HEWLETT®
("/3 PACKARD
Low Overhead Block Coding for
Multi-Gb/s Links

Alistair Coles, David Cunningham
Extended Enterprise Laboratory
HPL-98-168

October, 1998

block coding, An 8B10B block coding scheme is currently employed in
16B18B, several fibre optic applications operating at
fibre optic approximately 1Gb/s. This code results in a symbol rate

that is 25% greater than the data rate
(i.e. 25% overhead). We describe an alternative block
coding scheme which may be used to implement lower
overhead coding for fiber optic multi-Gb/s links. The
coding scheme is extremely simple to implement,
generates a d.c. balanced signal and provides non-data
codewords for control signaling. As an example, a
16B18B code (overhead 12.5%) is described.

Internal Accession Date Only

o] Copyright Hewlett-Packard Company 1998



1 Introduction

A block code is often used to condition signals before transmission on fibre optic
links. For example, the Fibrechannel [2] and Gigabit Ethernet [3] standards both
require data to be coded according to an 8B10B code described in [1]. This code
ensures that the signals transmitted are d.c. balanced and contain a sufficient
number of transitions to enable easy clock recovery. In addition the code described
in [1] is relatively simple to implement, requiring only several hundred logic gates.
Although this code has very favourable properties, it does require the rate of
transmission to be 25% greater than the data rate. We shall refer to this rate
increase as the coding overhead:

transmission rate data rageloo%
data rate

Overhead= (1)
In this paper we describe a coding technique that may be used to achieve lower
overhead while still addressing the requirements for links operating at multi-Gb/
s over optical fiber channels. The requirements for these links are summarized
below:

< minimum coding overhead: As data rates on fibre optic links progress be-
yond 1 Gb/s to for example 2.5 Gb/s, CMOS technology will be stretched to
the limit of its performance. In order to maximize data throughput, as lit-
tle increase in speed as possible should be incurred by coding the data. The
primary objective of this coding proposal is therefore to reduce the coding
overhead, and other requirements have been traded off to meet this.

= byte alignment: the input to the coder should align naturally with the
data path width.

= control space: the code should provide some redundant space for control
signaling.

= error detection: the code should not interfere with the error detection

properties of common cyclic redundancy checks (e.g. CRC32). Some degree
of error detection within the code itself is desirable.

= d.c. balance: often this is the primary objective of coding. In this case it is
assumed that a relatively large disparity, and relatively long runlengths
are tolerable (cf. runlengths > 70 are known to occur in SONET systems).

= simplicity: gate count should be minimized.

2 Code operation

The coding scheme may be used in any configuration where the number of bits
input to the coder, X, is even. The code operates by attaching two extra bits to each
block of X input bits. We shall refer to the X input bits as the payload and the two



extra bits as the payload label. The payload may be either data or control, as
distinguished by the label. The coding procedure is illustrated in figure 1.

payload, X bits

label ¢ coding
alb payload, X bits

Figure 1 Coding procedure.

The code maintains dc balance (i.e. an equal number of ones and zeros
transmitted) by inverting the payload when necessary, and indicating that
inversion has occurred through the label. The value of the two label bits is
determined as follows. The weight of any payload (i.e. the difference between the
number of ones and the number of zeros) is examined for each payload and the
following actions taken:

= If the weight is non-zero and of equal sign to the running disparity at the
end of the last coded block, then the payload is inverted and the label bits
are set to 00. The weight of the output codeword (payload plus label) is ei-
ther zero or has opposite sign to the running disparity.

= If the weight is non-zero and of opposite sign to the running disparity at
the end of the last coded block, then the payload is not inverted and the la-
bel bits are set to 11. The weight of the output codeword (payload plus la-
bel) is either zero or has opposite sign to the running disparity.

= If the weight of a data payload is zero (i.e. equal number of ones and ze-
ros) then the payload is not inverted and the label bits are set to 01 to indi-
cate that the payload is weight zero data. Note that in this case the weight
of the output codeword (payload plus label) is also zero.

These rules guarantee that the running disparity is bounded.
Control information may be passed as zero weight payloads. The label bits are set

to 10 which distinguishes the control information from data, and ensures that the
weight of the output codeword (payload plus label) is also zero.



To summarize, the label bits are used as shown in table 1.

Table 1: Coding rules

Payload Wt(payload) rds a b Invert?
Data >0 <0 1 1 N
Data >0 >0 0 0 Y
Data <0 <0 0 0 Y
Data <0 >0 1 1 N
Data 0 - 0 1 N

Control 0 by design - 1 0 N

Note 1: The cases when the rds is zero are avoided by initializing the rds to either
+1 or -1, remembering that all coded blocks have even length and therefore even
weight, so that the rds never becomes zero at a coded block boundary.

