
Nested Input-Constrained Codes
Josh Hogan, Ron M. Roth†, Gitit Ruckenstein‡

Information Storage Technology Laboratory
HPL-98-165
September, 1998

constrained systems,
deterministic
encoders,
finite-state encoders,
input-constrained
channels,
nested encoders

An input-constrained channel, or simply a constraint, is a set of S
of words that is generated by a finite labeled directed graph. In
the context of coding, the study of constraints mainly aims at
designing encoders that map unconstrained input words into
words of S in a lossless manner. In most applications, the encoders
are finite-state machines that map in each time slot a fixed-length
input block into a fixed-length channel block, and decoding is
carried out by looking ahead at finitely-many upcoming channel
blocks. The state diagram of a finite-state encoder provides a
graph presentation of that encoder. In the special case where this
graph is (output) deterministic, only the current channel block is
needed for decoding the current input block.
In this work, the problem of designing encoders that can serve two
constraints simultaneously is considered. Specifically, given two
constraints S1 and S2 such that S1 ⊆ S2 and two prescribed rates,
conditions are provided for the existence of respective
deterministic finite-state encoders ©1 and ©2, at the given rates,
such that (the state diagram of) ©1 is a subgraph of ©2. Such
encoders are referred to as nested encoders. The provided
conditions are also constructive in that they imply an algorithm
for finding such encoders when they exist. The nesting structure
allows to decode ©1 while using the decoder of ©2.

Recent developments in optical recording suggest a potential
application that can take a significant advantage of nested
encoders.

† Hewlett-Packard Laboratories Israel, Technion City, Haifa 32000 Israel
‡ Computer Science Department, Technion, Haifa 32000 Israel
 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

1 Introduction

Input-constrained channels, also known as constrained systems or simply constraints,

are widely-used models for describing the read-write requirements of secondary storage

systems, such as magnetic disks or optical memory devices. A constraint S is de�ned

as the set of (constrained) words obtained from reading the labels of paths in a �nite

labeled directed graph G. We say that G is a presentation of S.

As an example, for integers 0 � d � k, the (d; k)-runlength-limited (RLL) constraint

consists of the binary words in which the runs of 0's between consecutive 1's have length

at least d, and no run of 0's has length greater than k. E.g., the current compact disk

standard uses the constraint (d; k) = (2; 10), and the following is a word satisfying this

constraint:

� � � 0010000100100000001000 � � � :

The parameter k is imposed to guarantee su�cient sign-changes in the recorded waveform

which are required for clock synchronization during readback to prevent clock drifting.

The parameter d is required to prevent inter-symbol interference. A (d; k)-RLL constraint

will be denoted by S(d;k). A graph presentation of S(d;k) is shown in Figure 1.

��
��
0 ��

��
1 ��

��
d�1 ��

��
d ��

��
d+1 ��

��
k�1 ��

��
k-0 0

��� -0 -0 -0 0
��� -0 -0

�
6

�
?1

�
?1

�
?1

�
?1

������

Figure 1: Graph presentation S(d;k).

One goal in the study of constraints is designing encoders that map unconstrained binary

sequences, referred to as source sequences, into words of a given constraint S. A rate

p : q �nite-state encoder for S encodes a binary p-block of source symbols into a q-block

in S in a state-dependent and uniquely-decodable manner.

In the current emerging technology and development of erasable and writable dense opti-

cal disks, we may face the scenario where recorders will di�er in their writing capabilities.

More speci�cally, home recorders may be able to record data in a lower density compared

to factory-stamped or manufacturer-recorded disks. This, in turn, implies that di�erent

recorders may need to use coding schemes of di�erent constraints. Speci�cally, home

recorders might use an encoder E1 at rate p1 : q1 for a constraint S1, say S1 = S(d1;k1);

on the other hand, manufacturers of optical disks may be able to record data using an

encoder E2 at a higher rate p2 : q2 for a constraint S2 such that S1 � S2; e.g., S2 = S(d2;k2)

2

where d2 � d1 and k2 � k1. (The current values of the standard are d2 = 2 and k2 = 10,

with p2 : q2 = 8 : 17 in the compact disk, and p2 : q2 = 8 : 16 in the read-only DVDs;

see [3], [4].)

In spite of the di�erent encoders, we would still like a disk player to have the capability

of decoding both encoding schemes. One solution is to have on board a separate decoder

for each encoder. In such a case, we will have a decoder D1 for E1 that decodes sequences

of the constraint S1 by dividing each sequence into nonoverlapping q1-blocks of channel

symbols, and mapping each q1-block into an input binary p1-block (the mapping can be

state-dependent). A decoder D2 for E2 will decode each q2-block in a sequence of S2 into

an input p2-block.

An alternative approach, which we investigate in this work, is designing the encoders E1
and E2 so that their decoders can be combined to a great extent. To this end, we will

assume that the alphabets of the constraints S1 and S2 are the same (e.g., both alphabets

are binary, as is the case with RLL constraints). Furthermore, we will assume that q1
and q2 are equal to the same number q (and so p1 � p2). The decoder D1 will be obtained

by cascading D2 with a combinational circuit (function) that maps input p2-blocks to

input p1-blocks, as shown in Figure 2. If such a combined decoding scheme exists, we

will say that the encoder E1 is (block) observable from E2.

q bits
- Decoder

D2 of E2
-

p2 bits Function

-

p1 bits

Decoder D1 of E1

Figure 2: Encoder E1 observable from encoder E2.

This work will concentrate on the study of observable encoders that are deterministic,

namely, at each state, distinct input p-blocks map into distinct q-blocks of channels

symbols. There is, of course, a loss of generality in this assumption, and the study of

the more general case is still an open research area. As we shall see, the special case of

deterministic encoders is already elaborate as is. Of particular interest are block decodable

encoders; these are deterministic encoders in which the decoding process of an input p-

block is state-independent and requires only the knowledge of the current q-block of

channel symbols. We will also assume that our encoders are irreducible, namely, every

3

state is reachable from every other state in the state diagrams. The basic de�nitions

used throughout this work are presented formally in Section 2. Those de�nitions are

demonstrated through examples in Section 3.

In Section 4, we show that for irreducible deterministic encoders and for constraints S1
and S2, the following two conditions are equivalent:

� There exists a rate p1 : q �nite-state encoder for S1 that is observable from a rate

p2 : q �nite-state encoder for S2.

� There exists a rate p1 : q �nite-state encoder for S1 that is a subgraph of a rate

p2 : q �nite-state encoder for S2. We say that the former encoder is nested in the

latter.

This equivalence result motivates us to study the nesting property in more detail. In

Section 5, we provide necessary and su�cient conditions for the existence of nested

encoders in terms of the graph presentations of the constraints. The provided conditions

are also constructive in the sense that they imply an algorithm for �nding nested encoders

when they exist. We point out, however, that the nesting property may sometimes be in

conict with other properties that we would like the encoders to possess, e.g., that they

are block decodable (see Example 3.2 in Section 3).

It is known that a state diagram of a rate p : q deterministic encoder for a constraint S

can be obtained as a subgraph of (a power of) a certain graph presentation of S, provided

that a deterministic encoder at rate p : q does indeed exist (see Proposition 2.7 below). In

Section 6, we attempt to generalize this property in what we call the diamond condition

set. Yet, as we show, there is an additional condition that we need to assume about the

constraints so that the generalization indeed holds.

2 De�nitions and background

Many of the de�nitions here can be found in [6].

2.1 Graphs and constraints

A �nite labeled directed graph G = (V;E; L) consists of |

� a nonempty �nite set of states V = VG;

� a �nite set of edges E = EG where each edge e has an initial state �G(e) and a

terminal state �G(e), both in V ;

4

� edge labels L = LG : E ! � drawn from a �nite alphabet �.

For simplicity, we will refer to a �nite labeled directed graph as simply a graph. We will

also use the notation u
a
�! v to denote an edge labeled a from state u to state v in G.

The set of outgoing edges from state u in G will be denoted by EG(u), and LG(EG(u))

will stand for the set of labels of the edges in EG(u). The minimum degree of G is the

smallest among the out-degrees of any state in G, namely, minu2VG jEG(u)j. A graph G

is n-regular if the out-degree of each state in G equals n.

A path � in a graph G is a �nite sequence of edges e1e2 : : : e` such that �G(ej+1) = �G(ej)

for i = 1; 2; : : : ; `�1. The length of a path � is the number of edges along the path. A

graph can be used to generate �nite symbol sequences, by reading o� the labels along

paths in the graph, thereby producing words. If a path � is labeled by a word w, we say

that � generates w. A word of length ` generated by G will be called an `-block.

A constrained system (or constraint), denoted S, is the set of all words (i.e., �nite se-

quences) obtained from reading the labels of paths in a graph G. We say that G presents

S or is a presentation of S, and we write S = S(G). The alphabet of S is the set of

symbols that actually occur in words of S and is denoted � = �(S).

Let G1 = (V1; E1; L1) and G2 = (V2; E2; L2) be graphs. We say that G1 is a subgraph of

G2 if V1 � V2, E1 � E2, and L1 is the restriction of L2 to E1. We will use the notation

G1 � G2 and we will say that G1 is nested in G2. If E1 consists of all edges in E2 whose

initial and terminal states are in V1, we will say that G1 is a subgraph of G2 induced by

V1.

Two (�nite labeled directed) graphs are isomorphic if there is a one-to-one and onto

mapping from states to states and edges to edges that preserves initial states, terminal

states, and labels.

A graph is deterministic if at each state the outgoing edges are labeled distinctly. It is

known that every constraint has a deterministic presentation (see, e.g., [6, Section 2.2.1]).

A graph G has �nite anticipation if there is an integer N such that any two paths of

length N+1 with the same initial state and labeling must have the same initial edge.

The anticipation A(G) of G is the smallest N for which this holds.

A graph is lossless if any two distinct paths with the same initial state and terminal state

generate di�erent words.

Let G be a graph. The adjacency matrix A = AG = [(AG)u;v]u;v2VG is the jVGj � jVGj

matrix where the entry (AG)u;v is the number of edges from state u to state v in G. We

denote by �(AG) the largest absolute value of any eigenvalue of AG. It is known that

5

�(AG) is actually an eigenvalue of AG (see, e.g., [11, Ch. 1]).

Let S be a constraint and let N(`;S) denote the number of words of length ` in S. The

(Shannon) capacity of S is de�ned by

cap(S) = lim
`!1

1

`
logN(`;S) ;

where hereafter all logarithms are taken to base 2.

The following well-known result shows how to compute capacity (see [6, Section 3.2.2],

[8]).

Theorem 2.1 Let S be a constraint and let G be a lossless (for instance, deterministic)

presentation of S. Then,

cap(S) = log�(AG) :

Table 5.4 in [3, p. 91] lists the capacity values of several (d; k)-RLL constraints.

