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1 Introduction

The World Wide Web is experiencing a phenomenal growth. Thousands of companies are

deploying web servers, with some web sites becoming extremely popular. To function ef-

�ciently, these sites need fast, high-performance HTTP servers. The listen queue capacity

of these servers is often set to a large value to accommodate bursts of tra�c and to ac-

cept as many client requests as possible. In servicing these requests, web applications often

provide both static and dynamic content, performing complex database queries and other

data-manipulation. This can lead to a large variance in request service times. Congested and

overloaded Internet routes only add to this variance: the download time for a given document

can range from 5% to 500% of its typical latency [CI97].

Long delays typically cause human clients to cancel and possibly resubmit their requests. For a

server with a small queue capacity, this client request timeout probably occurs during the time

when the client is competing to get the request into the server's request queue. If the timeout

occurs before the client request can enter the queue, there is no residual e�ect in the server.

However, with larger queue capacities and with su�cient request loads, it is increasingly more

likely that the request timeout will occur with the request sitting in the server's request queue.

In many systems, the client cannot respond to this timeout by removing the request from the

server's queue and either cannot or does not choose to notify the server that the request's

response is no longer needed. When a server processes these timed-out requests, it is doing no

useful work and is, instead, wasting its critical resources. One could picture a scenario, with a

very large and full request queue, in which all client requests timeout before being processed

by the server. In this case, all the server's resources are used to process timed-out requests

and no server resources are applied to \still-vital" requests. We term this pathological system

state request-timeout livelock.

In this paper, we propose a method to detect timed-out client requests, and use it to improve

server performance. Detection of timed-out client requests (DTOC) imposes little additional

overhead. However, to minimize this overhead further, we propose to perform this detection

only in the presence of overload. Using simulation models, we show how DTOC can improve

server performance and avoid livelock. We also use analytical methods to corroborate some

of these simulation results.

We consider the DTOC technique as complementary to session based admission control

(SBAC), introduced in [CP98]. Additionally, DTOC can improve SBAC performance for

workloads with short average session length, where for high tra�c loads there is a large per-

centage of retried clients requests, as was shown in [CP98].

DTOC strategy is implemented as a part of WebQoS for HP9000 ??.
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2 Methods for Detecting Timed-Out Client Requests

If a client experiences a long response delay after sending a request to a web server, there are

three possible behaviors the client could exhibit:

� \patient behavior": the client waits patiently for the response no matter how long it

takes;

� \anxious behavior": the client is anxious to get the response and clicks the browser

\stop" button, followed by the browser \reload" button to resend the request;

� \impatient behavior": the client is not tolerant of the delay, clicks the browser \stop"

button and leaves the site, loosing interest in the content because it took too long to

receive.

Since timed-out requests are not removed from the listen queues of current web servers, their

processing could lead to a substantial waste of server resources. Based on this, the �rst client

behavior, the \patient behavior", is the most desirable from the standpoint of preserving web

server e�ciency. Unfortunately, this is not the most typical client behavior. More often,

clients exhibit the \anxious" or \impatient" behaviors. Under these last two scenarios, an

overloaded web server could end up processing a lot of \dead", timed-out requests. While

the web server is processing these dead requests, wasting its resources on useless work, the

\still-vital" requests at the end of the listen queue encounter ever-longer delays that exceed

their client's patience threshold. This creates a snowball e�ect in which all requests timeout

before being serviced. All the server's resources are used to process timed-out requests, thus

resulting in server livelock, where the server is \busily" processing only dead requests and is

not doing any useful work. We term this form of server livelock request-timeout livelock.

In practice, request-timeout livelock is not an easily recognizable situation. Typically, servers

are able to detect that the client is no longer awaiting the response because the action of

sending the response reveals a closed client-server connection. This realization saves the server

from the task of sending the entire response back to the client. The obvious disadvantage of

this solution to server livelock is that the server work involved in preparing the response is not

avoided. Server resources are still wasted on preparing useless responses and request-timeout

livelock scenarios still exist.

At a high level, server methods for detecting timed-out client requests must rely on one of

two approaches:

1. the server can initiate an explicit communication back to the client, asking the client if

it still desires a response to the request, or
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2. the server can infer a client's interest in the response from the health of the client-server

connection. For web applications, if the client has closed the connection, it can be

assumed that the client no longer desires a response to the request that was conveyed

over that connection.

Web servers communicate with clients via HTTP [HTTP1.1] over TCP/IP-based networks.

We present several methods for how web servers can check for timed-out client requests in

this environment.

The TCP/IP client-server connection, or socket, can be thought of as consisting of two uni-

directional channels. For some protocols, such as \remsh", the client can do a \half-close" of

the client-to-server channel even though the client still desires and expects a response back

from the server on the still-open server-to-client channel. Luckily, the HTTP1.1 spec does

not discuss the possibility of this \half-close": a client should keep both channels open if it

still desires a response and should close both channels otherwise. With TCP/IP, the client's

client-to-server channel close is communicated via a FIN packet to the server, which results

in the connection transitioning to the \CLOSE WAIT" state. Thus, the server application

can tell that the client is no longer waiting for the response by detecting this CLOSE WAIT

state change within the server OS's network software. Here are three server-side approaches

toward that end:

1. \Peek" at the socket read bu�er state

This can be accomplished on a computer running HP-UX 10.20, at a point when the

client request had been read, by performing the following software steps:

(a) place the socket connection in NON-BLOCKING mode using fcntl() or ioctl();

(b) do a recv() call using a flags parameter value of MSG PEEK;

(c) restore the socket to its prior mode.

The recv() call produces a return code that indicates the number of bytes read, which

would be 0 for the case of a closed connection. In contrast, the return code for an open

connection with no bytes waiting is �1 with errno == EAGAIN. If the client had sent

additional bytes past the logical end of the request, as might be the case for pipelined

requests on persistent connections, the return code would be greater than 0. Note that

the MSG PEEK setting of the flags parameter avoids disturbing these bytes in the input

bu�er. In summary then, the return value of the recv() call can be used to uniquely

distinguish the closed client-to-server connection case (and hence a timed-out request).

2. Explicitely request the socket state

The getsockopt() system call is commonly used by applications to probe a socket's sta-

tus and control settings. Unfortunately, the standard functionality of this call does not
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provide access to the TCP/IP \state-diagram" state. Luckily though, the HP-UX 10.20

operating system has extended getsockopt() in OS patch PHNE 14472 to provide this

functionality. With this patch, the following call returns the socket state in the variable

tcp state:

getsockopt(sockfd, IPPROTO TCP, TCP STATE, (char *) &tcp state,

&tcp state len)

The test (tcp state==TCPS CLOSE WAIT) can be used to detect the closed client-to-

server connection. Note that this getsockopt() extension may not be available in

HP-UX 11.0.