Note 2: In the case when the data payload is weight -2 (i.e. two less ones than zeros)
and the rds is <=0, the payload is inverted resulting in a weight of +2. However,
the label bits are set to 00 resulting in the weight of the coded block becoming zero.
This example illustrates that payload inversion does not always reduce the
absolute value of the rds, but prevents the absolute value of the rds from
increasing.

3 Code properties

3.1 Overhead:
The code overhead is 2 bits for each X bits i.e. 2/X x 100%.
3.2 Byte alignment:
This is easily achieved by picking X to be a multiple of eight.
3.3 Control space:
The size of the control space is equal to the number of weight zero payloads that
may be formed with length X. This is equal to:
X!
TG
TpO0O

which grows rapidly with X. e.g. for X=8, C=70 and for X=16, C=12870.

C=

(2)




In practice a simple (albeit inefficient) scheme which generates control payloads
with zero weight is to pick any X/2 bit symbol Y to represent a control state, and
set the payload equal to the concatenation of Y and Y. For X=16 this provides 256
control states.

3.4 Error detection:

Error events may be classified according to the number of bits errored within
either the payload or the label.

3.4.1 Data payload errors

A single error in a payload results in a single error in the decoded data.
Furthermore, any number of errors within the payload will result in the same
number of errors in the decoded data. This is a useful property as it means that the
errors are not multiplied. The error detection properties of any CRC that is used
will remain unchanged for errors within the payload.

3.4.2 Control payload errors

Any odd number of errors within a control payload field will always be detected as
they will result in a non-zero control payload weight, which is disallowed by
design.

3.4.3 Label errors

A single error in the label field will always be detected as it will result in a label
associated with a weight zero payload being created for a non-weight zero payload
or vice versa.

3.4.4 Combined label and payload errors

A single error in the label field combined with a single error in the associated data
payload field can result in either a single error in the decoded data (label 01
changed to label 11, payload error changes payload weight to non-zero or vice
versa) or can result in all X decoded data bits being complemented (label 01
changed to label 00, payload error changes payload weight to non-zero or vice
versa).

A single error in the label field combined with a single error in the associated
control payload field can result in the control payload being mistakenly decoded as
data (label 10 changed to label 11, payload error changes payload weight to non-
Zero or vice versa).

Two errors in the label field associated with a data payload will result in all X
decoded data bits being complemented (label field 11 changed to 00 or vice versa),
or will result in the data payload being mistaken for a control payload (label field
01 changed to 10).

Two errors in the label field associated with a control payload will result in the
control being misinterpreted as data (label field 10 changed to 01).



3.4.5 Summary of error detection properties

In summary, a single error anywhere in the coded block is either detected or
results in a single error in the decoded data.

Two errors anywhere in the coded block can result in either a single decoded data
error, or a complemented decoded data payload, or a data payload being mistaken
for control, or vice versa.

3.5 d.c. balance:

The coding rules cause the running digital sum to be bounded. The running
disparity is constrained to +/- (1.5X+2). The running digital sum at codeword
boundaries is constrained to +/-(X+1).

The maximum run length (i.e. maximum run of identical symbols) that may occur
within a sequence of codewords is 2.5X + 2. An example of how this runlength
occurs is shown in Table 2.

Table 2: Maximum runlength example

rds -(X+1) -1 X+1
payload weight X-2 X 2
label 11 11 11
coded block 11-01¢1 11-1 11102 L2 +1

Note 1: 1*X denotes a run of x ones.

For the case when X=16, we have a maximum runlength of 42. Clearly this is
relatively large, but is the price paid for low coding overhead and simplicity.
3.6 Simplicity:

The scheme is extremely simple to implement. No coding logic or lookup table is
required other than to calculate the weight of each payload and invert when
necessary.



3.7 Summary of properties
The properties of the code are summarized quantitatively in Table 3.

Table 3: Properties summary

X
8 16 32
Overhead (%) 25 12.5 6.25
Max. control space 70 12870 very large
Simply implemented control 16 256 65536
space (payload = {Y})

rds bounds +/- 14 +/-26 +/-50

max. runlength (bits) 22 42 82

latency (bits) 8 16 32

4 A 16B18B code

To achieve lower overhead than an 8B10B code, X must be greater than 8. When
X=16, the input to the code is byte aligned, and the overhead is reduced to 12.5%.
The 16B18B code provides a large control space (256 control states may be encoded
using the simple method described above).

The maximum runlength of the 16B18B code (42) is long compared to the IBM
8B10B code. However, clock recovery circuits developed for telecommunications
applications should be capable of maintaining lock with this code. In SONET
applications it is possible for runlengths of greater than 70 to occur.

A 16B18B code operating according to the rules described in this paper is therefore
a good alternative to 8B10B coding, requiring reduced coding overhead.

