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Abstract. In this paper we discuss various aspects of cryptosystems

based on hyperelliptic curves. In particular we cover the implementation

of the group law on such curves and how to generate suitable curves

for use in cryptography. This paper presents a practical comparison

between the performance of elliptic curve based digital signature schemes

and schemes based on hyperelliptic curves. We conclude that, at present,

hyperelliptic curves o�er no performance advantage over elliptic curves.

Elliptic curve cryptosystems are now being deployed in the real world and

there has been much work in recent years on their implementation. A natural

generalization of such schemes was given by Koblitz [12], who described how

the group law on a Jacobian of a hyperelliptic curve can be used to de�ne a

cryptographic system. Almost all of the standard discrete logarithm based

protocols such as DSA and El Gamal have elliptic and hyperelliptic variants.

This is because such protocols only require the presence of a �nite abelian

group, with a large prime order subgroup, within which the basic group

operation is easy whilst the associated discrete logarithm problem is hard.

We shall not discuss these protocols in this paper since everything that can

be said for elliptic curve based protocols can usually be said for hyperelliptic

curve based protocols. Instead we shall concentrate more on the underlying

group: In particular how one performs the group operation and how one

produces groups of the required type.

The Jacobian of a genus g hyperelliptic curve will have roughly qg points

on it, where q denotes the number of elements in the �eld of de�nition of the

Jacobian. By choosing hyperelliptic curves of genus greater than one we can

achieve the same order of magnitude of the group order with a smaller value

for q when compared with elliptic curve based systems which have g = 1.

This has led some people to suggest that hyperelliptic curves may o�er some

advantages over elliptic curves in some special situations. For example if we

wanted to only perform arithmetic using single words on a 32-bit computer

we could choose g = 5 or 6 to obtain group orders of around 160 to 192 bits.

One has to be a little careful as to how large one makes g, since for large

genus there is a sub-exponential method to solve the discrete logarithm

problem [1]. However this does not appear to a�ect the security of curves

of genus less than 10 over �eld sizes of around 32 bits.

In this paper we give an overview of the group law on a curve of genus g

in arbitrary characteristic. We shall give a more e�cient reduction method
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than the standard method of Cantor [3]. This is an immediate extension of

the method of Tenner reduction from [19]. We shall then describe various

techniques for generating hyperelliptic curves for use in cryptography.

Finally we report on an actual implementation of a hyperelliptic digital

signature algorithm. We will conclude that hyperelliptic systems, with cur-

rent algorithms, are more e�cient in characteristic two but appear to o�er

no practical advantage over elliptic curve systems.

1. Arithmetic

In this section we summarize the details and leave the reader to consult

[12] for a fuller explanation. A hyperelliptic curve, C, of genus g will be

given in the form

C : Y 2 +H(X)Y = F (X)

where F (X) is a monic polynomial of degree 2g+1 andH(X) is a polynomial

of degree at most g. Both H(X) and F (X) have coe�cients in Fq . Such a

curve is non-singular if for no point on C(�Fq ) does there exist a point for

which the two partial derivatives,

2Y +H(X) and H
0(X)Y � F

0(X);

simultaneously vanish. We shall always assume that the curve C is non-

singular.

In odd characteristic �elds we will always assume that H(X) = 0, whilst

in even characteristic �elds we will assume that H(X) = 1, for reasons which

will become clear later. Notice that if H(X) = 1 then in characteristic two

any choice for the polynomial F (X) will give rise to a non-singular curve.

The above representation gives rise to a so called `imaginary' quadratic

function �eld. It is given this name since there are no units of in�nite order

and the arithmetic in the Jacobian closely mirrors the arithmetic one uses

for the class group of an imaginary quadratic number �eld.

We can also de�ne a hyperelliptic curve of genus g to be given by an

equation, like that above but, with degF = 2g + 2. This gives rise to a

`real' quadratic function �eld. It is easy to see that, unlike the number

�eld situation, an imaginary quadratic function �eld can be viewed as a

real quadratic function �eld after making a change of variables. However,

just as in the case of the class group of real quadratic number �elds, the

arithmetic in the Jacobians of real quadratic hyperelliptic curves is more

involved and requires the use of `infrastructure'. The reader should consult

[18] for an explanation of the algorithms required and [19] for a complexity

analysis of the two situations. For the rest of this article we will concentrate

on the imaginary quadratic representation, which is more suited to e�cient

implementations in practice.