Let G be a graph. The qth power of G, denoted Gq, is the graph with the same set of

states as G, but one edge for each path of length q in G, labeled by the q-block generated

by that path. It is easy to see that AGq = (AG)
q and, so, �(AGq) = (�(AG))

q. For a

constraint S presented by a graph G, the qth power of S, denoted Sq, is the constraint

presented by Gq. It follows from Theorem 2.1 that

cap(Sq) = q � cap(S) : (1)

2.2 Irreducibility

A graph G is irreducible (or strongly connected), if for any ordered pair of states u; v,

there is a path from u to v in G.

An irreducible component of a graphG is a maximal (with respect to inclusion) irreducible

subgraph of G. The irreducible components of G are the subgraphs of G that are induced

by equivalence classes of the following relation de�ned over the states of G: u � v if

there is a path from u to v and a path from v to u. A trivial irreducible component is an

irreducible component that consists of one state and no edges.

An irreducible sink is an irreducible component H such that any edge that originates in

H must also terminate in H. Any graph can be broken down into irreducible components

with `transient' connections between the components, and every graph has at least one

irreducible sink [11].

6

A constraint S is irreducible if for every pair of words w;w0 in S, there is a word z such

that wzw0 is in S. A constraint that is not irreducible is called reducible.

We will make use of the following result from [7]:

Lemma 2.2 Let S be an irreducible constraint and letG be a graph such that S � S(G).

Then for some irreducible component G0 of G, S � S(G0).

It follows from this result that a constraint S is irreducible if and only if it can be

presented by some irreducible (in fact, deterministic) graph.

2.3 Shannon cover

Let u be a state in a graph G. The follower set of u in G, denoted FG(u), is the set of all

(�nite) words that can be generated from u in G. Two states u and u0 in a graph G are

said to be follower-set equivalent if they have the same follower set. It is easy to verify

that follower-set equivalence satis�es the properties of an equivalence relation. A graph

G is called reduced if no two states in G are follower-set equivalent.

If a graph G presents a constraint S, we can construct a reduced graph H (called the

reduction of G) that presents the same constraint S by merging states in G that are

follower-set equivalent [6, Section 2.6].

A Shannon cover of a constraint S is a deterministic presentation of S with a small-

est number of states. For irreducible constraints we have the following result (see [6,

Section 2.6.4]).

Theorem 2.3 Let S be an irreducible constraint.

(a) The Shannon cover of S is unique, up to labeled graph isomorphism. In fact, the

Shannon cover is the unique presentation of S which is irreducible, deterministic, and

reduced.

(b) For any irreducible deterministic presentation G of S, the follower sets of G coincide

with the follower sets of the Shannon cover.

We will also make use of the following lemma.

Lemma 2.4 [7] Let G and H be two irreducible deterministic graphs.

(a) If S(H) � S(G), then for every v 2 VH there exists u 2 VG such that FH(v) � FG(u).

(b) If there are v 2 VH and u 2 VG such that FH(v) � FG(u), then S(H) � S(G).

7

2.4 Finite memory

A deterministic graph G is said to have �nite memory if there is an integer N such that

the paths in G of length N that generate the same word all terminate in the same state.

The smallest N for which this holds is called the memory of G. Each state u in G can

be associated with a set WG(u) of all words in S of length m that are generated in G by

paths that lead to that state. The following lemma is easily veri�ed.

Lemma 2.5 Let G be an irreducible deterministic graph with �nite memory m. There

is an edge u
a
�! u0 in G if and only if there are words w 2 WG(u) and w

0 2 WG(u
0) such

that wa = bw0 for some b 2 �(S(G)) and wa 2 S(G).

An irreducible constraint S has �nite memory if its Shannon cover has �nite memory.

Such constraints are also called shifts of �nite type [5]. The memory of S is de�ned as

the memory of its Shannon cover.

2.5 Finite-state encoders

Let S be a constraint and n be a positive integer. An (S; n)-encoder is a graph E such

that |

� E is n-regular;

� S(E) � S; and |

� E is lossless.

Each row in the adjacency matrix AE of E sums up to n. For such matrices, it is known

that �(AE) = n [11, Ch. 1]. Therefore, by Theorem 2.1 we have the following.

Proposition 2.6 Let E be an (S; n)-encoder. Then

cap(S) � cap(S(E)) = logn :

A tagged (S; n)-encoder is an (S; n)-encoder E where the outgoing edges from each state

in E are assigned distinct input tags from an alphabet of size n. We will denote by �n

a standard alphabet of size n that will be used to tag (S; n)-encoders. Typically, n = 2p

and �n will consist of all binary p-blocks. The notation u
s=a

�! v stands for an edge in E

from state u to state v which is labeled a 2 �(S) and tagged by s 2 �n. Hence, if we

8

�x some initial state u0 of a tagged encoder E , then such an encoder de�nes a mapping

from all the unconstrained words over �n to words in S of the same length: an input tag

sequence s = s1s2 : : : s` de�nes a path � of length ` in E starting at u0, and the image

of s is the word w = w1w2 : : : w` that is generated by �. By the losslessness property,

knowing the terminal state of � allows to reconstruct the input word, over �n, from the

output constrained word in S.

Encoders have �nite anticipation or are nested according to whether their underlying

untagged graphs do.

In virtually all applications, the encoders should have �nite anticipation, so that they can

be decoded online. Indeed, if A(E) < 1, then a state-dependent decoder for E can be

obtained by retracing the edge sequence followed by the encoder. We will adopt in this

work a model of a state-dependent decoder through a �nite-state look-ahead machine

D which operates as follows. The input sequence to D is a constrained (channel) word

in S(E). At each time slot r, the machine D gets as input a symbol of that word, but

is also allowed to see the upcoming A(E) channel symbols. Assuming that the decoder

knows the state u of the encoder at time r, by the de�nition of anticipation, the decoder

can reconstruct the encoder edge e that was traversed from state u. By simulating the

encoder, the decoder can now reconstruct the next encoder state (at time slot r+1).

Hence, given an initial state u0 of the encoder and a word w of length ` � A(E) that is
generated from that state, the decoder can reconstruct (uniquely) the �rst `�A(E) edges

of any path in E that starts at u0 and generates w. If we now tag E , then reconstructing

those edges also means reconstructing the �rst `�A(E) input tags that were mapped by

E into w. Such a decoding scheme will be called state-dependent decoding.

When the current symbol forms with the upcoming A(E) symbols a word that cannot be

generated from the currently retraced encoder state, then the input is invalid and we will

assume (say) that D halts in this case (in practice, this will be an indication of an error in

the decoded sequence). Note that a state-dependent decoder D requires knowledge of the

particular initial encoder state (hence the name); still if E has �nite anticipation, then

for any initial state chosen, there is a �nite-state look-ahead machine D that decodes E .

The anticipation of an encoder measures the number of channel symbols we need to look-

ahead in order to decode the current input tag. We could trade look-ahead decoding with

decoding delay. However, for the sake of simplicity, we prefer adopting the convention

that the time axes of the tag sequences and the channel symbol sequences are aligned in

the encoder and the decoder: the decoder output at time slot r should equal the encoder

input at time slot r.

Deterministic encoders have anticipation 0. For such encoders we have the following

result taken from [6, Section 3.5].

9

Proposition 2.7 Let S be a constraint with a deterministic presentation G. Then there

exists a deterministic (S; n)-encoder if and only if there exists such an encoder which is

a subgraph of G.

A rate p : q �nite-state for S is a tagged (Sq; 2p)-encoder, where we assume that the

input tags are binary p-blocks. By Proposition 2.6 and Equation (1) it follows that a

rate p : q �nite-state for S exists only if p=q � cap(S).

The following coding result, essentially due to Adler, Coppersmith and Hassner [1], is a

converse of Proposition 2.6.

Theorem 2.8 Let S be a constraint and n a positive integer. If logn � cap(S) there

exists an (S; n)-encoder. Furthermore, there is such an encoder with �nite anticipation.

The paper [1] presents an algorithm, known as the state-splitting algorithm, which e�ec-

tively provides an encoder guaranteed by Theorem 2.8.

A tagged (S; n)-encoder is block decodable if edges labeled by the same symbol are tagged

by the same input tag. A tagged block decodable (S; n)-encoder E can be decoded

through a function g : �(S(E)) ! �n which maps a label w to the tag assigned to any

edge labeled w. We say that g is a block decoder for E . Note that the decoding process

of a block decodable encoder requires only the knowledge of the current channel symbol;

in particular, it does not require knowledge of the initial state of the encoder. The

advantage of using block decodable encoders is limiting error propagation and having

simple decoding structure. A block decodable encoder is necessarily deterministic.

2.6 Observable encoders and nested encoders

Let E1 be a tagged (S1; n1)-encoder and let E2 be a tagged (S2; n2)-encoder such that

S1 � S2. We say that E1 is (block) observable from E2 if there exist a (possibly state-

dependent) �nite-state look-ahead decoder D2 and a function : �n2
! �n1

, such that

when is applied to the tag sequence (over �n2
) generated by D2, we obtain a �nite-state

look-ahead decoder D1 of E1 (see Figure 2). We will formally write D1 as a composition

of the form � D2. We allow the existence of the function to depend on a particular

choice of a pair of initial states in E1 and E2, respectively (but see the discussion on

irreducible encoders below). Note that we do assume here that the time axes of the two

encoders and their decoders are aligned: the output of �D2 at time slot r should equal

the input to E1 at time slot r. Since D2 halts on input which is not in S(E2), our model

implies the containment S(E1) � S(E2). On the other hand, as a consequence of our

assumption that is a function that does not a�ect the execution of D2, the decoder

10

D1 = �D2 may decode input sequences that do not belong to S(E1), thereby deviating

from our previous convention that the decoder halts in this case. We could allow the

indication of sequences that do not belong to S(E1) through an \error tag" that would be

added to the range of . However, such an indication might make much more complex

(but see Example 3.1).

We will assume in our discussion that E1 and E2 are irreducible. Note that if an (S; n)-

encoder is reducible, then any of its irreducible sinks is an irreducible (S; n)-encoder. As

mentioned in Section 1, most of our results will concentrate on deterministic encoders

(in particular, block decodable encoders).

Under the assumption of deterministic and irreducible encoders, the existence of a func-

tion for a particular pair of initial states in E1 and E2 implies that for every state in E1
which is chosen as an initial state, there is a choice of an initial state in E2 such that the

scheme in Figure 2 holds, with respect to the same function and the same decoders D1

and D2 (except that now the decoders operate assuming the new initial states). Indeed,

suppose that hu ; v i is a particular pair of initial states that corresponds to , and let

u be some other state in E1. Since E1 is irreducible, there is a path in E1 from u to u.

Let w be the word generated by that path. Now, the word w must also be generated in

E2 by a path that starts at v and terminates in some state v. We can now use hu; vi as
an alternate initial pair of states. (On the other hand, there may be states in E2 with
which no state in E1 forms an initial pair of states consistent with .)