3. Register a call-back function for a socket's transition to CLOSE WAIT

This method would require customizations that are not currently part of the HP-UX 10.20

operating system. One option would be to build on the Unix signal-handling mecha-

nisms by de�ning a new signal that would be generated when a socket transitions to

the CLOSE WAIT state. Another option would be to augment the setsockopt() function

to set up a call-back function as part of the socket descriptor state. In both cases,

the call-back function must know either implicitly or through passed parameters which

socket and process/thread are involved. This method could, in theory, have performance

advantages over the previous methods, since no unnecessary connection state polling is

done. However, the overhead to set up and remove the call-back function may be com-

parable. This method may also provide unique performance advantages in the presence

of client requests that timeout during their response preparation. More will be said on

this after we present our simulation results.

Although we have presented three methods for detecting closed client-server connections, there

could indeed be other approaches. Di�erent operating systems and implementations of the

transport layer and below will o�er di�erent opportunities for detecting closed client-server

connections. In addition to this issue of how to check for a client request timeout, there are

the issues of when and how often. For example, a server could potentially check for a client

request timeout at one or more of the following times:

� when the request is �rst pulled o� of the request queue, and/or

� when the request has been parsed (and the amount of server work to generate the

response can be estimated), and/or

� periodically throughout the preparation of the response.

As a �nal enhancement, maintaining statistics of when clients timeout for various types of

requests could be useful in forming a more-optimal strategy for checking timed-out requests.
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To summarize, we have shown a number of ways that a web server can check for closed client-

server connections in order to detect timed-out client requests. The important advantage of

this approach is that it permits servers to detect that the response to a client's request is

no longer needed before much of the server resources to generate that response have been

expended. This results in an increase in server e�ciency. In addition, no prior work has ad-

dressed the pathological system behavior we term request-timeout livelock, in which all of the

server's e�orts are spent preparing unneeded responses. Under the usually-valid assumption

that the request-timeout check is far easier for the server to accomplish than preparing the

response, this method provides protection against the request-timeout livelock situations.

3 Simulation Model

In order to demonstrate the performance impact of processing undetected timed-out requests

in an overloaded web server as well as to demonstrate how it can lead to a request-timeout

livelock, we built a simulation model. Sections 3.1 and 3.2 that follow discuss this in more

detail.

3.1 Workload Model

WebStone [WebStone] and SpecWeb96 [SpecWeb96] are industry standard benchmarks for

measuring web server performance. These benchmarks use a �nite number of clients to gen-

erate HTTP requests of di�erent length �les according to a particular �le size distribution.

For example, the SpecWeb96 �le mix is de�ned by a response-�le distribution based on the

following four classes:

� 0 Class: 100bytes - 900bytes (35%)

� 1 Class: 1Kbytes - 9Kbytes (50%)

� 2 Class: 10Kbytes - 90Kbytes (14%)

� 3 Class: 100Kbytes - 900Kbytes (1%)

The web server performance is measured as a maximum achievable number of connections/sec

supported by a server when retrieving �les of the required �le mix.

The primary limitations of today's web benchmarks are considered to be the following [MCS97]:

� they do not accurately reect real usage patterns;

� they do not include requests that generate errors or involve dynamic responses;
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� they focus on throughput measurements to the exclusion of latency considerations.

Fortunately, to demonstrate the problem with timed-out requests, we do not need a response-

�le distribution that perfectly reects today's usage patterns. It is merely su�cient that the

workload have a reasonably high variance of response �le size, as do today's usage patterns.

However, it is also important to realize that there is a high variance in the server CPU

time needed to prepare responses. This observation exposes an additional aw in today's

benchmarks. They simply do not capture the wide variety of requests and responses that

servers observe and generate. For example, most benchmarks do not include dynamic CGI-

created responses, which typically are much more resource-intensive (CPU-consuming) for a

server to perform. This translates directly into a server with increased request service times

and a lower supported throughput in requests/sec. Often a web server with a speci�cation

of 1000 requests/sec for SpecWeb96 will sustain 100 or less requests/sec of dynamic content.

That brings us to a discussion of user-perceived response time. From analysis of web server

access logs, 80% of users who experience latencies of greater than 15 seconds immediately

leave the site [M97]. This underlines the importance of modeling end-to-end latency and the

various client behaviors associated with high latencies.

In our simulation model, we decided to use a SpecWeb96-like �le distribution for the workload

because it has a high variance of requested �le sizes. Since the service time in our model is

proportional to the requested �le size, we can use this distribution to demonstrate the e�ect of

timed-out requests. One can reason that processing large and medium-sized �les is equivalent

to running CGI scripts requiring the same amount of time (since in the model, the requests

only di�er by the service time and the client that issued the request). Further details of the

workload are available in Appendix A.2.

In our simulation, a request is de�ned as a structure with the following parameters:

� the client which originated the request;

� the requested �le size;

� a time stamp of when the request was issued.

In order to reect the server running a mix of dynamic and static content, we set the server

capacity to 100 connections/sec.

3.2 Server Model: Functionality and Basic Parameters

We built a simulation model using C++Sim [Schwetman95] to better understand the di�erent

web server behaviors that exist under request-based and session-based workloads. The basic

structure of the model is outlined in Figure 1.
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Figure 1: Basic Structure of the Simulation Model.

It consists of the following components:

� a workload generator;

� N clients;

� a web server.

The workload generator produces a stream of new requests according to speci�ed load param-

eters. We are able to use an open model for this request generation. Each generated request

is sent to the web server and is stored in the server's listen queue. We limit the size of the

listen queue to 1024 entries which is a typical default value. Any subsequent request-retries

are issued and handled by an individual client. The client behavior is de�ned by a closed-loop

model: the client issues the next request-retry only when it does not receive a response from

the previous request in a prede�ned timeout period.

At the model output, we partition all requests into two groups:

� successfully-completed requests { requests for which responses were received by the clients

in time (but possibly after one or more retries);

� unsuccessful requests { requests for which responses were not received in time (even after

issuing a prede�ned number of retries) or requests that encountered a full listen queue.
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There are two reasons for marking a request unsuccessful:

� the server's listen queue was full and the client's connection attempt was refused by the

server;

� the server was not able to produce a response before the request or any of its retries

timed-out. More speci�cally, after issuing the request, the client will �rst wait for a

server response for a prede�ned timeout period. If this period elapses with no response,

the client times out and resends the request. If after a limited number of these retries,

the response still has not been received, the request is considered to be unsuccessful.

