, which can be chosen so as to obtain

the tightest upper bound, namely, min0���1B(�;Q;W ). Thus, for a memoryless watermarking

channel Q = Qn, we will be interested in characterizing the minimax game

min
Q2Q(D1)

max
W2Wn(D2)

min
0���1

B(�;Qn;W ): (6)

For later use, we also de�ne F (�;Q;W ) and B(�;Q;W ) as the same functionals as above, applied

to the case n = 1, that is:

B(�;Q;W ) = 2�RF (�;Q;W ) = 2�R
X
u

p(u)
X
y

"X
x

q(xju)w(yjx)1=(1+�)
#1+�

: (7)

Note that for P = P n, B(�;Qn;W n) = B(�;Q;W )n and F (�;Qn;W n) = F (�;Q;W )n. We also

de�ne the random coding error exponent as

Er(�;Q;W )
�
= � logB(�;Q;W ) = � logF (�;Q;W )� �R: (8)

Our �rst result states that for a memoryless covertext source and a memoryless random coding

distribution, the worst channelW , in the sense of maximizing B subject a distortion constraint, is

memoryless as well. Since B and F are the same within a factor that does depends on Q and W ,

we can state this result in terms of F .

Theorem 1 Given �, P = P n, Q, and distortion level D2 w.r.t. distortion measure d2, it is a

stationary memoryless channel W � = W n
�

that attains the maximum of F (�;Qn;W ) w.r.t. W
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subject to the constraints

w(yjx) � 0 8x;y 2 An (9)

X
y
w(yjx) = 1 8x 2 An (10)

X
y
w(yjx)d2(xi; yi) � D2; 8x 2 An; 1 � i � n: (11)

The single-letter component W� ofW � is given by the maximizer of F (�;Q;W ) subject to the same

constraints applied to the case n = 1, i.e.,

max
W 2Wn(D2)

F (�;Qn;W ) =

"
max

W2W(D2)

F (�;Q;W )

#n
: (12)

The proof is given in Section 5. Theorem 1 leads to our �rst main result, which is the following.

Theorem 2 For a memoryless source P = P n,

min
Q2Q(D2)

max
W 2Wn(D2)

min
0���1

B(�;Qn;W ) = 2�nE(R;D1;D2); (13)

where

E(R;D1;D2) = max
0���1

max
Q2Q(D1)

min
W2W(D2)

Er(�;Q;W ): (14)

Note that the order of the optimizations in eq. (14) is di�erent from the one in eq. (13). The order

in (14) has the convenience that for every �xed �, the functional B(�;Q;W ) = 2�Er(�;Q;W ) as we

shall see, is concave in W and convex in Q.

Proof of Theorem 2. For a given Q 2 Q(D2), consider the expression

max
W 2Wn(D2)

min
0���1

B(�;Qn;W ) = exp2

(
max

W 2Wn(D2)

min
0���1

[logF (�;Qn;W ) + �nR]

)
: (15)

Since F (�;Qn;W ) is concave in W (see Section 5, Lemma 1) and the logarithmic function is

monotonic and concave, then logF (�;Qn;W ) is concave as well. Also, a straightforward extension
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of [5, p. 17, Proof of Theorem 2] to the case of side information, shows that logF (�;Qn;W ),

and hence also [logF (�;Qn;W ) + �nR] is convex in �. Also, Wn(D2) and the interval [0; 1] are

both compact convex sets. Therefore, by the minimax theorem [8, p. 232, Theorem (6.3.7)], the

maximization and the minimization on the r.h.s. of eq. (15) are interchangable, and so, it can be

written also as

exp2

(
min
0���1

max
W 2Wn(D2)

[logF (�;Qn;W ) + �nR]

)
= min

0���1

"
2�nR max

W 2Wn(D2)

F (�;Qn;W )

#

=

"
min
0���1

2�R max
W2W(D2)

F (�;Q;W )