If E1 is observable from E2 then S(E1) � S(E2) and, so, cap(S(E1)) � cap(S(E2)). By

Proposition 2.6 we have cap(S(Ei)) = logni; so, n1 � n2. The case n1 = n2 is vacuous

since it allows us to choose E1 = E2 in the �rst place. We will therefore assume that n1 is

strictly smaller than n2. In practice, n1 = 2p1, n2 = 2p2, and S1 and S2 are qth powers of

some constraints S 01 and S
0

2, respectively. This means that E1 is a rate p1 : q �nite-state

encoder for S 01 and E2 is a rate p2 : q �nite-state encoder for S 02, where S
0

1 � S 02 and

p1 < p2.

3 Examples

We provide here several examples that demonstrate some of the terms we de�ned in

Section 2.

Example 3.1 The capacity of the (2; 3)-RLL constraint is approximately 0:2878. A rate

1 : 4 �nite-state encoder for S(2;3) is shown in Figure 3. This encoder, denoted E1, is a

block decodable (S4
(2;3); 2)-encoder with a block decoder g1 : �(S(E1)) ! f0; 1g which

satis�es

g1(0001) = g1(0100) = 0 and g1(0010) = g1(1001) = 1

11

(we specify the values of g1 only for words that label edges in E1).

��
��
�

��
��
�

�� -0=0001 ��
��

��
?
1=0010

�
�
��71=0010

S
S
SSw

0=0100

�
1=1001

��� 0=0100

Figure 3: Rate 1 : 4 �nite-state encoder for S(2;3).

The capacity of the (1; 3)-RLL constraint is approximately 0:5515, and a rate 2 : 4

�nite-state encoder for S(1;3) is shown in Figure 4. This encoder, denoted E2, is a block

decodable (S4
(1;3); 4)-encoder with a block decoder g2 : �(S(E2))! f00; 01; 10; 11g which

satis�es

g2(0001) = g2(1010) = 00; g2(0010) = g2(1001) = 01; g2(0100) = 10; and g2(0101) = 11:

��
��
�

��
��
�

�� -11=0101
�
 -00=0001 ��

��

��
?

00=1010

��
?

01=0010

�
�
��701=0010 �
�
��/

10=0100

S
S
SSo 00=1010S
S
SSw

11=0101

-10=0100

� 01=1001
�

11=0101

��� 10=0100

Figure 4: Rate 2 : 4 �nite-state encoder for S(1;3).

It is easy to see that E1 is nested in E2. Furthermore, E1 is observable from E2. Indeed,

let : f00; 01; 10g ! f0; 1g be given by

 (00) = (10) = 0 and (01) = 1 :

12

Then, g1(w) = (g2(w)) for every w 2 f0001; 0010; 0100; 1001g. In principle, the func-

tion needs to be de�ned also for the input tag 11 of E2. However, g2 never produces

that tag for the labels of E1. Hence, in practice, we can de�ne (11) = ? to indicate an

error while decoding sequences generated by E1.

We can simplify the encoder E2 by eliminating state � in E2 and redirecting all its incoming

edges (excluding self-loops) into state . This yields a smaller (S4
(1;3); 4)-encoder E

0

2, which

can be decoded by the same block decoder g2. The encoder E1 is therefore observable

from E 02 even though it is not nested in it.

Example 3.2 Let S1 be the constraint presented by the graph E1 in Figure 5. It is

easy to see that cap(S1) = log 2 and that E1 is in fact a deterministic (S1; 2)-encoder.

Furthermore, we can make E1 block decodable by assigning one tag of �2 to the edges

labeled a and c, and a second tag to the edges labeled b and d; namely, �2 induces the

partition fa; cg; fb; dg on �(S1). In fact, this is essentially the only assignment of tags to

labels|and, thereby, to edges|that can make E1 block decodable: the edges labeled by

fa; cg must all be assigned with the same tag of �2, and the edges labeled by fb; dg must

be assigned with the other tag. Assuming that �2 = f0; 1g, the respective essentially

unique block decoder is a function g1 : fa; b; c; dg ! �2, where

g1(a) = g1(c) = 0 and g1(b) = g1(d) = 1 : (2)

By Theorem 2.3, every irreducible deterministic (S1; 2)-encoder can be reduced through

state merging to E1. It follows from this that for every irreducible deterministic (S1; 2)-

encoder there is a unique assignment of tags to labels that makes such an encoder block

decodable (in particular, this applies to the irreducible sinks of reducible deterministic

(S1; 2)-encoders).

��
��
�

��
��
�

�� -a ��
��

��
?
b

�
�
��7b

S
S
SSw

c

�
d

��� c

Figure 5: Graph E1 for Example 3.2.

13

Let S2 be the constraint presented by the graph E2 in Figure 6. Here cap(S2) = log 3 and

E2 is a deterministic (S2; 3)-encoder. We can make E2 block decodable in a unique manner

by partitioning �(S2) into fa; dg; fbg; fcg and tagging the edges of E2 accordingly with

the elements of �3. Every irreducible deterministic (S2; 3)-encoder can be made block

decodable by an essentially unique tag assignment to the edge labels, and the respective

block decoder is the function g2 : fa; b; c; dg ! �3, where

g2(a) = g2(d) = 0 ; g2(b) = 1 ; and g2(c) = 2 (3)

(assuming that �3 = f0; 1; 2g).

��
��
�

��
��
�

�� -a ��
��

��
?
b

�
�
��7b

�
�
��7
c

S
S
SSw

cS
S
SSw

d

�
d

��� c
�	� b

Figure 6: Graph E2 for Example 3.2.

It is straightforward to see that (the untagged version of) E1 is nested in (the untagged

version of) E2. By Proposition 4.1 that we prove in Section 4 it will thus follow that there

exists a deterministic (S1; 2)-encoder which is observable from a deterministic (S2; 3)-

encoder.

However, in our example, it is impossible to have both observability and block decodabil-

ity. Indeed, let E 01 be a block decodable (S1; 2)-encoder with the block decoder g1 de�ned

by (2), and let E 02 be a block decodable (S2; 3)-encoder with the block decoder g2 de�ned

by (3). Suppose to the contrary that E 01 were observable from E
0

2. Then there had to be

a function : �3 ! �2 such that g1(w) = (g2(w)) for all w 2 fa; b; c; dg. However, this
is impossible, since g2(a) = g2(d) whereas g1(a) 6= g1(d).

Example 3.3 A two-state (S8
(1;3); 17)-encoder, denoted E , is shown in Figure 7. Each

row in the table corresponds to an input tag, and each column corresponds to one of the

encoder states, � or �. The entry at row s and column � (respectively, �) in the table

contains the label and terminal state of the outgoing edge from state � (respectively, �)

that is tagged by s. It can be readily veri�ed that E is block decodable. The capacity of

14

the (1; 3)-RLL constraint is approximately 0:5515, whereas the `equivalent rate' of E is

(log 17)=8 � 0:5109.

label, terminal state of edges

input tag from state � from state �

0 00100101; � 10010101; �

1 00101001; � 10100101; �

2 00101010; � 10010010; �

3 01001001; � 10101001; �

4 01001001; � 01001001; �

5 01010010; � 01010010; �

6 01010101; � 01010101; �

7 00010001; � 10001001; �

8 00010010; � 10001010; �

9 00010100; � 10010100; �

10 00010101; � 10010001; �

11 00100010; � 10100010; �

12 00100100; � 10100100; �

13 01000100; � 01000100; �

14 01000101; � 01000101; �

15 01010001; � 01010001; �

16 01010100; � 01010100; �

Figure 7: (S(1;2); 7)-encoder nested in an (S(1;3); 17)-encoder E .

The �rst seven rows in Figure 7 de�ne a two-state (S8
(1;2); 7)-encoder which is nested

in E . Here (log 7)=8 � 0:3509, compared to the capacity of the (1; 2)-RLL constraint

which is approximately 0:4057 (Proposition 2.7 implies that there are no deterministic

(S8
(1;2); 8)-encoders).

Example 3.4 The capacity of the (2; 10)-RLL constraint is approximately 0:5418, and

there exist rate 8 : 16 block decodable encoders for S(2;10). An example of such an encoder

is the one used in the DVD standard [4].

The capacity of the (3; 10)-RLL constraint is approximately 0:4460. By Theorem 2.8

there exist rate 7 : 16 encoders for S(3;10). However, by Proposition 2.7 it can be veri�ed

that the largest integer n for which there is a deterministic (S16
(3;10); n)-encoder is n = 84,

so none of the rate 7 : 16 encoders for S(3;10) is deterministic. On the other hand,

there is a particular construction of a rate 6 : 16 four-state block decodable encoder

15

for S(3;10), denoted E(3;10), which is observable from a particular rate 8 : 16 four-state

block decodable encoder for S(2;10). This rate 8 : 16 encoder, which we denote by E(2;10),

is di�erent from the one presented in [4]; still, like the latter, it also possesses certain

properties that allow for DC control in addition to producing sequences that satisfy the

(2; 10)-RLL constraint (see [3, Section 2.5]). Those DC-control properties carry over also

to E(3;10). The function that is associated with E(2;10) and E(3;10) just truncates the two

trailing bits of the 8-block input tags of E(2;10). The details of the construction of E(2;10)
and E(3;10) are contained in [2] and will be presented in a future work.

4 Nesting and observability

In this section, we show that observability of encoders is equivalent to the nesting property

if the encoders are deterministic and irreducible.

The following result shows that nesting implies observability even under much weaker

assumptions.

Proposition 4.1 Let E1 be an untagged (S1; n1)-encoder and E2 be an untagged (S2; n2)-

encoder such that E1 � E2 and A(E2) <1. Then E1 and E2 can be tagged so that E1 is
observable from E2.

Proof. Without loss of generality assume that �n1
� �n2

. Let : �n2
! �n1

be a

mapping that is one-to-one (and onto) when restricted to the domain �n1
. If u is a state

in E1 (and in E2), we tag the outgoing edges from u that belong to E1 (and E2) by �n1
,

and the remaining outgoing edges from u in E2 are tagged by �n2
n �n1

. If u is a state

in E2 but not in E1, then the outgoing edges from u are tagged arbitrarily by �n2
. Since

E2 has �nite anticipation, there is a (possibly state-dependent) �nite-state look-ahead

decoder D2 of E2. Assuming without loss of generality that the initial state of E2 is a

state in E1, the composition D1 = � D2 is a �nite-state look-ahead decoder of E1.

Referring to the notations in the last proof, when n1 = 2p1 and n2 = 2p2, we can let �n2

be the set of all binary blocks of length p2, and let �n1
be the set of all binary p2-blocks

with some �xed su�x of length p2�p1. In practice, this su�x can be deleted from each

tag in E1, in which case the function simply truncates the trailing p2�p1 bits.