Note that a client's �rst task in sending a request is to establish a connection with the server.

If the client's �rst connection attempt is ignored by the server due to a full listen queue, the

client will typically try this connection attempt again after some delay. After some number

of unsuccessful connection retries, a \connection refused" message is often then presented to

the user, who may then restart the whole procedure. Note that we decided to simplify our

simulation model by pronouncing the request unsuccessful upon the �rst failed connection

attempt, without additional client retries.

Traditionally, web server performance is measured as the throughput of processed requests.

We propose however to measure web server performance as the throughput of only the

successfully-completed requests. This de�nition allows us to highlight the di�erence between

the total work performed by a server and its useful part. It also allows us to clearly identify

server livelock situations where the observed server utilization is close to 100% but with no

successfully-completed requests (i.e. with only unsuccessful requests) processed.

For our simulations, we modeled two di�erent server strategies:

� a regular strategy, in which the server processes requests without detecting whether they

are timed-out or not;

� a DTOC strategy, in which the server �rst checks whether a client request has timed-out

or not and further processes only those requests that have not timed out.

The detection of timed-out client requests (DTOC) imposes little additional overhead. In

our simulation model, and based on measurements of real machines, we set the overhead to

be 0.5% of the service time to process an average request. In order to further minimize this

overhead, we propose to perform the checking of requests only during periods of overload.

Toward that end, we measure the server utilization each second. If the server utilization is

above 95% then we start using the DTOC strategy and begin checking whether the client

requests are timed-out or not. Once the server utilization drops below 95%, we revert the

server back to its regular strategy.
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4 Simulation Results

4.1 Using the DTOC Strategy for Avoiding Livelock and Improving Server

Performance: Throughput as a Function of Tra�c Load

In this section, we compare the performance of a web server augmented with the DTOC

strategy against a web server using the regular strategy. We vary some of the parameters

of interest to see their impact on the simulation results. Other parameters remain constant

across all simulation runs: the workload is the SpecWeb96-like �lesize distribution described

in Section 3.1 and Appendix A.2 and the server capacity is �xed at 100 requests/sec while

processing this mix. The server's listen queue size is �xed throughout at 1024 entries.

Figure 2 shows the performance of a server using the regular strategy. The horizontal axis

shows the applied load, represented as a percentage of the maximum server capacity: an

applied load of 300 represents 300% of the maximum load that the server can process. Since

our server capacity is 100 requests/sec, a load of 300 coincidentally implies a load of 300

requests/sec. The vertical axis of Figure 2 shows the useful server throughput, measured as

the rate of processing successfully-completed requests, again normalized to the server capacity.

A throughput rating of 50 implies a server that is processing 50% of its maximum load, which

is coincidentally 50 successfully-completed requests/sec.

Also in Figure 2, we show the simulation results for four di�erent values of client request

timeout, namely, 5, 8, 9, and 10 seconds. In addition, we use clients that perform no retries,

i.e. if the response is not received within the predetermined timeout period, the client does

not resend the request.

The results show that the number of successfully-completed requests under loads higher than

100% drop signi�cantly. For clients with a request timeout of 5 seconds, the server quickly

enters a request-timeout livelock state and cannot recover. In this state, in spite of the server

utilization being 100%, the useful server throughput is zero. With the client timeout set to 8

seconds, the server performance is slightly improved. After entering request-timeout livelock,

the server is able to recover, but only for a time: the server ends up oscillating back and forth

between periods of livelock and non-livelock.

Finally, for clients with a timeout set to 10 seconds, the useful server throughput under high

loads is around 40%. This result is plausible given the following reasoning: Under high loads,

the listen queue will almost always be fully populated with requests. A newly arriving request

that just �lls the 1024-entry listen queue must wait 1025 service times before its response is

complete. At a service rate of 100 requests/sec, this takes an average of 10.25 seconds. Since

50% of such requests will experience a wait of less-than 10.25 seconds, it is plausible that 40%

might experience a wait of less-than 10.0 seconds (the critical timeout value).

Figure 3 shows the performance of a web server augmented with the DTOC strategy and with
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Figure 2: Throughput for a Server using the Regular Strategy with Clients with No Retry.
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Figure 3: Throughput for a Server Augmented with the DTOC Strategy with Clients with No Retry.

the same client model as in Figure 2. The percentage of successfully-completed requests under

high load is between 95% and 98% for client timeouts of 8, 9, and 10 seconds. For a client

timeout of 5 seconds (which led to a server livelock situation under the regular strategy), the

server throughput is around 85%, thus demonstrating DTOC's e�ective protection against

livelock conditions.

One obvious question to ponder is why the useful server utilization is ever less than 100%

when DTOC is enabled. There are three situations during which a server with DTOC is not

performing useful work:
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1. The server is idle with its listen queue empty.

2. The server is performing the DTOC check for a request.

3. The server is preparing a response to a request that passed the DTOC check, but that

times out before the response preparation is complete.

Let us consider the case of a 300% load with a client timeout of 5 seconds, where we ob-

served a 15% degradation from a 100% useful throughput level. Clearly at the 300% overload

level, the server's listen queue is e�ectively never empty, so situation 1 is not an important

factor. Also, the DTOC check overhead of situation 2 is minimal, with an upper bound of

300% � 0.5% = 1.5%. In practice, this overhead will be even smaller because requests that

encounter a full listen queue will be denied initial entry and will never be DTOC-checked.

Thus, the requests that timeout during response preparation, as mentioned in situation 3

above, account for much the 15% degradation in useful server throughput seen for this case.

This is further substantiated for a slightly di�erent case in Figure 8.

One �nal question to consider with Figure 3 is why the throughput for the 5 second timeout

case levels o� at the 200% load point, and is at for higher loads. First remember that a

request that enters a nearly full listen queue might have to wait 1025 service times before its

response comes back. This would take an average of 10.25 seconds if none of the requests

have timed out. Clearly this cannot be the case here, since then all of the 5-second-timeout

requests would time out. A more self-consistent hypothesis for this case is that 50% of the

requests time out, and that a request that enters a nearly-full listen queue sees only about

512 actual service times before its response comes back. If the processing of only 50% of the

requests in the queue keeps the server fully utilized, it must be a 200% load that actually

enters the server's listen queue. Any additional request arrivals above the 200% load level

would be denied entry to the server's full listen queue. Thus, this excess applied load is merely

shed without any server impact and the server's throughput remains constant above the 200%

level.

Moving on, Figure 4 shows the performance of a web server using the regular strategy, but

now with the clients issuing one retry after a timeout. If a response is not received within

the predetermined timeout period, the client closes its side of the client-server connection and

re-issues the request one more time. Performance results shown in Figure 4 are very similar,

although slightly worse, to the results in Figure 2.