#n
(16)

where the second equality follows from Theorem 1. The assertion of the theorem now follows by

taking the minimum over Q 2 Q(D2). 2

4 The Best Watermarking Channel is Memoryless

In this section, we focus on the maximin criterion, which corresponds to a situation where the

information hider knows in advance the attack channel and strives at maximizing the error exponent

for this channel. In analogy to the previous section, here we assume that the attack channel is

memoryless, and so, our objective function will be

max
W2W(D2)

min
Q2Qn(D1)

min
0���1

B(�;Q;W n):

We next show that the solution to this problem is dual to the solution of minimax problem of

Section 3. As a �rst step towards this end, we need the following analogue to Theorem 1.

Theorem 3 Given �, P = P n, W , and a distortion level D1 w.r.t. distortion measure d1, it is a

stationary memoryless channel Q
�
= Qn

�
that attains the minimum of F (�;Q;W n) w.r.t. Q subject
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to the constraints

q(xju) � 0 8u;x 2 An (17)

X
x
q(xju) = 1 8u 2 An (18)

X
x
q(xju)d1(ui; xi) � D1; 8u 2 An; 1 � i � n (19)

The single-letter component Q� of Q� is given by the minimizer of F (�;Q;W ) subject to the same

constraints applied to the case n = 1, i.e.,

min
Q2Qn(D1)

F (�;Q;W n) =

"
min

Q2Q(D1)

F (�;Q;W )

#n
: (20)

The proof of Theorem 3 is sketched in Section 6.

Comment: The fact that a memoryless input maximizes the random coding error exponent of a

memoryless channel, in the absence of distortion constraints, is well-known as the parallel channels

theorem due to Gallager [5, Theorem 5],[6, p. 149, Example 4]. Theorem 3 tells us that this

continues to be the case in the presence of distortion constraints.

We are now ready to characterize the minimax{maximin game between the information hider

and the attacker.

Theorem 4 For a memoryless source P = P n,

max
W 2Wn(D2)

min
Q2Qn(D1)

min
0���1

B(�;Q;W ) = min
Q2Qn(D1)

max
W 2Wn(D2)

min
0���1

B(�;Q;W )

= 2�nE(R;D1;D2); (21)

where

E(R;D1;D2) = max
0���1

max
Q2Q(D1)

min
W2W(D2)

Er(�;Q;W )

= max
0���1

min
W2W(D2)

max
Q2Q(D1)

Er(�;Q;W ): (22)
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Moreover, both the minimax and the maximin of eq. (21) are attained by a saddle point (Q
�
;W �) =

(Qn
�
;W n

�
), where (Q�;W�) is a saddle point of min0���1B(�;Q;W ), or equivalently, a saddle point

(Q�;W�) of B(�;Q;W ) for the value of � that minimizes B(�;Q�;W�).

Proof. For every �xed �, F (�;Q;W ), and hence also B(�;Q;W ), is convex in Q [5, Theorem

4] and concave in W (Section 5, Lemma 1). Also, Qn(D1) and Wn(D2) are both compact convex

sets. Therefore,

max
W 2Wn(D2)

min
Q2Qn(D1)

B(�;Q;W ) = min
Q2Qn(D1)

max
W 2Wn(D2)

B(�;Q;W ) (23)

and hence there exists a saddle point [8, p. 229, Theorem 6.2.9(ii)] (Q�;W �) depending on �, i.e.,

B(�;Q�;W ) � B(�;Q�;W �) � B(�;Q;W �) (24)

for every (Q;W ) 2 Qn(D1)�Wn(D2). Taking the minimum over �, we get

min
0���1

B(�;Q�;W ) � min
0���1

B(�;Q�;W �) � min
0���1

B(�;Q;W �): (25)

Since this is true for every (Q;W ) 2 Qn(D1) �Wn(D2), one may maximize the l.h.s. over W 2

Wn(D2) and minimize the r.h.s. over Q 2 Qn(D1), which leads to

max
W 2Wn(D2)

min
0���1

B(�;Q�;W ) � min
0���1

B(�;Q�;W �) � min
Q2Qn(D1)

min
0���1

B(�;Q;W �): (26)