Let G and H be two graphs. We de�ne the �ber product of G and H as the graph G �H,

where

VG�H = VG � VH = fhu; u0i j u 2 VG; u
0 2 VHg ;

and hu; u0i
a
�! hv; v0i is an edge in G � H if and only if there are edges u

a
�! v and

u0
a
�! v0 in G and H, respectively. It is easy to verify that for every hu; u0i 2 VG�H we

16

have

FG�H(hu; u
0i) = FG(u) \ FH(u

0) : (4)

Hence, G �H presents the intersection of the constraints de�ned by G and H, namely,

S(G �H) = S(G) \ S(H).

Lemma 4.2 Let S1 and S2 be irreducible constraints such that S1 � S2. There exist

irreducible deterministic graphs H1 and H2 (not necessarily reduced) such that S(H1) =

S1, S(H2) = S2, and H1 � H2.

Proof. Denote by G1 and G2 the Shannon covers of S1 and S2, respectively, and let G1 �
G2 be the �ber product of G1 and G2. Since S(G1 �G2) = S1\S2 = S1, every irreducible

component of G1 � G2 generates a constraint that is contained in S1. Combining this

with Lemma 2.2, there is an irreducible component H1 in G1 �G2 such that S1 = S(H1).

We now follow [9] and [10] and construct a deterministic graph H = (VH ; EH ; LH) that

contains H1 as a subgraph, as follows. Let VH = VH1
[V , where

V = f h�; vi : v 2 VG2
g ;

and let EH = EH1
[E, where the edges of EH1

in EH inherit their labeling from H1, and

E is de�ned as follows:

� For every state hu; vi 2 VH1
, we endow H with an edge hu; vi

a
�! h�; v0i if v

a
�! v0

is an edge in G2 and there is no edge hu; vi
a
�! hu00; v0i in H1 for any u

00 2 VG1
.

� For every h�; vi 2 V we endow H with an edge h�; vi
a
�! hu0; v0i if v

a
�! v0 is an

edge in G2 and u
0 is the �rst state u00 in VG1

, if any, such that hu00; v0i 2 VH1
(here

we assume some ordering on VG1
). If no such u00 exists, then u0 = �.

By construction, there is a path

hu0; v0i
a1�! hu1; v1i

a2�! : : :
a`�! hu`; v`i (5)

in H only if there is a path

v0
a1�! v1

a2�! : : :
a`�! v` (6)

in G2. Conversely, for every path (6) in G2 there are u0; u1; : : : ; u` such that (5) is a path

in H. Therefore, S(H) = S2.

Since H1 is an irreducible subgraph of H, there is a unique irreducible component H2 of

H that contains H1 as a subgraph. Clearly, S(H2) � S(H) = S2. We next show that

S2 � S(H2), thereby establishing the equality S(H2) = S2.

17

Let w be a word in S2 that is generated in G2 by a path that starts at state v and

terminates in state v0. Let v
0 be a state in G2 such that hu0; v0i 2 VH1

for some u0 2 VG1
.

Since G2 is irreducible, there is a word z that can be generated in G2 by a path that starts

at v0 and terminates in v. By construction of H, there is a path � in H that generates

zw, starting at hu0; v0i and terminating in hu0; v0i, for some u0 2 VG1
[f�g. We now

show that there is a path in H that starts at hu0; v0i and terminates in VH1
; this, in turn,

will imply that hu0; v0i and hu0; v0i belong to the same irreducible component of H and,

as such, the path � is entirely contained in H2. Let z
0 be a word that is generated in G2

by a path that starts at v0 and terminates in v0. Then, z0 is also generated in H by a

path

hu0; v0i �! hu1; v1i �! : : : �! hu`; v`i ;

where v` = v0. We claim that there must be an index j 2 f0; 1; : : : ; `g such that uj 2 VG1

(i.e., huj; vji 2 VH1
). Indeed, if no such index j < ` exists, then, in particular, u`�1 = �;

but there is a state u0 2 VG1
such that hu0; v`i = hu

0; v0i is in VH1
; so, by construction of

H we have hu`; v`i 2 VH1
.

Recall that, by de�nition, if E1 is observable from E2, then S(E1) � S(E2). Hence,

by the following result we will get that observability implies nesting in the irreducible

deterministic case.

Proposition 4.3 Let E1 be an irreducible deterministic (S1; n1)-encoder and let E2 be an
irreducible deterministic (S2; n2)-encoder such that S(E1) � S(E2). Then there exists an

irreducible deterministic (S1; n1)-encoder E
0

1 that is nested in an irreducible deterministic

(S2; n2)-encoder E
0

2 such that S(E1) = S(E 01) and S(E2) = S(E 02).

Proof. Without loss of generality we can assume that E1 and E2 are reduced; i.e., they are
the Shannon covers of S(E1) and S(E2), respectively. Apply Lemma 4.2 with S1 S(E1)

and S2 S(E2) to obtain E 01 H1 and E
0

2 H2.

Let E1 and E2 be encoders that satisfy the conditions in Proposition 4.3 and suppose

further that E1 is observable from E2 through a decoding scheme that comprises decoders

D1 and D2 as in Figure 2. Based on the proof of Lemma 4.2, we can obtain a respective

decoding scheme for E 01 and E
0

2 as in Figure 2 by slightly modifying D1 and D2. However,

to this end, we need to elaborate more on the construction contained in the proof of

Lemma 4.2, and we do this next.

Let G1, G2, H1, and H2 be as in the proof of Lemma 4.2, and let hu; vi be a state in H1.

We claim that

FH1
(hu; vi) = FG1

(u) : (7)

18

By the construction of H1 (in particular, since H1 is irreducible and deterministic), it

su�ces to prove (7) for a particular state hu; vi. Let u 2 VG1
be such that FG1

(u) does

not contain a follower set of any other state in G1. Now, by Theorem 2.3(b), the sets

of follower sets of the states in G1 and H1 are the same; so there must be a state u0 in

G1 such that FH1
(hu; vi) = FG1

(u0). On the other hand, FH1
(hu; vi) � FG1

(u). By the

choice of u we must therefore have u = u0. By a similar line of argument we can show

that for every state hu; vi in H2 we have

FH2
(hu; vi) = FG2

(v) : (8)

We now return to the encoders of Proposition 4.3, with G1 E1, G2 E2, E
0

1 H1,

and E 02 H2. From (7) it follows that there is a one-to-one label-preserving mapping

from the outgoing edges from state u in E1 onto the outgoing edges from state hu; vi in

E 01. Furthermore, the terminal states of an edge in E1 and its image in E 01 are follower-set
equivalent. Such a mapping induces a tagging of the edges of E 01 from the edges of E1. A

similar mapping exists by (8) from the edges of E2 to the edges of E 02, and we use that

mapping to de�ne a tagging of E 02.

With such tagging, every state-dependent (in particular, state-independent) decoder D1

of E1 can be easily transformed into a decoder D01 of E
0

1: the decoder D
0

1, reconstructing

an input from a state hu; vi of E 01, will act the same way as the decoder D1 does while

reconstructing an input from state u. Similarly, every �nite-state look-ahead decoder D2

of E2 can be made into a decoder D02 of E
0

2, where inputs from state hu; vi are treated as

if they are from state v.

This, in principle, may suggest that if D1 = � D2, then D
0

1 = � D02. Recall, however,

that assumes some pair of initial states u and v in E1 and E2, respectively, and
FE1(u) � FE2(v). Now, if hu ; v i is a state in E 01, then, indeed, we can start the

encoding of both E 01 and E
0

2 at that state, in which case we will have D01 = � D02.

Consider now the case where hu ; v i is not in VE 0
1
. Since hu ; v i is a state in E1 � E2,

there must be a path in E1 � E2 from hu ; v i to a state hu0

; v0

i that belongs to an

irreducible sink E 001 of E1 � E2. Now, from FE1(u) � FE2(v) we have FE1(u
0

) � FE2(v

0

).

This implies by (4) the equality FE 00
1
(hu0

; v0

i) = FE1(u

0

); so, by Lemma 2.4(b) we have

S(E 001) = S(E1). Thus, in the construction of Lemma 4.2, we can take the sink E 001 as our

(S1; n1)-encoder E
0

1. Furthermore, we can take u0

and v0

as an alternate pair of initial

states in E1 and E2, respectively, while using the decoder D2 for the latter and D1 = �D2

for the former. At this point, we got back to the case where hu0

; v0

i is in VE 0

1
.

We point out that the encoders E 01 and E
0

2 that we obtain in Proposition 4.3 are not nec-

essarily reduced, even when the original encoders E1 and E2 are. Of course, for practical

applications, there might be no advantage having nested encoders if the nesting prop-

19

erty requirement implies more complex encoders (e.g., increasing the number of states).

Nevertheless, from what we have just shown, it follows that the original decoders of E1
and E2 (as in Figure 2) can be applied to decode the new nested encoders E 01 and E

0

2.

A natural question to ask is whether Proposition 4.3 can be generalized to nondetermin-

istic encoders. This question remains still open. However, we show in the Appendix an

example of an irreducible deterministic (S1; n1)-encoder E1 that is observable from an

irreducible (S2; n2)-encoder E2 with anticipation 1; on the other hand, we also show that

if E 01 is an (S1; n1)-encoder that is nested in an (S2; n2)-encoder E
0

2, then E
0

2 must have

anticipation at least 2. We also provide a pair of nested encoders E 01 � E
0

2 where E
0

2 has

in�nite anticipation.

5 Construction of deterministic nested encoders

5.1 (G; n)-subgraphs and approximate eigenvectors

Let G be a graph and let n be a positive integer. A (G; n)-subgraph is a subgraph of G

that has minimum degree at least n. Clearly, for a given graph G, there are values of n for

which (G; n)-subgraphs do not exist. A necessary condition for having a (G; n)-subgraph

is n � �(AG) (see below).

In case (G; n)-subgraphs exist, then there is a unique maximal (G; n)-subgraph, namely

a (G; n)-subgraph that is not a proper subgraph of any other (G; n)-subgraph. Indeed,

if we take the union of the sets of states and the union of the sets of edges of two

(G; n)-subgraphs, the resulting graph is also a (G; n)-subgraph.

A maximal (G; n)-subgraph can be found through the following algebraic tool, which is

commonly used in connection with �nite-state encoders. An (AG; n)-approximate eigen-

vector is a nonnegative nonzero integer vector x such that AGx � nx, where the inequal-

ity holds component by component. There exist (AG; n)-approximate eigenvectors if and

only if n � �(AG) [6, Section 3.1.3]. The set of all (AG; n)-approximate eigenvectors with

entries restricted to f0; 1g will be denoted by B(AG; n).