Figure 5 shows the performance of a server using the DTOC strategy and with the same

1-retry client model as in Figure 3. The results clearly show an improved server performance

compared to the corresponding results under the regular strategy. However, the performance

is worse than that shown in Figure 3 for a server augmented with the DTOC strategy and

clients with no retries.
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Figure 4: Throughput for a Server using the Regular Strategy with Clients with One Retry.

A detailed explanation of the results of Figure 5 is very instructive in understanding the more

subtle implications of the client retry behavior. In particular, the following three distinguish-

ing features of Figure 5 as compared to Figure 3 are worthy of further explanation:

1. The useful throughput degrades much quicker for excess loads. For example,

the low-point of throughput for the 5-second timeout case is achieved at a load of 150%

for the 1-retry case (Figure 5), whereas the low-point is achieved at a 200% load for the

no-retry case (Figure 3). This demonstrates the additional load that the retry tra�c

generates. If 50% of the initial request load gets resubmitted as retries, then a 150%

load with retries is comparable to a 225% load with no retries.
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Figure 5: Throughput for a Server Augmented with the DTOC Strategy with Clients with One Retry.

2. The useful throughput degrades to a lower level for excess loads. Remem-

ber that the throughput degradation is caused primarily by requests that pass the

DTOC check, but that timeout during their servicing. Requests for large �les play

a major role in this degradation, since the larger-�le requests have a higher probability

of timing out during their servicing than do the smaller �les. The reason for this is

simple- whereas both large and small requests have the same average in-queue wait,

the large requests have a much larger in-service wait and hence timeout more during

this stage. If more large requests timeout during servicing, one would expect that a

smaller percentage of the large requests are successfully processed. With these large
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Figure 6: Average Size of Successfully Completed Requests for a Server Augmented with the DTOC

Strategy with Clients with One Retry.
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requests removed from the mix of successfully-completed requests, the average �lesize

of the successfully-completed requests should fall for excessive loads. This we observed,

as shown in Figure 6. The average �le size of the input mix is 14675 bytes, whereas

the average �le size for successfully-completed requests for loads above 100% is less in

all cases. Another representation of this same e�ect is Figure 7, which displays the dis-

tribution of successfully-completed requests by percentage for the di�erent �le classes.

It shows that an overloaded server indeed discriminates against the larger �les. The

output distribution is skewed in favor of requests from the small-�le classes 0 and 1,

whereas the percentage of successfully-completed requests from the large-�le classes 2

and 3 is much lower than in the original input mix.

The retried-request stream thus e�ectively \pollutes" the distribution of �les that the

server sees with large �les. Since the large �les timeout more often during their process-

ing, it is this large-request pollution that causes the additional throughput degradation

seen in Figure 5 vs. Figure 3.

3. The useful throughput exhibits a recovery for very high loads. Note that the

stream of timed-out requests must compete with the new-request arrivals for openings

in the server's queue. For highly excessive loads, the new requests will quickly �ll any

openings in the queue, and requests that timeout will not be able to re-enter the queue

as retries. A high applied load will thus suppress any e�ects of the request retries. The

server will see a request �lesize distribution unpolluted by any retry stream and will

achieve throughputs closer to the no-retry case. Figure 5 does indeed show performance

results that climb back toward the no-retry levels shown in Figure 3.

Since we have demonstrated that the successfully-processed �le mix is no longer the same

as the input mix, we should caution the reader not to view the %-throughput performance

numbers as a %-utilization. Thus, in an overload situation, an 80% useful throughput rating

does not imply that the server is busy 80% of the time processing successfully-completed

requests. Rather, it implies that the server is processing 80 requests/sec, which is 80% of the

100 requests/sec rate the server can achieve on an unadulterated input �le mix. Note that,

under this de�nition, sustained throughputs greater than 100% are theoretically possible.

Finally, in support of our claims about the source of the server's throughput degradation,

Figure 8 shows the percentage of requests that time out during processing for a server using

the DTOC strategy with 1-retry clients. For a timeout of 5 seconds, the timeout percentage is

signi�cant: 14% of all requests. This shows a potential for future improvements: if the requests

which time out during their processing are aborted as soon as they time out, it might boost the

server performance even further. Earlier, in presenting implementation options for DTOC, we

discussed a more signal-driven approach which would asynchronously notify the server when

a client closed its client-server connection (i.e. timed out). This type of approach is worth

further exploration as a way of recovering perhaps 50% of the server throughput degradation

caused by these in-service client timeouts.
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Figure 7: Class Distribution of Successfully Completed Requests for a Server Augmented with the

DTOC Strategy with Clients with One Retry.
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Figure 8: Percentage of Requests Accepted for Processing but Timed Out during that Processing.

The analysis presented in this section convincingly shows that a web server the using DTOC

strategy achieves signi�cantly higher performance results under excess loads than a web server

using the regular strategy. Moreover, it was shown that a web server which encounters clients

with relatively short timeouts can easily enter a request-timeout livelock state under only

slightly-overloaded conditions. This same problem exists for a server with a longer listen

queue and proportionally longer client timeouts. In addition, it was shown that a server

augmented with the DTOC strategy easily \escapes" this livelock situation and demonstrates

excellent throughput as measured in the number of successfully-completed requests/sec. This

new metric is a crucial one to adopt in order to distinguish truly-useful server work. It allows

one to clearly identify the server livelock state as well as to analyze the overall amount of

wasted server resources.
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Figure 9: \Normal Day" Workload Tra�c Pattern.

4.2 Using the DTOC Strategy for Improving Server Performance under

Variable Load Tra�c Patterns

The newly-proposed DTOC strategy is designed to make a web server more e�cient during

periods of excessive load. We designed two variable tra�c patterns to verify whether the

DTOC strategy consistently improves server performance and adequately adjusts its behavior

depending on tra�c rates.

The �rst tra�c pattern is de�ned by the pattern showed in Figure 9. We call it the \normal

day" workload tra�c pattern. This tra�c pattern speci�es a moderate overload during 33%

of the day, and the rest of the time, it speci�es a load just under the server's capacity. We

conjecture that this type of load is typical in practice: most of the time, the load is manageable,

and only for a few peak periods is it high.
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Figure 10: \Busy Day" Workload Tra�c Pattern.

The second workload is de�ned by the pattern showed in Figure 10. We call it the \busy day"

workload. This tra�c pattern speci�es an overload during 56% of the day, including a heavy

overload interval of 300%. The remainder of the time, as in the �rst tra�c pattern, is spent

with a load just under the server's capacity.