The left-most side of eq. (26) is lower bounded by

min
Q2Qn(D1)

max
W 2Wn(D2)

min
0���1

B(�;Q;W )

whereas the right-most side of eq. (26) is upper bounded by

max
W 2Wn(D2)

min
Q2Qn(D1)

min
0���1

B(�;Q;W ):
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On the other hand, since minmax is never smaller than maxmin, all the inequalities must be

equalities, i.e.,

min
Q2Qn(D1)

max
W 2Wn(D2)

min
0���1

B(�;Q;W ) = min
0���1

B(�;Q�;W �)

= max
W 2Wn(D2)

min
Q2Qn(D1)

min
0���1

B(�;Q;W ); (27)

establishing the �rst equality in eq. (21). Moreover, eq. (27) tells us that the saddle point (Q
�
;W �)

is given by (Q�0 ;W �0), where �0 minimizes B(�;Q�;W �). Let (Q�;W�) be the saddle point of

B(�;Q;W ) corresponding to n = 1. By Theorem 1, for every W 2 Wn(D2),

B(�;Qn
� ;W ) � max

W 2Wn(D2)

B(�;Qn
� ;W )

=

"
max

W2W(D2)

B(�;Q�;W )

#n

= B(�;Q�;W�)
n

= B(�;Qn
� ;W

n
� ):

(28)

On the other hand, by Theorem 3, for every Q 2 Qn(D1),

B(�;Q;W n
� ) � min

Q2Qn(D1)

B(�;Q;W n
� )

=

"
min

Q2Q(D1)

B(�;Q�;W )

#n

= B(�;Q�;W�)
n

= B(�;Qn
� ;W

n
� ): (29)

Thus, (Qn
� ;W

n
� ) is a saddle point of B(�;Q;W ) for every �. In particular, for � = �0, eq. (27)

tells us that (Qn
�0
;W n

�0
) achieves both the minimax and the maximin of min0���1B(�;Q;W ). The
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two expressions of E(R;D1;D2) (the �rst one has been shown already in Theorem 1) follow now

immediately from eq. (27) applied to the case n = 1. 2

5 Proof of Theorem 1

The proof involves three auxiliary results stated below as lemmas. The �rst important property of

F is concavity w.r.t. W .

Lemma 1 The functional F (�;Q;W ) is concave in W for �xed Q and �.

Proof. It would be su�cient to show that for every (u; y) 2 A�A, each summand of the r.h.s. of

eq. (5) is concave in W . Speci�cally, let W 1 and W 2 be two arbitrary channels and let � be an

arbitrary number in (0; 1). We wish to show then that

(X
x
q(xju) [�w1(yjx) + (1� �)w2(yjx)]

1=(1+�)

)1+�

� �

"X
x
q(xju)w1(yjx)

1=(1+�)

#1+�
+ (1� �)

"X
x
q(xju)w2(yjx)

1=(1+�)

#1+�

=

(X
x
[�q(xju)1+�w1(yjx)]

1=(1+�)

)1+�
+

(X
x

[(1� �)q(xju)1+�w2(yjx)]
1=(1+�)

)1+�
:(30)

Now, Minkowski's inequality (see, e.g., [6, p. 523, Problem 4.15(g)]) states that for a set of non-

negative numbers fajkg, 1 � j � J , 1 � k � K, and r > 1,

2
4X

j

 X
k

ajk

!1=r35
r

�
X
k

0
@X

j

a
1=r
jk

1
A
r

: (31)

It is easy then to see that eq. (30) is obtained as a special case of Minkowski's inequality with

r = 1 + �, K = 2, j = x, aj1 = �q(xju)1+�w1(yjx), and aj2 = (1� �)q(xju)1+�w2(yjx). 2

Consider now an auxiliary maximization problem, henceforth referred to as Problem A, which

is de�ned as follows. Let N = f1; 2; : : : ; ng and let S be a subset of N , where the members are
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listed in increasing order, e.g., f1; 2; 5g, f3; 4; 100; 200g, etc. Let n(S) denote the cardinality of S,

and let S denote the collection of all 2n � 1 nonempty subsets of N . Finally, let � > 0 be a given

constant. Then, Problem A is de�ned as follows.