For every (G; n)-subgraph H we can associate an indicator vector xH 2 B(AG; n) of the
set VH as a subset of VG. In fact, the mapping H 7! xH is onto B(AG; n) (but not

necessarily one-to-one: (G; n)-subgraphs that are mapped to the same vector x have

the same sets of states; however, their sets of edges might be di�erent). Since (AG; n)-

approximate eigenvectors exist if and only if n � �(AG), a necessary (but not su�cient)

condition for having a nonempty B(G; n) is n � �(AG). It is known that B(AG; n),
if nonempty, contains a unique maximal vector xmax; i.e., xmax is a vector in B(AG; n)

such that x 2 B(AG; n) implies x � xmax, where the inequality holds component by

20

component [6, Section 3.1.4]. That vector xmax is the indicator vector of the set of states

of the unique maximal (G; n)-subgraph: the latter is the subgraph of G induced by the set

of states indicated by xmax. The vector xmax can be found using Franaszek's algorithm [6,

Section 3.1.4], when given as input the matrix AG, the integer n, and the all-one vector

1.

An irreducible (G; n)-subgraph is a (G; n)-subgraph that is also irreducible. A (G; n)-

component is an irreducible (G; n)-subgraph that is not a proper subgraph of any other

irreducible (G; n)-subgraph.

The (G; n)-components can be found as follows. Let Hmax be the maximal (G; n)-

subgraph, if any. Then every (G; n)-component is a subgraph of Hmax. Furthermore,

since every (G; n)-component is irreducible, each is a subgraph of some irreducible com-

ponent of Hmax. Let H(1); H(2); : : : ; H(t) denote the irreducible components of Hmax,

sorted by their minimum degrees in decreasing order, and let s be the last index s for

which H(s) has minimum degree at least n. Note that if Hmax exists, then all its irre-

ducible sinks will have minimum degree at least n; so, s is well-de�ned (it is at least

1). The graphs H(1); H(2); : : : ; H(s) are (G; n)-components, and the remaining (G; n)-

components, if any, will be obtained by �nding recursively the (H(i); n)-components for

s < i � t.

5.2 Conditions for having deterministic nested encoders

In this section we prove the following result.

Theorem 5.1 Let S1 and S2 be two irreducible constraints where S1 � S2, and let

n1 and n2 be positive integers. Denote by G1 and G2 the Shannon covers of S1 and

S2, respectively. Then there exists an irreducible deterministic (S1; n1)-encoder that is

nested in an irreducible deterministic (S2; n2)-encoder if and only if there is a (G2; n2)-

component H2 for which there exists a (G1 �H2; n1)-component.

The proof of Theorem 5.1 is constructive in the sense that it implies an algorithm for

�nding the nested encoders. We prove the theorem using the following two lemmas. The

�rst lemma is a stronger version of Proposition 2.7.

Lemma 5.2 Let G be a deterministic graph which presents a constraint S and let E be

an irreducible deterministic (S; n)-encoder. Then for some (G; n)-component G0 of G,

S(E) � S(G0).

Proof. We construct an irreducible (G; n)-subgraph H such that S(E) � S(H). The

graph H, in turn, must be a subgraph of some (G; n)-component.

21

For a state u 2 VG, denote by Z(u) the set of all states v 2 VE such that FE(v) � FG(u).

By Lemmas 2.2 and 2.4(a), for every v 2 VE there is at least one state u 2 VG such that

v 2 Z(u). In particular, at least one of the sets Z(u) is nonempty.

The graph H is de�ned as an irreducible sink of the following graph H 0. The states of H 0

are all the nonempty subsets Z(u), u 2 VG. We endow H 0 with an edge Z(u)
a
�! Z(u0) if

and only if u
a
�! u0 is an edge in G and there is v 2 Z(u) and v0 2 VE such that v

a
�! v0

is an edge in E (note that in this case, FE(v
0) � FG(u

0) and, so, v0 must be in Z(u0)).

By construction, H is isomorphic to some irreducible subgraph in G (with state Z(u) in

H corresponding to state u in G). Furthermore, the out-degree of every state Z(u) in H

is at least the out-degree, in E , of any E-state v 2 Z(u). Hence, H is isomorphic to some

irreducible (G; n)-subgraph.

It remains to show that S(E) � S(H). Let Z(u) be a state in H and let v be a particular

E-state in Z(u). By Lemma 2.4(b), it su�ces to show that every word that can be

generated in E by a path starting at state v, can also be generated in H 0 by a path

starting at state Z(u). Let

v0
a1�! v1

a2�! : : :
a`�! v`

be a path in E that starts in v0 = v and generates a word a1a2 : : : a`. We construct a

path

� : Z(u0)
a1�! Z(u1)

a2�! : : :
a`�! Z(u`)

in H 0 with vi 2 Z(ui) inductively as follows. We let Z(u0) be the state Z(u) in H such

that v 2 Z(u). Next, suppose there is a path in H that consists of the �rst k < ` edges

in � with vi 2 Z(ui) for i = 0; 1; : : : ; k. Since vk is in Z(uk), we have FE(vk) � FG(uk).

Hence, there must be an outgoing edge from uk in G labeled ak+1. De�ne uk+1 to be the

terminal state of that edge. By construction, the edge Z(uk)
ak�! Z(uk+1) is in H

0; and,

since Z(uk) belongs to the irreducible sink H, then this edge is also in H. Furthermore,

the inclusion FE(vk) � FG(uk) implies the inclusion FE(vk+1) � FG(uk+1); hence vk+1 is
in Z(uk+1).

Lemma 5.3 Let E1 be an n1-regular irreducible subgraph of an irreducible graph G2

where the minimum degree in G2 is n2 � n1. Then there exists an n2-regular irreducible

subgraph E2 of G2 such that E1 � E2.

Proof. Let H be a subgraph of G2 that satis�es the following conditions:

(H1) The minimum degree of H is at least n2 and |

22

(H2) H contains E1 as a subgraph and the states of E1 are accessible from every state

in H.

(In particular, conditions (H1) and (H2) hold for H G2.) We show that if H contains

a state with out-degree greater than n2, then we can always delete an edge from H to

obtain a new graph H 0 that satis�es (H1) and (H2).

Let u be a state in H whose out-degree is greater than n2. For every e 2 EH(u), de�ne

the distance of e (from VE1) as the length of the shortest path in H from �H(e) to VE1
(the distance is zero if �H(e) is in VE1). Let emax be a particular edge in EH(u) whose

distance is the largest among all the distances of the edges in EH(u). Note that emax is

not in E1, even when u is in E1. The graph H
0 is obtained from H by deleting emax.

We next show that from every state v 2 VH0 there is a path in H 0 from v to VE1 . Let �

denote a particular shortest path in H from v to VE1 . If � does not pass through emax,

then � is also a path in H 0 and we are done. Otherwise, there is a pre�x of � (possibly

of length zero) that is a path from v to u which does not pass through emax; as such, this

pre�x is entirely contained in H 0. Hence, it su�ces to show that there is path in H 0 from

u to VE1 . Let e
0 be an edge in EH(u)nfemaxg. Since the distance of e

0 is not greater than

the distance of the deleted edge emax, there must be a path �0 in H from �H(e
0) to VE1

that does not pass through emax. It follows that the path e
0�0 is entirely contained in H 0.

In order to obtain the graph E2, we proceed as follows. We start with H G2, and

then successively delete edges from H while satisfying conditions (H1) and (H2), until

we reach a graph Ê2 that is n2-regular. Finally, we let E2 be an irreducible sink of Ê2.
Since VE1 is accessible from every state in Ê2, the graph E1 must be a subgraph of that

sink.

Proof of Theorem 5.1. We start with the `only if' part. Suppose there exist irreducible

deterministic (Si; ni)-encoders Ei such that E1 � E2. By Lemma 5.2, there is a (G2; n2)-

component H2 such that S(E2) � S(H2). Hence,

S(E1) � S1 \ S(E2) � S1 \ S(H2) = S(G1 �H2) :

Again, by Lemma 5.2 there is a (G1 �H2; n1)-component H1 such that S(E1) � S(H1).

We next turn to the `if' part. Let H1 be a (G1�H2; n1)-component where H2 is a (G2; n2)-

component. Clearly, S(H1) and S(H2) are irreducible and S(H1) � S(H2). Applying

Lemma 4.2 to S(H1) and S(H2), there exist irreducible deterministic graphs H 0

1 and H
0

2

such that S(H1) = S(H 0

1), S(H2) = S(H 0

2), and H
0

1 is a subgraph of H 0

2. Furthermore,

by Theorem 2.3(b), every state in H 0

i
is follower-set equivalent to some state in Hi for

i = 1; 2; so, the minimum degree of H 0

i
is at least ni.

23

Next, we take E1 to be any n1-regular irreducible subgraph of H
0

1 (e.g., E1 is an irreducible

sink of some n1-regular subgraph of H 0

1); as such, E1 is also a subgraph of H 0

2. Finally, we

invoke Lemma 5.3 to obtain E2 as an n2-regular irreducible subgraph of H 0

2 that contains

E1 as a subgraph.

Re-iterating our remark towards the end of Section 4, the nested encoders in Theo-

rem 5.1 are not necessarily reduced. Therefore, for reduced encoders, the conditions of

the theorem are only necessary.

6 The diamond condition set

Let S1 and S2 be irreducible constraints such that S1 � S2. We say that a quadruple

of deterministic graphs (G1; G2; E1; E2) satis�es the diamond condition set with respect to

(S1; S2; n1; n2) if and only if the following four conditions hold:

(A) G1 and G2 are irreducible deterministic presentations of S1 and S2, respectively.

(B) G1 is a subgraph of G2.

(C) E2 is an irreducible (S2; n2)-encoder and is a subgraph of G2.

(D) E1 is an irreducible (S1; n1)-encoder and is a subgraph of G1 and E2 (both being

subgraphs of G2).

The diamond condition set is illustrated in Figure 8.

G2

��
�
���

G1

@@
�

@@I

E2

@@
�

@@I

E1
��
�
���

Figure 8: Diamond condition set.

The diamond condition set seems to be the appropriate generalization of the containment

condition in (the irreducible version of) Proposition 2.7 to nested encoders. Namely, we

24

would like to claim that if there exists an irreducible deterministic (S1; n1)-encoder which

is nested in an irreducible deterministic (S2; n2)-encoder, then there is a quadruple of

deterministic graphs (G1; G2; E1; E2) that satis�es the diamond condition set with respect

to (S1; S2; n1; n2). Indeed, we will prove that this holds when S2 has �nite memory. Yet,

Example 6.1 below shows that the claim is false when S2 has in�nite memory.

Example 6.1 Let S2 be the constraint presented by the graph H2 in Figure 9, and let

S1 be the constraint presented by the subgraph in Figure 9 that is marked by the dotted

box; namely, S1 is presented by the subgraph H1 of H2 that is induced by states and

�. We choose n1 = 2 and n2 = 3 and verify that the subgraph induced by states �

��
��

��
��
� ��

��
�

��
��
�

�� -a2
�

-
a1

��� b3
�	� b4

��� a1
�	� a2

-b1
�

b2

?
b5

-b6
�

b7

�
�
�
�
�
��>

b8

Subgraph

H1

Figure 9: Graph H2 for Example 6.1.

and � is an (S2; n2)-encoder, and the subgraph induced by state � (or state �) is an

(S1; n1)-encoder.