We did not simulate what might be called a \bad day" workload (with consistently high

overload for all intervals) since the results are predictable. We will comment more on this at

the end of this section.

Figure 11 shows the useful server throughput for a \normal day" tra�c pattern, comparing

the case of a server using the regular strategy against one where the server is augmented with

the DTOC strategy. In both cases, the clients perform 1 retry if necessary. As in past graphs,

the throughput is expressed as the rate of successfully-completed requests, normalized to the

server capacity.
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Figure 11: Throughput for a Server using the Regular Strategy versus a Server Augmented with the

DTOC Strategy with 1-Retry Clients and Di�erent Timeout Values for a \Normal Day" Workload.
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Figure 12: Throughput for a Server using the Regular Strategy versus a Server Augmented with the

DTOC Strategy with 1-Retry Clients and Di�erent Timeout Values for a \Busy Day" Workload.
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For a model with a client timeout of 5 seconds, the server, using the regular strategy, soon en-

ters a request-timeout livelock state from which it cannot recover. However, using the DTOC

strategy, the server achieves a throughput of 80%, thus demonstrating DTOC's e�ective pro-

tection against livelock conditions.

If we increase the modeled client timeout to 8 seconds, the server, using the regular strategy,

provides an improved throughput of 33%. This throughput is achieved in spite of the server

periodically entering and recovering from request-timeout livelock. The same server, using

the DTOC strategy, achieves a throughput of 88%, which is 2.7 times the performance of the

regular strategy case.

Even for a model with a client timeout of 10 seconds, the server augmented with the DTOC

strategy still provides a throughput of 93% as compared against a 76% throughput under the

regular strategy. This represents a 22% server performance improvement.

Figure 12 shows the server throughput in successfully-completed requests for a \busy day"

tra�c patterns, comparing a server that employs the regular strategy against one augmented

with the DTOC strategy. For this case, the performance comparison shows an even stronger

bene�t in using the DTOC strategy.

For a model with a client timeout of 5 seconds, the server, using the regular strategy, pre-

dictably enters a request-timeout livelock and can not recover from it. Meanwhile a server,

using the DTOC strategy, achieves a throughput of 78%, once again demonstrating DTOC's

e�ectiveness against livelock conditions.

For a model a with client timeout of 8 seconds, the server, using the regular strategy, pro-

vides a throughput of 18%, whereas the server, using the DTOC strategy, achieves an 85%

throughput. This represents a 4.7 times performance improvement of DTOC against the

regular strategy case.

Finally, for a model with a client timeout of 10 seconds, the server using the DTOC strategy

provides a throughput of 93%, as compared against 62% under the regular strategy. This

represents a 50% server performance improvement.

We have found that graphing the server throughput against the time yields a number of

insights. Figure 13 shows the percentage of successfully completed requests in 10 seconds

intervals for the case of a \normal day" workload with a client timeout of 5 seconds. This

clearly illustrates how a server, using the regular strategy enters a request-timeout livelock

at the 1,200 second mark of the 20,000 second run, and subsequently cannot recover. The

server ends up processing only timed-out requests and, as a result produces no useful work.

This emphasizes the importance of adequate metrics and analysis for measuring a web server's

performance.
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Figure 13: Server Livelock under the Regular Strategy for a \Normal Day" Workload Tra�c Pattern

with 1-Retry Clients with a 5 second Timeout.
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Figure 14: Server Livelock Avoidance with the DTOC Strategy for a \Normal Day" Workload with

1-Retry Clients with a 5 second Timeout.
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Figure 15: Poor Server Performance under the Regular Strategy for a \Busy Day" Workload with

1-Retry Clients with an 8 second Timeout.

Figure 15 shows the server behavior under the regular strategy while it was executing the

\busy day" workload with a client timeout of 8 seconds. It illustrates how the server can

periodically enter a request-timeout livelock, but eventually can recover from it. Overall, this

results in very poor overall server performance: the useful throughput is only 18%, at a time

when the server utilization approaches 100%.
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Figure 16: Server Performance with the DTOC Strategy for a \Busy Day" Workload with 1-Retry

Clients with an 8 second Timeout.

Finally, Figure 16 shows the improved behavior of a server using DTOC strategy: note the

consistently high throughput across all the points of the workload.

From this analysis, we can project the results for what might be called a \bad day" workload

that has a high overload for all intervals. Clearly, loads consistently worse than those described

will only worsen the performance and chances of livelock for a web server that uses the regular

strategy. The DTOC strategy allows the server, even in periods of consistent overload, to avoid

livelock and to signi�cantly improve useful server throughput.
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5 Analytical Model

Analytical models can sometimes be used to corroborate the results of simulation results,

although it is more-often the case that the system simulated is too complex for a closed-form

analytical solution. Luckily, the simplest of our simulations, that of a server with no DTOC

and no client-retry, is within the realm of analytical methods. We now present the supporting

theory for the simulation results of Figure 2 along with some additional insights that this

analysis brings.

5.1 Deriviation of the Throughput formula for a M/M/1/K model

In this section, we propose to derive the equation that de�nes a server's normalized \useful"

throughput Xuseful as a function of the normalized o�ered load a, the system capacity K

and the client timeout Tclient. This is exactly what was simulated in Figure 2 for the case of

K = 1025 and for Tclient values of 5, 8, 9 and 10 seconds. We derive this relationship for a

system that is based on an M=M=K=1 queueing model, that is to say, we assume:

� arriving customers (hereafter called requests) arrive at an average rate of � and with

exponentially-distributed interarrival times;

� requests are serviced at an average rate � with exponentially-distributed service times

having a mean Ws = 1=�;

� the system has a total capacity of K requests (and hence a queue of length K � 1);

� the system has 1 server.

Note that these assumptions depart from our simulated model as follows:

� the simulation model assumes a server capacity of 100 requests/sec, a system capacity

K of 1025 and various speci�c client timeouts, whereas we treat these quantities with

the variable parameters �, K and Tclient here;

� the simulation has a service time distribution based on a SpecWeb-like model, whereas

the analytical model assumes an exponential distribution. More will be said on this

di�erence when we compare the analytical and simulation results.

Note that in Figure 2, both axes have been normalized to (i.e. divided by) the assumed server

capacity of 100 requests/sec. The fact that we treat the server throughput with the general

parameter � in the equations that follow is not of great signi�cance, since when we go to

graph these equations, we too will normalize the throughput and load axes by dividing by �.
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Note, however, that we will not scale the throughput and load by a factor of 100 in order to

create percentages, as was done in the simulation graphs.