Problem A:

max
W

F (�;Q;W ) (32)

subject to

w(yjx) � 0 8x;y 2 An (33)

X
y
w(yjx) = 1 8x 2 An (34)

X
y
w(yjx) exp[�

X
i2S

d2(xi; yi)] � exp[�n(S)D2]; 8x 2 An; S 2 S: (35)

The reason for considering Problem A is the fact that it is easily shown to be solved by a

product form channel. This will follow from a simple inspection of the Kuhn{Tucker conditions

(similarly as in [5], [6, Theorems 4.5.1, 5.6.5]). The original problem of interest will be approached

by letting � ! 0.

Lemma 2 For a given P , Q, �, and D2, let W� = fw�(yjx)g maximize F (�;Q;W ) subject to the

constraints

w(yjx) � 0 8x; y 2 A (36)

X
y

w(yjx) = 1 8x 2 A (37)

X
y

w(yjx)e�d2(x;y) � e�D2 8x 2 A: (38)

Then, for P = P n and Q = Qn, the channel W =W n
�
solves Problem A.
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Proof. First observe that the solution to Problem A will be una�ected if the equality constraint

(34) will be replaced by the inequality constraint
P
y w(yjx) � 1 for all x. This is obvious because

for any W with
P
y w(yjx) < 1 for some x, the components w(yjx) can be scaled by a factor

larger than one without violating the constraint, thereby increasing F . Therefore, the maximum

of F must be attained for
P
y w(yjx) = 1 for all x. Let us refer to this modi�cation3 of Problem

A as Problem A'. Next observe that Problem A' is a convex program (see, e.g., [3, Sect. 4.5])

with inequality constraints only. Therefore, the Kuhn{Tucker conditions are both necessary and

su�cient for optimality [3, Theorems 4.38, 4.39]. Speci�cally, let

V (Q;W ;x;y)
�
=

@F (�;Q;W )

@w(yjx)

= w(yjx)��=(1+�)
X
u
p(u)q(xju)

"X
x0

q(x0ju)w(yjx0)1=(1+�)
#�
: (39)

The Kuhn{Tucker conditions for a channelW to solve Problem A' are that there exist non-negative

constants f�(x)g and f�(x; S)g, x 2 An, S 2 S, such that for every x and y,

V (Q;W ;x;y) = �(x) +
X
S2S

�(x; S) exp[�
X
i2S

d2(xi; yi)]; w(yjx) > 0 (40)

V (Q;W ;x;y) � �(x) +
X
S2S

�(x; S) exp[�
X
i2S

d2(xi; yi)]; w(yjx) = 0: (41)

Let W� = fw�(yjx); x; y 2 Ag be de�ned as in Lemma 2. Then, by the necessity of the Kuhn{

Tucker conditions for n = 1, there must exist non-negative constants �(x), and �(x); x 2 A, such

that

V (Q;W�; xi; yi) = �(xi) + �(xi) exp[�d2(xi; yi)]; w�(yijxi) > 0 (42)

V (Q;W�; xi; yi) � �(xi) + �(xi) exp[�d2(xi; yi)]; w�(yijxi) = 0: (43)

3This modi�cation guarantees that the Lagrange multiplier corresponding to the equality constraint is non-

negative.
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Taking the product of fV (Q;W�; xi; yi)g and f�(xi) + �(xi) exp[�d2(xi; yi)]g over 1 � i � n, the

former gives V (Q;W n
�
;x;y), whereas and the latter is

Y
i

[�(xi) + �(xi) exp[�d2(xi; yi)]]
�
= �(x) +

X
S2S

�(x; S) exp[�
X
i2S

d2(xi; yi)] (44)

with

�(x) =
nY
i=1

�(xi) (45)

and

�(x; S) =
Y
i2S

�(xi)
Y
i2Sc

�(xi): (46)