We next claim that there is no quadruple of deterministic graphs (G1; G2; E1; E2) that
satis�es the diamond condition set with respect to (S1; S2; 2; 3). Indeed, suppose to the

contrary that there are such graphs, and let u be a state that belongs to all those graphs.

By Theorem 2.3(b), the states of Gi are follower-set equivalent to states in Hi for i = 1; 2.

Since u has three outgoing edges in E2, then, as a state of G2, state u cannot be follower-

set equivalent to state in H2. Now, is the only state in H2 that has outgoing edges

labeled b6 or b8. Therefore, no outgoing edge from state u in G2 can be labeled by those

symbols. It follows that state u in G1 cannot be follower-set equivalent to state in H1,

which means that u, as a state of G1, must be follower-set equivalent to state � in H1. In

particular, u has in G1 an outgoing edge labeled b7. Such a symbol can be generated in

H2 only from state �, thus implying that u, as a state of G2, is follower-set equivalent to

state � in H2. So, the three outgoing edges from state u in both G2 and E2 are labeled a1,

a2, and b7. Let v denote the terminal state in E2 (and G2) of the edge labeled b7 outgoing

from state u. State v in G2 is follower-set equivalent to state in H2, which means that

state v in E2 has at most two outgoing edges, thus reaching a contradiction.

25

6.1 Nested encoders in the �nite-memory case

Theorem 6.1 Let S1 and S2 be two irreducible constraints where S1 � S2 and S2
has �nite memory. Then there exists an irreducible deterministic (S1; n1)-encoder that

is nested in an irreducible deterministic (S2; n2)-encoder if and only if there exists a

quadruple of deterministic graphs (G1; G2; E1; E2) that satis�es the diamond condition

set with respect to (S1; S2; n1; n2).

Theorem 6.1 is based on the following result.

Proposition 6.2 Let SA, SB, and Smax be irreducible constraints where jSA\SBj =1,

SA[SB � Smax, and Smax has �nite memory. Then there exists a �nite set of irreducible

deterministic graphs fG(1); G(2); : : : ; G(t)g that satis�es the following conditions:

� For every irreducible constraint Smin � SA \ SB, there is at least one deterministic

graph G(k) such that Smin � S(G(k)).

� For every deterministic graphG(k) there exist irreducible deterministic graphsGA =

G
(k)
A
, GB = G

(k)
B
, and Gmax = G(k)

max, such that

1. GA is a subgraph of Gmax and SA = S(GA);

2. GB is a subgraph of Gmax and SB = S(GB); and |

3. G(k) is a subgraph of GA and GB within Gmax.

The nesting relationships among the constraints in Proposition 6.2 are shown in Fig-

ure 10. We defer the proof of Proposition 6.2 to Section 6.3, and present here a proof of

Theorem 6.1, based on Proposition 6.2.

Proof of Theorem 6.1. The `if' part is obvious. We prove next the `only if' part. For

i = 1; 2, let Êi be the given (Si; ni)-encoders. Apply Proposition 6.2 with SA S1, SB

S(Ê2), Smax S2, and Smin S(Ê1), to obtain graphs G(k), GA, GB and Gmax. Note

that the condition jSA \ SBj =1 is satis�ed since S(Ê1) � S1 \ S(Ê2) and jS(Ê1)j =1.

We identify the graphs G1, E2, and G2 as GA, GB, and Gmax, respectively. Note that

GB � E2 is n2-regular since, by Theorem 2.3(b), the follower sets of the states in GB and

Ê2 are the same.

Since S(Ê1) � S(G(k)), the graph Ê1 is a deterministic (S(G(k)); n1)-encoder. Therefore,

by Proposition 2.7, there is a subgraph of G(k) that is an (S(G(k)); n1)-encoder. Taking

an irreducible sink of that subgraph, we obtain the desired irreducible deterministic

(S1; n1)-encoder E1.

26

Smax

��
�
���

SB
@@

�
@@I

SA

@@
�

@@I

S(G(k))
��
�
���

Smin

6

[j

Figure 10: Constraints in Proposition 6.2.

6.2 Nested encoders within the Shannon covers

In this section, we discuss a special case of the diamond condition set where there is an

irreducible presentation G1 of S1 that is a subgraph of the Shannon cover G2 of S2. As we

show, in such a case, G1 and G2 can be taken as the graphs guaranteed by Theorem 6.1.

Note that the important family of (d; k)-RLL constraints falls into the category studied

here.

Let G be an irreducible deterministic graph of �nite memory that presents a constraint

S and let E be an irreducible deterministic (S; n)-encoder. We construct next a subgraph

HE of G which we call the super-graph of E (with respect to G).

Let m be the memory of G and, for a state u 2 VG, let WG(u) be the set of all words of

length m that can be generated by paths in G that terminate in state u. Note that since

G has memory m, the sets WG(u) are disjoint for distinct states u.

For a word w of length m over �(S), we de�ne VE(w) to be the set of terminal states of

the paths in E that generate the word w.

The graph HE is de�ned as follows. For a state u 2 VG, let ZG;E(u) = Z(u) denote

the union [w2WG(u)VE(w). The states of HE are all the nonempty sets Z(u), u 2 VG.

We endow HE with an edge Z(u)
a
�! Z(u0) if and only if there are words w 2 WG(u),

w0 2 WG(u
0) such that wa = bw0, and states v 2 VE(w), v0 2 VE(w

0) such that v
a
�! v0

is an edge in E .

27

Lemma 6.3 LetG be an irreducible deterministic graph of �nite memory that presents a

constraint S and let HE be the super-graph of an irreducible deterministic (S; n)-encoder

E with respect to G. Then

(a) HE is isomorphic to some subgraph of G.

(b) HE is irreducible.

(c) S(E) � S(HE).

(d) The minimum degree of HE is at least n.

Proof. (a) We show that if Z(u)
a
�! Z(u0) is an edge in HE , then u

a
�! u0 is an edge

in G. Indeed, if Z(u)
a
�! Z(u0) is in HE , then there are words w 2 WG(u), w

0 2 WG(u
0)

such that wa = bw0, and states v 2 VE(w), v0 2 VE(w
0) such that v

a
�! v0 is an edge in

E . This implies that wa is a word in S(E), and, as such, it is also a word in S. It follows

by Lemma 2.5 that there is an edge u
a
�! u0 in G.

(b) Let Z(u) and Z(u0) be two states in HE and let w and w0 be words in WG(u) and

WG(u
0), respectively, such that VE(w) and VE(w

0) are nonempty. Let v0 be a state in

VE(w). Since E is irreducible, there is a path

v0
a1�! v1

a2�! : : :
a`�! v` (9)

in E that generates a word a1a2 : : : a` whose su�x is w0. Write w = a�m+1a�m+2 : : : a0,

and denote by wj the word aj�m+1aj�m+2 : : : aj. In particular, w0 = w and w` = w0.

We have vj 2 VE(wj) and wj�1aj = aj�mwj. Hence, there are edges Z(uj�1)
aj
�! Z(uj)

in HE , where each uj is the unique state in G such that wj 2 WG(uj). In particular,

u0 = u and u` = u0. We conclude that there is a path

Z(u) � Z(u0)
a1�! Z(u1)

a2�! : : :
a`�! Z(u`) � Z(u0) (10)

in HE .

(c) Let (9) be a path in E of length ` � m, and let u0 2 VG and w 2 WG(u0) be such

that v0 2 VE(w). The proof of (b) implies that there is also a path (10) in HE . Hence,

S(E) � S(HE).

(d) Let v be a state in Z(u). If there is an outgoing edge labeled a from v in E , then there

also exists an outgoing edge labeled a from Z(u) in HE . Hence, the minimum degree of

HE is at least n.

Theorem 6.4 Let S1 and S2 be two irreducible constraints such that S1 � S2 and S2
has �nite memory m. Suppose that there is an irreducible presentation G1 of S1 that

28

is a subgraph of the Shannon cover G2 of S2. Further, suppose that there exist two

irreducible deterministic encoders E 01 � E
0

2 where E 01 is an (S1; n1)-encoder and E
0

2 is an

(S2; n2)-encoder. Then there exist two irreducible deterministic encoders E1 and E2 such

that the quadruple (G1; G2; E1; E2) satis�es the diamond condition set with respect to

(S1; S2; n1; n2).

Proof. For i = 1; 2, let HE
0
i
be the super-graph of E 0

i
with respect to Gi. By

Lemma 6.3(a), we can regard HE
0
i
as a subgraph of Gi, with state ZGi;E

0
i
(u) in HE

0
i
identi-

�ed with state u in Gi. We show that HE
0
1
is a subgraph of HE

0
2
. For every state u 2 VG1

we have WG1
(u) � WG2

(u), and for every w 2 WG1
(u) we have VE 0

1
(w) � VE 0

2
(w). Hence,

ZG1;E
0
1
(u) � ZG2;E

0
2
(u), and for every edge ZG1;E

0
1
(u)

a
�! ZG1;E

0
1
(u0) in HE

0
1
we also have an

edge ZG2;E
0
2
(u)

a
�! ZG2;E

0
2
(u0) in HE

0
2
.

Next, we de�ne E1 to be an n1-regular irreducible subgraph of HE
0
1
; clearly, E1 is an

irreducible deterministic (S1; n1)-encoder which is a subgraph of HE
0
2
. By Lemmas 5.3

and 6.3(d), there is an irreducible n2-regular subgraph E2 of HE
0
2
such that E1 � E2. The

graph E2 is the desired (S2; n2)-encoder.

We point out that Theorem 6.4 is false if we remove the requirement thatG1 is a subgraph

of G2. For example, let � be an alphabet of size n2, and let S2 be the constraint consisting

of all words over �. The Shannon cover G2 of S2 consists of a single state and n2 self-

loops, and G2 is an (S2; n2)-encoder. Let S1 be an irreducible constraint over � whose

Shannon cover is an (S1; n1)-encoder with at least two states. Then no (S1; n1)-encoder

is contained in G2.

6.3 Proof of Proposition 6.2

The proof of Proposition 6.2 is technical but rather long and will be carried out by

constructing the deterministic graphs G(k), G
(k)
A
, G

(k)
B
, and G(k)

max, and proving several

lemmas. We denote by HA, HB, and Hmax the Shannon covers of SA and SB, and Smax,

respectively, and by m the memory of Hmax.

Graph G(k)

Let fH(1); H(2); : : : ; H(t)g be a maximal set of nontrivial irreducible components of HA �

HB such that S(H(i)) 6� S(H(j)) for i 6= j. Since jSA\SBj =1, such a set of components

is nonempty. By Lemma 2.2, for every irreducible constraint Smin � SA \ SB there is

an irreducible component H(k) such that Smin � S(H(k)). For every component H(k),

we de�ne the graph G(k) = (VG(k); EG(k); LG(k)) as follows. The set VG(k) consists of all

triples (w; u; v), where hu; vi 2 VH(k) and w is a word of length m that is generated by a

path in H(k) that terminates in state hu; vi. We endow G(k) with an edge (w; u; v)
a
�!