Following Cantor and Koblitz, an element of the Jacobian of C will be

given by two polynomials a; b 2 Fq [x] which satisfy

i) deg b < deg a � g.

ii) b is a solution of the equation b2 +Hb� F (mod a).
2



Addition in the Jacobian is accomplished by two procedures: Composition

and Reduction. Given (a1; b1) and (a2; b2) the composition of these two

elements in the group of divisors is given by (a3; b3) using the following

algorithm due to Cantor and Koblitz:

Composition

1. Perform two extended gcd computations to compute

d = gcd(a1; a2; b1 + b2 +H) = s1a1 + s2a2 + s3(b1 + b2 +H).

2. Set a3 = a1a2=d
2 and

3. b3 = (s1a1b2 + s2a2b1 + s3(b1b2 + F ))=d (mod a3).

Note that a3 will have degree at most 2g and hence (a3; b3) will most prob-

ably need to be reduced. We shall return to this later. Notice, however, that

for cryptography the most important composition step is doubling, where

a1 = a2 and b1 = b2. This is because in discete logarithm based systems we

wish to perform a multiplication operation on the Jacobian. Using window

techniques this involves mainly the doubling of elements rather than a gen-

eral composition. Hence it is important that doubling an element can be

accomplished e�ciently.

With our above choice of curves in odd and even characteristic we �nd:

Doubling in odd characteristic �elds. Since we have chosen H(X) = 0

the doubling operation simpli�es to: Put d = gcd(a1; 2b1) = s1a1 + s3(2b1)

then a3 = (a1=d)
2 and b3 = (2s1a1b1 + s3(b

2
1
+ F ))=d.

Doubling in even characteristic �elds. Now since we have H(X) = 1

the doubling operation simpli�es to: Put a3 = a2
1
and b3 = b2

1
+F (mod a3).

This is much simpler than the odd characteristic step and contributes to

much faster times for the verifying of messages using curves over even char-

acteristic �elds, see below for details.

We shall now describe the reduction step, which given the result (a3; b3) of

a composition will return an element, (a; b), of the Jacobian with deg a � g.

The element (a3; b3) represents an element in the group of divisors. Since

we are in an imaginary quadratic situation every divisor class (and so every

element in the Jacobian) can be represented by a unique, so called reduced,

divisor. The reduction step takes the divisor represented by (a3; b3) and

returns the unique reduced divisor (a; b) in the same divisor class as (a3; b3).

As mentioned above we use a variant of Tenner reduction which is more

e�cient than the method given by Cantor and Koblitz.
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Reduction

1. a = (b2
3
+ b3H � F )=a3.

2. (u; b) = quo/rem(�b3 �H; a).

3. While deg a > g

4. a� = a3 + u(b3 � b).

5. a3 = a; a = a�; b3 = b.

6. (u; b) = quo/rem(�b3 �H; a).

This is exactly the same as the standard method except for Step 4. In

this step we have replaced the division a� = (b2 +Hb � F )=a with simpler

operations, on noticing that u in general will have small degree whilst deg a

in Step 4 could be at most 2g � 2. To see that Step 4 is equivalent to the

standard method we notice that u = (�b3 �H � b)=a and so

a
� = a3 + (b3 � b)

�
�b3 �H � b

a

�

= (b2 +Hb� F )=a:

In [6] the extended Euclidean algorithm is analyzed in the context of hy-

perelliptic cryptosystems. As we have already pointed out for even charac-

teristic �elds for the most important operation, point doubling, no extended

Euclidean algorithm is required. Most of the e�ort in performing a sign or

verify operation is in the reduction step. Hence analysing the reduction step

is far more important, luckily this has already been done in [19], where it is

shown that the above reduction step takes

12g2 +O(g)

�eld operations.

2. Curve Generation

As in the case of elliptic curves there are many ways one could theoret-

ically proceed if one wanted to produce curves suitable for use in cryptog-

raphy. In theory the order of jJ(Fq )j can be computed in polynomial time

using methods due to Adleman, Huang and Pila, see [2] and [20]. These

methods are generalizations of the method of Schoof [23] which is used in

the elliptic case. Currently there is no implementation of this method for

genus greater than one, since the algorithm, although easy to understand,

appears very hard to implement.