Let us now embark on deriving the equation for the server's normalized throughput Xuseful

as a function of the normalized o�ered load a = �Ws = �=� and also the parameters K

and Tclient. We do this by building on the analysis o�ered by Arnold O. Allen in [A90]. We

repeat the following results, taken from Section 5.2.2 of this book, on the M/M/1/K Queueing

System:

On page 270 of [A90], eqation 5.68 gives the steady-state probabilities for �nding n requests

in the system at any random time (as a function of K and a) for n = 0; 1; : : : ;K:

pn =

8><
>:

(1 � a) a
n

1 � aK+1
for a = �

�
6= 1

1
K + 1 for a = �

�
= 1

(1)

Allen also gives the probability that an arriving request that successfully enters the system

�nds n requests already in the system. This is given on page 272 of [A90], equation 5.78 as:

qn =
pn

1� pK

n = 0; 1; : : : ;K � 1: (2)

Finally, Allen derives the cumulative distribution function W [t] for the total wait time of

requests that successfully enter the system. This wait time includes both in-queue and in-

service waiting for a system in the steady state. If w is a random variable describing the

total wait time of a request that enters the system, then equation 5.79 from Allen's book is

presented as:

P [w <= t] =W [t] = 1�
K�1X
n=0

qnQ[n;�t] (3)

with Q[n;�t] given by equation 5.80 as

Q[n;�t] = e
��t

nX
i=0

(�t)i

i!
(4)

We can now state, in its most intuitive form, the equation for Xuseful(a;K; Tclient) that we

seek. We realize that under the most optimistic conditions, the server's useful throughput can

be at most equal to the o�ered load. However, we must factor out those requests that arrive,

only to �nd the server's queue full. In addition, for those requests that successfully enter the

server queue, we must factor out those requests that timeout before their service is complete.

Thus, we have:

Xuseful(a;K; Tclient) = (5)

a � P [request enters the system] � P [request wait time <= Tclient]
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A request can enter the system if it does not �nd K requests already in the system, so that

P [request enters the system] = 1� pK

and as previously presented, for requests that successfully enter the system,

P [request wait time <= Tclient] =W [Tclient]

Now plugging these last 2 results into equation 5 above, we get

Xuseful(a;K; Tclient) = a � (1� pK) �W [Tclient]

Expanding W [Tclient] using equation 3 yields

Xuseful(a;K; Tclient) = a � (1� pK) �
 
1�

K�1X
n=0

qnQ[n;�Tclient]

!

Now plugging in the value for qn from equation 2

Xuseful(a;K; Tclient) = a � (1� pK) �
 
1�

K�1X
n=0

pn

1� pK

Q[n;�Tclient]

!

Which simpli�es to

Xuseful(a;K; Tclient) = a �
 
1� pK �

K�1X
n=0

pnQ[n;�Tclient]

!

Plugging in Allen's result for Q[n;�t] from equation 4,

Xuseful(a;K; Tclient) = a �
"
1� pK �

K�1X
n=0

pne
��T

client

nX
i=0

(�Tclient)
i

i!

#
(6)

Noticing that Tclient is always multiplied by � in the previous equation, we de�ne a new

normalized form of the client timeout that is measured, not in seconds, but in a unit of time

equal to the average service time Ws, that is to say

Tnorm = Tclient=Ws = �Tclient

Adapting equation 6 to this de�nition, we get

Xuseful(a;K; Tnorm) = a �
"
1� pK �

K�1X
n=0

pne
�Tnorm

nX
i=0

T
i

norm

i!

#
(7)

where pn and pK are de�ned by equation 1. Making this last substitution, we get

Xuseful(a;K; Tnorm) = a �
"
1� (1� a)aK

1� a
K+1

�
K�1X
n=0

(1� a)an

1� a
K+1

e
�Tnorm

nX
i=0

T
i

norm

i!

#
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Xuseful(a;K; Tnorm) =
a

1� a
K+1

(1� a
K+1 � (1� a)aK �

K�1X
n=0

(1� a)ane�Tnorm
nX
i=0

T
i
norm

i!
)

Xuseful(a;K; Tnorm) =
a

1� a
K+1

(1� a
K � e

�Tnorm

K�1X
n=0

(1� a)an
nX
i=0

T
i

norm

i!
) (8)

This then is the equation that we seek for Xuseful(a;K; Tnorm). We found though that this

equation, with its 2 nested summations, evaluated quite slowly using Mathematica
1 on a

233MHz Kayak PC. Luckily, some simpli�cations were possible. Because the details are

somewhat lengthly and distract from the thrust of this e�ort, we present them as Appendix

A.1, and merely state the simpli�ed result here:

Xuseful(a;K; Tnorm) =
a

1� a
K+1

"
1� a

K � e
�Tnorm

K�1X
i=0

T
i

norm

i !
(ai � a

K)

#
(9)

The single summation in the above equation can be hidden through the use of the incomplete

gamma function, which, for integer K, takes the form

�(K;T ) = (K � 1)! e�T
K�1X
i=0

T
i

i!

We explore the use of �(K;T ) in Appendix A.1 as well, and merely present the transformed

result here:

Xuseful(a;K; Tnorm) =
a

1� a
K+1

�
1� a

K � e
(a�1)Tnorm �(K; aTnorm)

(K � 1)!
+ a

K
�(K;Tnorm)

(K � 1)!

�

BecauseMathematica has built-in evaluators for the incomplete gamma function as describe in

[W96], this last form proved the most e�cient for getting prompt graphing of our throughput

formula.

5.2 Comparison of Analytical and Simulation Results

We are now in a position to compare the results of our analytical work against the simulated

results of Figure 2. Figure 17 shows a graph of Xuseful(a;K; Tnorm) for a system capacity that

matches our simulations, namely K = 1025, and for Tnorm values of 1000, 1025 and 1050.

Qualitatively, the analytical curves show a strong resemblance to the simulated results of

Figure 2. In both cases, Xuseful(a;K; Tnorm) = a for loads the server can handle (i.e. for

0 <= a <= 1). In addition, for excessive loads, the useful throughput quickly falls to an

asymptotic level less than 1.

1Wolfram Research, Champaign, IL
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Figure 17: Normalized Useful Throughput vs. O�ered Load with K=1025

There are some striking di�erences, however, between the analytical and simulation results.

The asymptotic levels that the useful throughput approaches for a � 1 do not agree. The

case of Tnorm = 1000 corresponds to a timeout of 10 seconds for the simulated server whose

Ws = 0:01 seconds. Whereas the analytical formula predicts a throughput of 0.22 for this

case, the simulated result was around 0.40. Before explaining this discrepancy, let's gain some

additional insight by discussing the analytical result for the case of Tnorm = 1025.