29

(w0; u0; v0) if and only if hu; vi
a
�! hu0; v0i is an edge in H(k) and wa = bw0 for some

b 2 �(SA) \ �(SB).

The following can be easily veri�ed.

Lemma 6.5 The graph G(k) is an irreducible deterministic graph that presents S(H(k)).

It follows from Lemma 2.2 and Lemma 6.5 that for every irreducible Smin � SA\SB there

is a graph G(k) such that Smin � S(G(k)). Hereafter, we �x a particular graph G(k) and

de�ne the respective graphs GA = G
(k)
A
, GB = G

(k)
B
, and Gmax = G(k)

max (the construction

of which depends on k).

Graph G0

max

We �rst introduce a graph G0

max = (VG0
max
; EG0

max
; LG0

max
), where VG0

max
consists of all

triples (w; u; v), where u 2 VHA
[f�Ag, v 2 VHB

[f�Bg, and w is a word of length m in

Smax, with the additional requirement that |

1. if u 2 VHA
, then w is generated by a path in HA that terminates in state u, and |

2. if v 2 VHB
, then w is generated by a path in HB that terminates in state v.

The set of edges EG0
max

and their labels are de�ned in Table 1. The principles of con-

structing the edges in G0

max are as follows. First, an edge (w; u; v)
a
�! (w0; u0; v0) exists

in G0

max only if w0 is a su�x of wa and wa 2 Smax. Now, if u 2 VHA
, then u0 is the

terminal state of the edge labeled a outgoing from state u in HA, provided that such an

edge exists. If no such edge exists, then u0 = �A. A similar rule applies also to the case

where v 2 VHB
. If hu; vi = h�A; �Bi, then hu

0; v0i = h�A; �Bi, unless there is a state of the

form (w0; u00; v00) in G(k) for the given word w0, in which case hu0; v0i will be the �rst pair

hu00; v00i (according to some lexicographic ordering) for which such a state exists in G(k).

Finally, if u 2 VHA
and v = �B, we �rst determine u0 according to the previous rules,

and then set v0 = �B, unless there is a state of the form (w0; u0; v00) in G(k), in which case

v0 is set so that hu0; v0i is the �rst pair hu0; v00i for which such a state exists in G(k). A

similar rule applies in case u = �A and v 2 VHB
.

Clearly, G0

max is deterministic. States (w; u; v) in G0

max in which either u = �A or v = �B
will be called �-states of G0

max. Note that there may be states in VG0
max

which are neither

states of VG(k) nor �-states. Nevertheless, an outgoing edge from a �-state must terminate

either in VG(k) or in a �-state. Furthermore, in the latter case, the �-coordinate cannot

change its position, i.e., there are no edges connecting �-states of the type (w; u; �B)

with �-states of the type (w0;�A; v
0) unless v0 = �B.

30

u 2 v 2 u0 2 v0 2 (w; u; v)
a
! (w0; u0; v0) 2 EG0

max
if wa = bw0 2 Smax and

VHA
VHB

VHA
VHB

u
a
! u0 2 EHA

, v
a
! v0 2 EHB

VHA
VHB

VHA
f�Bg u

a
! u0 2 EHA

, 8v00 2 VHB
: v

a
! v00 62 EHB

VHA
VHB

f�Ag VHB
v

a
! v0 2 EHB

, 8u00 2 VHA
: u

a
! u00 62 EHA

VHA
VHB

f�Ag f�Bg 8hu
00; v00i 2 VHA�HB

: u
a
! u00 62 EHA

, v
a
! v00 62 EHB

f�Ag f�Bg f�Ag f�Bg 8hu
00; v00i 2 VHA�HB

: (w0; u00; v00) 62 VG(k)

f�Ag f�Bg VHA
VHB

hu0; v0i = �rst hu00; v00i 2 VHA�HB
: (w0; u00; v00) 2 VG(k)

VHA
f�Bg VHA

f�Bg u
a
! u0 2 EHA

, 8v00 2 VHB
: (w0; u0; v00) 62 VG(k)

VHA
f�Bg VHA

VHB
u

a
! u0 2 EHA

, v0 = �rst v00 2 VHB
: (w0; u0; v00) 2 VG(k)

VHA
f�Bg f�Ag f�Bg 8u

00 2 VHA
: u

a
! u00 62 EHA

f�Ag VHB
f�Ag VHB

v
a
! v0 2 EHB

, 8u00 2 VHA
: (w0; u00; v0) 62 VG(k)

f�Ag VHB
VHA

VHB
v

a
! v0 2 EHB

, u0 = �rst u00 2 VHA
: (w0; u00; v0) 2 VG(k)

f�Ag VHB
f�Ag f�Bg 8v

00 2 VHB
: v

a
! v00 62 EHB

Table 1: Edges of G0

max.

It is easy to see that G(k) is a subgraph of G0

max. Indeed, let (w; u; v)
a
�! (w0; u0; v0) be

an edge in G(k). Then wa must be a word in SA \ SB and, as such, it is also a word in

Smax. Hence (w; u; v)
a
�! (w0; u0; v0) is an edge in G0

max.

Graph GA

Let G0

A
be the subgraph of G0

max induced by all states (w; u; v) 2 VG0
max

with u 2 VHA
.

Our previous argument for showing that G(k) is a subgraph of G0

max implies in fact that

G(k) is a subgraph of G0

A
within G0

max. So, there is a unique irreducible component in G0

A

that contains G(k) as a subgraph. We let GA be that unique irreducible component, and

we have the following.

Lemma 6.6 S(GA) = SA.

Proof. By construction of G0

max, there is a path

� : (w0; u0; v0)
a1�! (w1; u1; v1)

a2�! : : :
a`�! (w`; u`; v`) (11)

in G0

max with uj 2 VHA
only if

u0
a1�! u1

a2�! : : :
a`�! u` (12)

31

is a path in HA. Conversely, for every path (12) in HA there are words wj and states

vj 2 VHB
[f�Bg such that (11) is a path in G0

max. Hence, S(G0

A
) = SA and, so,

S(GA) � SA. The rest of the proof is devoted to showing that SA � S(GA).

Let u0 be a state in VHA
such that (w0; u0; v0) 2 VG(k) for some w0 and v0. Further,

assume that v0 is the �rst state v
0 in VHB

such that (w0; u0; v
0) 2 VG(k). We obtain the

containment SA � S(GA) by showing that every word in SA that can be generated in HA

by a path starting at state u0, can also be generated in GA. Let a1a2 : : : ; a` be such a

word in SA and let (12) be a path that generates that word in HA. There is also a path

� as in (11) that generates that word in G0

A
. In order to show that � is in GA, it su�ces

to show that there is a path in G0

A
from (w`; u`; v`) to VG(k). We distinguish between the

following three cases.

Case 1: v` = �B. Let

u00
b1�! u01

b2�! : : :
br�! u0

r
(13)

be a path in HA from u00 = u` to u
0

r
= u0 that generates a word b1b2 : : : br whose su�x

equals w0. Then there is also a path

(w`; u`; v`) � (w0

0; u
0

0; v
0

0)
b1�! (w0

1; u
0

1; v
0

1)
b2�! : : :

br�! (w0

r
; u0

r
; v0
r
) � (w0; u0; v

0

r
) (14)

in G0

A
that generates the same word b1b2 : : : br. Note that if v0

r�1 = �B then v0
r
= v0;

hence, there must be an index j � r such that v0
j�1 = �B and v0

j
2 VHB

. Furthermore,

by construction of G0

max, the state (w
0

j
; u0

j
; v0
j
) is in VG(k). It follows that there is a path

in G0

A
from (w`; u`; �B) to VG(k).

Case 2: v` 6= �B and FHA
(u`) 6� FHB

(v`). Let z be a word in FHA
(u`) that is not

contained in FHB
(v`). Consider the paths (13) and (14) as in Case 1, and assume further

that z is a pre�x of b1b2 : : : br. Since z 62 FHB
(v`), there must be at least one index

j � r such that v0
j
= �B. Now, from Case 1 it follows that there is a path in VG0

A
from

(w0

j
; u0

j
; �B) to VG(k). Hence, there is a path from (w`; u`; v`) to VG(k).

Case 3: v` 6= �B and FHA
(u`) � FHB

(v`). By Lemma 2.4(b) we have SA � SB which

implies S(HA � HB) = SA; so, by Lemma 2.2, there is an irreducible component H(i)

such that S(H(i)) = SA. However, we also assume that S(H(k)) 6� S(H(i)) unless i = k.

Hence, S(H(k)) = SA, and by Lemma 6.5 we thus have S(G(k)) = SA. This, in turn,

yields the degenerate case where the inclusions in the chain

SA = S(H(k)) = S(G(k)) � S(GA) � SA

become equalities.

32

Graph GB

In analogy to GA, the graph G
0

B
is de�ned as the subgraph of G0

max induced by all states

(w; u; v) with v 2 VHB
. The graph GB is de�ned as the irreducible component of G0

B
that

contains G(k) as a subgraph. The following lemma is proved similarly to Lemma 6.6.

Lemma 6.7 S(GB) = SB.

Graph Gmax

The graph Gmax is de�ned as the unique irreducible component of G0

max that contains

G(k) as a subgraph. Since G(k) is a subgraph of the irreducible subgraphs GA and GB

within G0

max, both GA and GB will be subgraphs of Gmax.

We next prove the following.

Lemma 6.8 S(Gmax) = Smax.

Proof. The proof is similar to that of Lemma 6.6. By Lemma 2.5, the inclusion

S(Gmax) � Smax follows from having any edge (w; u; v)
a
�! (w0; u0; v0) in G0

max only when

wa 2 Smax. In the remaining part of the proof we show the inclusion Smax � S(Gmax).

Following the lines of the proof of Lemma 6.6, we letw0 be a word such that (w0; u0; v0) 2
VG(k) for some u0 and v0, and assume that hu0; v0i is the �rst state hu

0; v0i 2 VHA�HB
to

satisfy (w0; u
0; v0) 2 VG(k). The inclusion Smax � S(Gmax) will follow by showing that

every word generated in Hmax by a path starting at state w0, can also be generated in

Gmax. Let a1a2 : : : ; a` be a word that is generated by the path

w0
a1�! w1

a2�! : : :
a`�! w`

in Hmax, where we identify a state in Hmax with any word of length m that is generated

by a path that terminates in that state. There is also a path

� : (w0; u0; v0)
a1�! (w1; u1; v1)

a2�! : : :
a`�! (w`; u`; v`)

that generates that word in G0

max. To show that � is in Gmax, we �rst �nd a path

in G0

max from (w`; u`; v`) to a �-state in G0

max. Indeed, by construction of G0

max, �-

states are inaccessible from (w`; u`; v`) only when FHmax
(w`) � FHA

(u`) \ FHB
(v`), i.e.,

Smax � SA \SB. This corresponds to the degenerate case where HA = HB = Hmax (thus

Smax = SA = S(GA) � S(Gmax)).