Clearly, since �i(x) and �i(x) are all non-negative, so are �(x) and �(x; S). In addition, if

w�(yijxi) > 0 for all i (and hence also w�(yjx) =
Q
i w�(yijxi) > 0), then

V (Q;W ;x;y) = �(x) +
X
S

�(x; S) exp[�
X
i2S

d2(xi; yi)];

otherwise

V (Q;W ;x;y) � �(x) +
X
S

�(x; S) exp[�
X
i2S

d2(xi; yi)]:

The conclusion is, therefore, that the Lagrange multiplier values given in eqs. (45) and (46) satisfy

the Kuhn{Tucker conditions together with the vector channelW =W n
�
. Thus, by the su�ciency of

the Kuhn{Tucker conditions, this product form channel solves Problem A', or equivalently, Problem

A. 2.

Let us now de�ne Problem B similarly as Problem A, but with the the distortion constraints

(35) replaced by

X
y
w(yjx)d2(xi; yi) � D2; 8x 2 An; 1 � i � n: (47)

In other words, Problem B is the original problem under discussion.
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Lemma 3 Let P = P n, Q, �, and D2 be given, and de�ne the function F�(D2) as the maximum

value of F (�;Qn;W ) subject to the constraints of Problem A. Let F0(D2) be de�ned as the maximum

value of F (�;Qn;W ) subject to the constraints of Problem B. Then,

(a) The function F0(D2) is concave.

(b) lim�!0 F�(D2) = F0(D2).

(c) The value F0(D2) is attained by a memoryless channel W n
�
, where W � solves Problem B for

n = 1 w.r.t. the distortion constraints
P

y w(yjx)d2(x; y) � D2 for all x 2 A.

Proof. Beginning from part (a), let D0
2
and D00

2
denote two distortion levels and for � 2 (0; 1), let

D2 = �D02 + (1��)D002 . LetW
0

�
,W 00

�
, andW � solve Problem B for D02, D

00

2 , and D2, respectively.

Now, we have

�F0(D
0

2) + (1� �)F0(D
00

2 ) = �F (�;Q;W 0

�
) + (1� �)F (�;Q;W 00

�
)

� F (�;Q; �W 0

�
+ (1� �)W 00

�
)

� F (�;Q;W �)

= F0(D2); (48)

where the �rst inequality follows from the concavity of F (Lemma 1), and the second inequality

results from the fact that �W 0

�
+ (1� �)W 00

�
satis�es the constraints of Problem B with distortion

matrix D2.

To prove (b), observe �rst that the set of individual coordinate distortion constraints given in

eq. (47) is equivalent to the set of constraints

X
y
w(yjx)

"X
i2S

d2(xi; yi)

#
� n(S)D2; 8x 2 An; S 2 S: (49)
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This is true because on the one hand, the subsets f1g; f2g; :::; fng are all in S, and on the other

hand, given the individual coordinate distortion constraints, the remaining distortion constraints

are all redundant. Now, for every (d1; : : : ; dn) 2 [0;Dmax]
n and S 2 S, e�

P
i2S

di � 1 + �
P

i2S di,

and for 0 < � � 1, we also have

e
�
P

i2S
di � 1 + �

X
i2S

di +
X
k�2

(�nDmax)
k

k!

= 1 + �
X
i2S

di + �2
X
k�2

�k�2(nDmax)
k

k!

� 1 + �
X
i2S

d+ �2
X
k�2

(nDmax)
k

k!

= 1 + �
X
i2S

di + �2(enDmax � nDmax � 1)

= 1 + �
X
i2S

di + C�2; (50)

where C = enDmax � nDmax � 1 is a constant (for a given n) that depends on neither � nor fdig.