The analytical asymptotic throughput for Tnorm = 1025 is seen to be about 0.5. Since

K = 1025 also, we have K = Tnorm, and a 0.5 asymptotic value matches our intuition as we

shall proceed to explain.

With a � 1, the server's queue will almost always be full (or nearly so). Assume that a

request enters the queue, only to �ll it up completely. This request must wait K service

times before its service is complete. But what if the request's timeout is exactly K service

times (i.e. Tnorm = K)? Then the request will timeout with a probability close to 0.5.

Why? Well, with K large, the sum of K service times is a random variable with a roughly
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Figure 18: Density Function for S, the sum of 1025 exponential service times

normal distribution and with mean KWs and standard deviation
p
K�s (where Ws and �s

are the single-service-time mean and standard deviation). Thus, the mean K-service-time

wait is KWs, or in normalized time units, just K. Since a normal random variable's density

function is symmetric about its mean, our request with Tnorm = K is equally likely to have

a wait shorter or longer than the mean K-service-time wait of K. Thus, it will timeout with

probability � 0.5. Since the server is e�ectively never idle (has a raw throughput of 1.0), we

have for a� 1 and Tnorm = K,

Xuseful(a;K; Tnorm) = raw throughput � P [request timeout] � 1:0 � 0:5 = 0:5

Now that we have more con�dence in the analytical result, why then is there the discrep-

ancy between the simulated and analytically-predicted high-load asymptotic throughput for

Tnorm = 1000? The answer lies with the variance of the service time, �s, as we shall now

show.

The analytical model predicts a throughput of 0.22 for a� 1 for Tnorm = 1000. Based on our

discussion of the Tnorm = 1025 case, we realize that a throughput of 0.22 means that approx-

imately 22% of requests that enter the queue get serviced before they timeout. Said another

way, the total wait for 1025 service times, S, is less than 1000 just 22% of the time. This is

represented graphically in Figure 18 with the shaded region showing P [S <= 1000] � 0:22.

As mentioned before, the graph of Figure 18 approaches a normal curve for large K. The

parameters of this normal are:
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where Ws and �s are the mean and standard deviation of a single service time. We can now

see the importance of the �s=Ws value (the so-called coe�cient of variation) for the service

time. It is this parameter that governs the width of the normal density function for the sum

of K service times, which in turn dictates the asymptotic levels of Xuseful for o�ered loads

a� 1.

This then explains why the theoretical and simulated results are di�erent. For the analytical

M=M=1=K system, the exponentially-distributed service time has a coe�cient of variation

�s=Ws = 1, since �s = Ws = 1=�. However, the simulated workload used a SpecWeb-

like service time distribution. This distribution was analyzed, as detailed in Appendix A.2,

and found to have a coe�cient of variation �s=Ws = 0:037=0:01 = 3:7. To see if these

di�erences explain the discrepancy between the analytical and theoretical results, we can plot

the cumulative distribution function for the sum of 1025 service times for �s=Ws = 1:0 and

�s=Ws = 3:7.

Figure 19 shows this function for a coe�cient of variation = �s=Ws = 1:0 and K = 1025.

The values obtained for Tnorm = 1000; 1025 and 1050 match closely the asymptotic levels of

Figure 17 for those same Tnorm values. These values, namely 0.22, 0.50 and 0.78, are marked

with special points on Figure 19.
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Figure 20: Distribution for S, the sum of 1025 service times with Coe�cient of Variation = 3:7

More importantly, Figure 20, which plots the sum of 1025 service times having a coe�cient of

variation = �s=Ws = 3:7, shows strong correspondence with our simulated results in Figure 2.

In particular, we can read o� the values at the specially-marked points of Tnorm = 800; 900

and 1000. These points, which correspond to the simulated timeouts of 8, 9 and 10 seconds

respectively, show analytically-predicted asymptotic throughputs of .03, .15 and .42. These

match the simulated asymptotic levels of Figure 2 shown on page 12!

Finally, we can express these results in terms of the standard normal distribution function

�() as follows for a� 1:

Xuseful(K;Tnorm) = �

 
Tnorm �Kp
K�s=Ws

!

To summarize then, we have developed a simple formula to express a server's useful throughput

as a function of the normalized o�ered load a, the system capacity K and the normalized client

timeout Tnorm. This formula, when plotted, was shown to agree qualitatively to the simulated

results for the case of no DTOC and no client-retry represented in Figure 2. One discrepancy

involved the asymptotic levels of throughput achieved for o�ered loads a� 1. We have shown

that this discrepancy is explained by the di�erent service times' coe�cient of variation. A

second formula was developed, based on the normal distribution, that accurately predicts the

simulated asymptotic throughput levels.
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6 Conclusion

In this paper, we proposed a method to detect timed-out client requests, the DTOC strategy,

which can be used to signi�cantly improve an overloaded server's performance. In support

of this, we �rst described the problem of anxious and impatient clients that cancel and often

resubmit their requests to servers. We further detailed how these canceled, i.e. timed-out,

requests can cause loss of useful server throughput and, under some circumstances, a patho-

logical system state we term request-timeout livelock. Using simulation models, we demon-

strated the performance improvement of a server using the DTOC strategy and its capability

for livelock avoidance, as compared to a server using a regular strategy. This we showed for a

number of client request timeout values and for normal and busy-day workload scenarios. To

minimize the overhead imposed by the DTOC strategy, we showed how it could be e�ective

even if employed only in the presence of overload.

In addition, we described three possible implementations of the DTOC strategy for servers on

a TCP/IP network. These implementations are based on di�erent approaches for detecting a

closed client-server connection and thereby inferring a timed-out client request.

Furthermore, we have presented some analytical methods to corroborate our simulation �nd-

ings for the simple case of a server without the DTOC strategy and with no-retry clients. This

study also showed the importance of the coe�cient of variation of the single-request service

time distribution for predicting the throughput for excessive loads.

We feel that DTOC is a promising technique for addressing the problems of servers under

heavy load. Another such technique, session based admission control (SBAC) as introduced

in [CP98], can be used in a complementary fashion to DTOC. In fact, DTOC can improve

SBAC performance for workloads with short average session length, where for high tra�c

loads there is a large percentage of retried clients requests, as was shown in [CP98].

To minimize the overhead imposed by the DTOC strategy, we showed how it could be e�ective

even if employed only in the presence of overload. However, many applications of DTOC may

consider employing the strategy at all times, since detailed measurements of some production

servers have shown that up to 25% of all requests are aborted, even during non-overloaded

periods [P98]. Also, the low 0.5% overhead imposed by the DTOC strategy is negligible com-

pared to the 20% to 470% percent performance gains experienced during overloaded periods.