33

Next we show that from every �-state (w; u; v) 2 VG0
max

there is a path in G0

max that

terminates in VG(k). We already showed in the proof of Lemma 6.6 (Case 1) that when

u 6= �A there is a path from (w; u; �B) (which is a state of G0

A
) to VG(k), and a similar

proof applies to the case where v 6= �B. Hence, it remains to consider the case where

hu; vi = h�A; �Bi. Since Smax is irreducible, there is a path in Hmax that generates the

word wzw0 for some word z. Let this path be

w0

0
b1�! w0

1
b2�! : : :

br�! w0

r

with w0

0 = w and w0

r
= w0. The word wzw0 is also generated by a path

(w;�A; �B) � (w0

0; u
0

0; v
0

0)
b1�! (w0

1; u
0

1; v
0

1)
b2�! : : :

br�! (w0

r
; u0

r
; v0
r
) � (w0; u

0

r
; v0
r
)

in G0

max. Note that if hu0
r�1; v

0

r�1i = h�A; �Bi, then u
0

r
= u0 and v

0

r
= v0. Hence, there

must be an index j � r such that hu0
j�1; v

0

j�1i = h�A; �Bi and hu
0

j
; v0
j
i 2 VHA�HB

; by

construction, (w0

j
; u0

j
; v0
j
) 2 VG(k).

Proof of Proposition 6.2. The proof follows from Lemmas 6.5, 6.6, 6.7, and 6.8.

We point out that Proposition 6.2 does not necessarily hold if we remove the requirement

that jSA \ SBj =1. Indeed, suppose that Hmax is given by the graph in Figure 11, HA

is the subgraph of Hmax induced by states � and �, and HB is the subgraph of Hmax

induced by states and �. We have SA \ SB = fbg; so, the only possible choice for

��
��
� ��

��
� ��

��
 ��

��
�

�� -a -b
�

a
-d

�
d

-c
�

b

��� cHA HB

Figure 11: Example showing that we must have jSA \ SB j =1.

Smin is the empty word, and G(k) must be the trivial graph with one state and no edges.

However, if G(k) is a subgraph of both GA and GB within Gmax, then this means that GA

and GB intersect in Gmax. In particular, we can generate words wA 2 SA and wB 2 SB,
each of length 2, such that wAwB 2 Smax. The word wA contains at least one a and no

d's, and the word wB contains at least one c and no d's. However, no word in Smax can

contain both a's and c's without having any d's.

Appendix

We show here an example of an irreducible deterministic (S1; n1)-encoder E1 that is

observable from an irreducible (S2; n2)-encoder E2 with anticipation 1. On the other

34

hand, we show that if E 01 is an (S1; n1)-encoder nested in an (S2; n2)-encoder E
0

2, then E
0

2

must have anticipation at least 2. We also provide a pair of nested encoders E 01 � E
0

2

where E 02 has in�nite anticipation. (We do not know if there is a nested pair where E 02
has �nite anticipation.)

Let S1 be the constraint presented by the graph G1 in Figure 12. The out-degree of each

��
��
� ��

��
�

�� -a
-b

� c
�

d

Figure 12: Shannon cover G1 of S1.

state in G1 is 2; so, cap(S1) = log 2 and G1 is also a deterministic (S1; 2)-encoder. We

assign input tags over �2 = f0; 1g to the edges of G1 to obtain the encoder E1 that is
shown in Figure 13.

��
��
� ��

��
�

�� -0=a
-1=b

� 0=c
�

1=d

Figure 13: Tagged (S1; 2)-encoder E1.

Let S2 be the constraint presented by the graph G2 in Figure 14. It is easy to check

��
��
A ��

��
B

�� -a
-b

� c
�

d

��� e
�	� f

Figure 14: Shannon cover G2 of S2.

that cap(S2) = log�(AG2
) = log 3. By Proposition 2.7 there are no deterministic (S2; 3)-

encoders; however, we do have (S2; 3)-encoders with anticipation 1. Such a tagged en-

coder, E2, with an assignment of input tags over �3 = f0; 1; 2g, is shown in Figure 15.

The encoder E2 can be decoded with one-symbol look-ahead using the state-independent

decoder D2 whose decoding rules are given in Figure 16.

35

��
��
A

��
��
B1

�� -0=a ��
��
B2

��
?
2=e

�
�
��71=b �
�
��/

0=c
S
S
SSo 0=fS
S
SSw

1=e

-2=b
�

1=d

��� 2=f

Figure 15: Tagged (S2; 3)-encoder E2.

Current symbol Next symbol Decode into

a � 0

b c; e 1

b d; f 2

c � 0

d � 1

e c; e 2

e d; f 1

f c; e 0

f d; f 2

Figure 16: Decoder D2 for E2.

Now, it is easy to see that E1 is observable from E2 with the function : �3 ! �2 de�ned

by (0) = 0 and (1) = (2) = 1.

We next show that if E 01 is an (S1; 2)-encoder nested in an (S2; 3)-encoder E
0

2, then E
0

2

must have anticipation at least 2.

Suppose to the contrary that E 02 has anticipation 1. We �rst claim that no state in E 02
has three outgoing edges labeled a. Suppose that there were such a state, and let u1, u2,

and u3 be the terminal states of its outgoing edges. Since E 02 has anticipation 1, the sets

LE 0
2
(EE

0
2
(ui)) for distinct ui's are nonempty and disjoint. However, from Figure 14 we see

that the symbol a in a word of S2 can be followed either by a or by b. Therefore, each

set LE 0
2
(EE

0
2
(ui)) must be contained in fa; bg; hence a contradiction.

Let r denote a symbol in the set fa; c; dg. We next verify that no state in E 02 has two

outgoing edges labeled by the same symbol r. Suppose that there were such a state,

and let u1 and u2 be the terminal states of its outgoing edges labeled r. Again, the

36

sets LE 0
2
(EE

0
2
(u1)) and LE 0

2
(EE

0
2
(u2)) are nonempty, disjoint, and contained in fa; bg. This

means that the outgoing edges from u1 (say) must all be labeled a. However, we have

already shown that this is not possible.

Let t denote a symbol in the set fb; e; fg. As our next step, we show that no state in

E 02 has three outgoing edges labeled by the same symbol t. If there were such a state,

then the terminal states u1, u2, and u3 of its outgoing edges could generate only symbols

from the set fc; d; e; fg. However, from what we have shown it follows that there can be

at most one edge labeled c outgoing from at most one of the ui's, and the same applies

to the label d. Hence, there are at least seven edges in EE
0
2
(u1) [EE

0
2
(u2) [EE

0
2
(u3) that

are labeled e or f . Therefore, at least four of those edges must carry the same label

(say, e), which implies that the symbol e can be generated from at least two of the ui's,

contradicting our assumption that A(E 02) = 1.

Let v be a state in E 01 (and E
0

2) from which we can generate the label b (clearly, there is

always such a state, or else the words in S(E 01) could be generated by G1 in Figure 12

without passing through the edge labeled b; this, however, would imply that cap(S(E 01)) =

0). The incoming edges to v in E 02 can be labeled a, c, or d; so the outgoing edges from

v in E 02 can be labeled a or b. Furthermore, from what we have previously shown, it

follows that there must be exactly one edge labeled a and two edges labeled b outgoing

from v in E 02. Let u1 and u2 be the terminal states in E 02 of the edges labeled b outgoing
from state v. At least one of those states, say u1, is also a state in E 01. Since u1 has an

incoming edge labeled b, the two outgoing edges from u1 in E 01 can be labeled either c

or d. Furthermore, the labels of those two edges must be distinct, or else there would

be two outgoing edges from u1 in E
0

2 that would have the same label from the set fc; dg,

contradicting our previous conclusions. Hence, one outgoing edge from u1 in E
0

2 is labeled

c, a second outgoing edge is labeled d, and the remaining third edge is labeled either e or

f (no other symbol can follow the symbol b which labels an incoming edge to u1); assume

without loss of generality that the third edge is labeled e. This means that all the three

outgoing edges from state u2 in E
0

2 must be labeled f . However, no state in E 02 can have

that. This establishes the contradiction that E 01 is nested in E 02 while E
0

2 has anticipation

1.

On the other hand, E1 can be nested in an (S2; 3)-encoder with in�nite anticipation.

Such an encoder (which is still a lossless graph) is shown in Figure 17.

7 References

[1] R.L. Adler, D. Coppersmith, M. Hassner, Algorithms for sliding block codes

| an application of symbolic dynamics to information theory, IEEE Trans. Inform.

Theory, 29 (1983), 5{22.

37

��
��
A

��
��
B

�� -a ��
��
C

��
?

e
��
?

f

�
�
��7b

S
S
SSw

f

-b
� c
�

d

��� e

Figure 17: (S2; 3)-encoder with in�nite anticipation.

[2] J. Hogan, R.M. Roth, G. Ruckenstein, Method and apparatus having cas-

caded decoding for multiple runlength-limited channel codes, patent application �led

with the US Patent O�ce.

[3] K.A.S. Immink, Block-decodable runlength-limited codes via look-ahead technique,

Philips J. Research, 46 (1992), 293-310.

[4] K.A.S. Immink, EFMPlus: The coding format of the multimedia compact disc,

IEEE Trans. Consum. Electron., 41 (1995), 491{497.

[5] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,

Cambridge University Press, 1995.

[6] B.H. Marcus, R.M. Roth, P.H. Siegel, Constrained Systems and Coding for

Recording Channels, Handbook of Coding Theory, V. Pless, W.C. Hu�man, R.A.

Brualdi (Eds.), Elsevier Science Publishers, to appear. See also Technical Report

No. 0929, Computer Science Department, Technion, Haifa, Israel (1988).

[7] B.H. Marcus, R.M. Roth, Bounds on the number of states in encoders graphs

for input-constrained channels, IEEE Trans. Inform. Theory, IT-37 (1991), 742{758.

[8] B.H. Marcus, P.H. Siegel, J.K. Wolf, Finite-state modulation codes for data

storage, IEEE J. Sel. Areas Comm., 10 (1992), 5{37.

[9] G. Ruckenstein, Encoding for Input-Constrained Channels, M.Sc. Thesis, Com-

puter Science Department, Technion, 1996.

[10] G. Ruckenstein, R.M. Roth, Lower bounds on the anticipation of encoders for

input-constrained channels, in preparation. See also IEEE Int'l Symp. on Informa-

tion Theory, Ulm, Germany (June 1997).

38

[11] E. Seneta, Non-negative Matrices and Markov Chains, Second Edition, Springer,

New York, 1980.

39