Let R�(D2) denote the set of channelsW that satisfy the constraints of Problem A and let R0(D2)

denote the set of channels that satsify the constraints of Problem B. By using the above upper and

lower bounds on the exponential function, it is readily seen that for � 2 (0; 1],

R0(D2 � �C) � R�(D2) � R0(D2 + �C); (51)

and therefore,

F0(D2 � �C) � F�(D2) � F0(D2 + �C): (52)

From the concavity of F0, proven already in part (a) above, it also follows that F0 is continuous at

any point in (0;Dmax). Thus, for such D2, lim�!0 F0(D2 � �C) = lim�!0 F0(D2 + �C) = F0(D2),

and assertion (b) follows from eq. (52) by a sandwich argument.

As for part (c), let f�kg be a positive sequence that tends to zero, and consider the corresponding

sequence of channels fW kg that achieve F�k(D2), k = 1; 2; : : :. According to Lemma 2,W k =W n
k ,
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where Wk solves the single-letter version of Problem A (i.e., maxW F (�;Q;W ) subject to the

constraints of Lemma 2). Since the set of �nite{alphabet channels is compact, there is a convergent

subsequence fWkjgj�1. Let W� denote the limit of that subsequence. Then, from the continuity of

F w.r.t. W ,

F (�;Q;W n
�
) = lim

j!1
F (�;Q;W n

kj
)

= lim
�!0

F�(D2)

= F0(D2); (53)

where the last step follows from part (b). Thus, Problem B is solved by W n
�
. Finally, the fact

that W� solves the single-letter version of Problem B, can be readily seen again from eq. (53),

degenerated to the one-dimensional case. 2

6 Proof of Theorem 3

The proof is completely analog to that of Theorem 1. Therefore, we give here a brief sketch only.

The fact that F (�;Q;W ) is convex w.r.t. Q is well-known [5, Theorem 4]. Next, de�ne Problem

A as

min
Q

F (�;Q;W n) (54)

subject to

q(xju) � 0 8u;x 2 An (55)

X
x
q(xju) = 1 8u 2 An (56)

X
y
q(xju) exp[��

X
i2S

d1(ui; xi)] � exp[��n(S)D1]; 8u 2 An; S 2 S: (57)

20



The �rst step is to show that Problem A is solved by a product form channel Q = Qn, where Q

solves the one-dimensional version of Problem A corresponding to each coordinate. To see this,

Problem A is �rst modi�ed (without a�ecting the result) to Problem A', de�ned the same way as

Problem A but with the equality constraint replaced by
P
x q(xju) � 1 for all u. This is again a

convex program for which the Kuhn{Tucker (necessary and su�cient) conditions are the existence

of non-negative constants f�(u)g, f�(u; S)g, u 2 An, S 2 S, such that

U(Q;W ;u;x) = �(u) +
X
S2S

�(u; S) exp[��
X
i2S

d1(ui; xi)]; q(xju) > 0 (58)

U(Q;W ;u;x) � �(u) +
X
S2S

�(u; S) exp[��
X
i2S

d1(ui; xi)]; q(xju) = 0 (59)

where

U(Q;W ;u;x) = p(u)
X
y
w(yjx)1=(1+�)

"X
x0

q(x0ju)w(yjx0)1=(1+�)
#�

(60)

is the partial derivative of F w.r.t. q(xju). Similarly as in the proof of Lemma 2, these conditions

give rise to the above-de�ned product form channel.

Next, de�ne Problem B in the same way as Problem A, but with the set of distortion constraints

replaced by

X
x
q(xju)d1(ui; xi) � D1; 8u 2 An; 1 � i � n: (61)

Finally, an analogue to Lemma 3 (with the concavity property in part (a) replaced by a convexity

property) is then proved in the same way, where the bounds on the exponential function to be used

are e��
P

i2S
di � 1� �

P
i2S di and e

��
P

i2S
di � 1� �

P
i2S di +

1

2
�2(nDmax)

2.
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