Finally, there is room for future study into variations of the DTOC strategy. We showed that

the useful server throughput is still not 100% under heavy loads for the DTOC implementa-

tion we chose to simulate- useful throughput was still lost to client requests that timed-out

during their response preparation. Variant DTOC strategies that involve interrupt-driven

noti�cation of request timeouts or in-service polling for these timeouts are possibilities for

future investigation.
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A APPENDIX

A.1 Simpli�cation of the Analytical Throughput Equation

The 2 nested summations found in equation 8 from Section 5 made its graphing using Math-

ematica particularly slow. We repeat this equation below and develop a simpler form with 1

fewer summation:

Xuseful(a;K; Tnorm) =
a

1� a
K+1

"
1� a

K � e
�Tnorm

K�1X
n=0

(1� a)an
nX
i=0

T
i

norm

i!

#

Xuseful(a;K; Tnorm) =
a

1� a
K+1

"
1� a

K � (1� a)e�Tnorm
K�1X
n=0

nX
i=0

a
n
T

i

norm

i!

#
(10)

Note that we sum a
n T

i

norm

i! over the combinations of i and n marked with the � below:

i

0 1 2 � � � K � 1

0 �
1 � �

n 2 � � �
... � � � . . .

K � 1 � � � � � � �

The inner summation scans across the rows of the above diagram, whereas the outer summa-

tion advances the scanning from the top row down. However, we can reverse the order of the

scanning, i.e. have the inner summation scan down the columns and have the outer summa-

tion advance the scanning from the left column towards the right. This transformation, when

applied to equation 10, yields:

Xuseful(a;K; Tnorm) =
a

1� a
K+1

"
1� a

K � (1� a)e�Tnorm
K�1X
i=0

K�1X
n=i

a
n
T

i

norm

i!

#

Xuseful(a;K; Tnorm) =
a

1� a
K+1

"
1� a

K � (1� a)e�Tnorm
K�1X
i=0

T
i

norm

i!

K�1X
n=i

a
n

#
(11)

Remembering that
K�1X
n=0

a
n = 1 + a+ a

2 + � � � + a
K�1 =

1� a
K

1� a

Then
K�1X
n=i

a
n = a

i

K�i�1X
n=0

a
n = a

i
1� a

K�i

1� a

=
a
i � a

K

1� a

Substituting this last result back into equation 11, we get

Xuseful(a;K; Tnorm) =
a

1� a
K+1

"
1� a

K � (1� a)e�Tnorm
K�1X
i=0

T
i
norm

i!

a
i � a

K

1� a

#
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Canceling the (1� a) term,

Xuseful(a;K; Tnorm) =
a

1� a
K+1

"
1� a

K � e
�Tnorm

K�1X
i=0

T
i
norm

i!
(ai � a

K)

#
(12)

and behold, we have simpli�ed our throughput equation down to just 1 summation. It is this

form that we transfer back to section 5 as equation 9.

Now before we stop, it should be noted that some mathematics packages, such asMathematica

have an intrinsic and optimized support for numerous well-known functions, including the

incomplete gamma function. It turns out that our throughput equation can be cast in terms

of this function, thus eliminating (perhaps more accurately hiding) the last summation in our

formula and improving further the speed of evaluation.

The upper incomplete gamma function is given as

�(k; T ) =

Z
1

T

t
k�1

e
�t

dt

And if k is an integer K, we have the alternate form

�(K;T ) = (K � 1)! e�T
K�1X
i=0

T
i

i!

which can be restated as
K�1X
i=0

T
i

i!
=

e
T �(K;T )

(K � 1)!
(13)

Repeating equation 12

Xuseful(a;K; Tnorm) =
a

1� a
K+1

"
1� a

K � e
�Tnorm

K�1X
i=0

T
i

norm

i!
(ai � a

K)

#

Xuseful(a;K; Tnorm) =
a

1� a
K+1

"
1� a

K � e
�Tnorm

K�1X
i=0

(aTnorm)
i

i!
+ a

K
e
�Tnorm

K�1X
i=0

T
i

norm

i!

#

Plugging in from equation 13,

Xuseful(a;K; Tnorm) =
a

1� a
K+1

�
1� a

K � e
�Tnorm

e
aTnorm

�(K; aTnorm)

(K � 1)!
+ a

K
�(K;Tnorm)

(K � 1)!

�

Xuseful(a;K; Tnorm) =
a

1� a
K+1

�
1� a

K � e
(a�1)Tnorm �(K; aTnorm)

(K � 1)!
+ a

K
�(K;Tnorm)

(K � 1)!

�
(14)

This then is our last, and in some sense most e�cient, representation of the server throughput

formula. It expresses Xuseful only in terms of a, K, Tnorm and the well-known incomplete

gamma function �(k; T ).

40



P[this class] File Size P[this size] P[this class] File Size P[this size]

Class 0 0.35 100 0.0102 Class 2 0.14 10000 0.0041

200 0.0167 20000 0.0067

300 0.0276 30000 0.0110

400 0.0455 40000 0.0182

500 0.1500 50000 0.0600

600 0.0455 60000 0.0182

700 0.0276 70000 0.0110

800 0.0167 80000 0.0067

900 0.0102 90000 0.0041

Class 1 0.50 1000 0.0145 Class 3 0.01 100000 0.0003

2000 0.0239 200000 0.0005

3000 0.0394 300000 0.0008

4000 0.0650 400000 0.0013

5000 0.2143 500000 0.0043

6000 0.0650 600000 0.0013

7000 0.0394 700000 0.0008

8000 0.0239 800000 0.0005

9000 0.0145 900000 0.0003

Figure 21: Simulated Workload Filesize Distribution

A.2 Details of the Simulated Service-time Distribution

The service time distribution used in the simulated model is similar to the SpecWeb96 �le-size

distribution, and consists of the 4 �le-size classes de�ned in Figure 21.

Note that we are implicitly assuming that the time required for a server to respond with a

�le of a given size is directly proportional to that �le's size. This allows us to talk about

response time in the somewhat unnatural unit of \bytes". Using \bytes", however, does allow

us to better visualize the work that the server is performing and to feel comfortable with the

various classes of responses, their frequency and size.

Within each class of �le, SpecWeb96 de�nes a bell-shaped probability density function about

the mean �le size of each class. We too use a bell-shaped pdf, although not exactly identical

to SpecWeb's. As a result, we have always represented our workload as \SpecWeb-like".

Other parameters of interest for this distribution are:

mean �le size 14675 bytes

std. dev. �le size 54351 bytes

scaled service time 0.0100 secs

scaled std. dev. service time 0.0370 secs

coe�cient of variation 3.7
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