4.1 Code block synchronization

There are many potential ways to achieve code block synchronization (i.e. correct
alignment in the receiver of the label and payload fields). One technique would be
to transmit a comma sequence during a start-up or training period. As an example
consider a 16B18B code using the simple control payload scheme. A training
control state of 1111 1111 would be transmitted as:

[10 1111 1111 0000 0000][10 1111 1111 0000 0000][10 1111 1111 0000 0000]

The receiver will search for the label field 10. By inspection, the 10 field is only
found in two locations: the correct location, and at the end of the run of eight 1’s.



However, if the label field is (wrongly) assumed to be at the end of the run of 1’s,
the following 16 bits are not a legal control payload (first 8 bits are not the
complement of the second 8 bits). The receiver will therefore detect the mistake.
The correct codeword boundary may therefore be discovered by searching for a 10
pattern followed by a valid control payload. Note that this sequence also contains
a regular 010 pattern to aid in PLL clock acquisition.

4.1.1 Error detection with CRC-32 for a 16B18B code

We have shown that each single error occurring in the data payload results in a
single error in the decoded data. Errors confined to the data payload are therefore
not multiplied when the data is decoded, and the error detection properties of a
CRC are not affected by the block coding.

Errors occurring in the label may result in error multiplication. Two errors in a
coded block may result in a burst of errors up to the length of the payload in the
decoded data. For the 16B18B code the implication is that a burst of up to 16 errors
in the decoded data may occur if two or more errors occur in a coded block.
However, such an error burst will be detected by a CRC provided that the length
of the CRC is greater than or equal to 16 (since in general a cyclic redundancy
check of length y will detect an error burst having length up to and equal to y).
Since many data communications applications employ a 32 bit CRC, we conclude
that all combinations of two errors within a 16B18B coded block will be detected
by the CRC.

5 Summary

A coding technique has been described that may be used to construct block codes
of the form XB(X+2)B, where X is even. The motivation of this technique is to
achieve low coding overhead, and as X increases the coding overhead decreases.
The codes are d.c. balanced and extremely simple to implement.

In particular, a 16B18B code may be constructed that has a coding overhead of
12.5%. The maximum runlength of this code is 42, which is less than the
runlengths that may be experienced in SONET systems.

6 References

[1] A.X. Widmer and P.A. Franaszek, “A DC-balanced, partitioned-block, 8B/
10B transmission code”, IBM J. Res. Develop., vol. 27, 5, Sept. 1983,
pp.440-451.

[2] ANSI X3.230-1994, “Fibre Channel - Physical and Signaling Interface
(FC-PH)".

[3] IEEE 802.3z, “Media Access Control (MAC) Parameters, Physical Layer,
Repeater and Management Parameters for 1000 Mb/s Operation”.



	1 Introduction
	(1)

	2 Code operation
	Figure 1 Coding procedure.

	Data
	>0
	<0
	1
	1
	N
	Data
	>0
	>0
	0
	0
	Y
	Data
	<0
	<0
	0
	0
	Y
	Data
	<0
	>0
	1
	1
	N
	Data
	0
	-
	0
	1
	N
	Control
	0 by design
	-
	1
	0
	N
	3 Code properties
	3.1 Overhead:
	3.2 Byte alignment:
	3.3 Control space:
	(2)

	3.4 Error detection:
	3.4.1 Data payload errors
	3.4.2 Control payload errors
	3.4.3 Label errors
	3.4.4 Combined label and payload errors
	3.4.5 Summary of error detection properties

	3.5 d.c. balance:


	rds
	-(X+1)
	-1
	X+1
	payload weight
	X-2
	X
	-2
	label
	11
	11
	11
	coded block
	11-01x-1
	11-1x
	11-1(x/2)-10(x/2)+1
	3.6 Simplicity:
	3.7 Summary of properties

	Overhead (%)
	25
	12.5
	6.25
	Max. control space
	70
	12870
	very large
	Simply implemented control space (payload = {Y,Y})
	16
	256
	65536
	rds bounds
	+/- 14
	+/-26
	+/-50
	max. runlength (bits)
	22
	42
	82
	latency (bits)
	8
	16
	32
	4 A 16B18B code
	4.1 Code block synchronization
	4.1.1 Error detection with CRC-32 for a 16B18B code


	5 Summary
	6 References
	[1] A.X. Widmer and P.A. Franaszek, “A DC-balanced, partitioned-block, 8B/ 10B transmission code”...
	[2] ANSI X3.230-1994, “Fibre Channel - Physical and Signaling Interface (FC-PH)”.
	[3] IEEE 802.3z, “Media Access Control (MAC) Parameters, Physical Layer, Repeater and Management ...


	Low overhead block coding for multi-Gb/s links
	Alistair Coles, David Cunningham HP Laboratories Bristol September 1998