One of the problems in the hyperelliptic situation is that there is no

known analogue of the improvements of Atkins and Elkies to the Schoof

algorithm. This means that only the `naive' Schoof algorithm is available in

genus greater than one. Such an algorithm appears hopeless as a method,

since the `naive' Schoof algorithm is far too ine�cient even for elliptic curves.
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The fact that it seems unlikely that anyone can compute the order of

J(Fq ) for a general curve of genus 5 or 6 could lead one to propose that one

should not worry. For example, if I do not believe that someone can compute

the order of J(Fq ) then I do not need to worry about many of the attacks on

such systems, since most attacks such as Pohlig-Hellman require knowledge

of the group order. This of course also means that our protocols need to be

changed so that they do not require knowledge of the group order. Although

this is a possible approach, it is to be rejected as it is assumes that someone

will not make a known polynomial time algorithm run e�ciently. Our secu-

rity is therefore not built on the di�culty of some underlying mathematical

problem but on the di�culty of programming a known algorithm e�ciently.

One can compute hyperelliptic curves using an analogue of the CMmethod

for elliptic curves. This has been worked out in detail for the case of g = 2

in [28]. This method uses the class numbers of quartic CM �elds, which

are complex quadratic extensions of real quadratic �elds. One has of course

to insist that the class numbers are small, and hence the curves which are

produced will in some sense be `special'. In the CM method for hyperelliptic

curves multi-variable analogues of the Hilbert polynomial are constructed,

the roots of which modulo p gives the j-invariants of the curve. The curve

is then recovered from its j-invariants.

The problem with this technique (and the reason it only applies in genus

two) is that the j-invariants of a hyperelliptic curve have only been worked

out for genus less than three. The invariants used are the Igusa Invariants

[11] which are linked to the classical 19th Century invariants of quintic and

sextic polynomials. After the demise of classical invariant theory at the end

of the 19th Century the drive to compute invariants of the higher order

quantics, as they were then called, died out. Even today with the advent of

computer algebra systems this seems a daunting task. One way around this

problem, which still uses CM, is to use reductions of hyperelliptic curves

de�ned over Q which have global complex multiplication, see [4]. However,

here one is restricting to an even more special type of hyperelliptic curve

than the general CM method above.

Another technique is to use the theory of the modular curves, X0(N), see

[8] and [15]. Such curves are well studied and much is known about them.

This enables us to compute the orders of the Jacobians of such curves in

a much easier way than other general curves. However, paranoid readers

should beware since they are well understood curves with special properties

they may be susceptible to some new attack which makes use of the fact

that they are modular.

Koblitz, in [13], suggests using curves of the form

v
2 + v = u

n
;
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over some �nite prime �eld Fp . Given such curves he then gives a procedure

to determine the group order by evaluating a Jacobi sum of a certain char-

acter. We refer the reader to Koblitz's book for details. However once again

we are restricting to a very special type of curve which may be susceptible

to some, as yet unknown, attack.

In characteristic two one can use curves de�ned over sub�elds [12] just as

one can do for elliptic curves. For example a simple search found the curves

in Table 1, which all have subgroups of their Jacobians of `large' prime order;

We could also use such a technique to generate curves over Fp , where p is a

small odd prime and look at the Jacobian over Fpn .

Table 1. Curves of the form Y 2 + Y = F (X)

Fq F (X) log2 p

where pj#J(Fq )

F231 X11 +X5 + 1 150

F229 X13 +X11 +X3 +X 157

F229 X13 +X11 +X7 +X + 1 153

F229 X13 +X11 +X7 +X3 + 1 169

F229 X13 +X11 +X9 +X5 + 1 170

F229 X13 +X11 +X9 +X7 +X3 +X + 1 152

F231 X13 +X11 +X7 +X3 +X 162

F231 X13 +X11 +X9 +X + 1 154

F231 X13 +X11 +X9 +X5 158

F231 X13 +X11 +X9 +X7 178

F231 X13 +X11 +X9 +X7 +X3 +X + 1 181

F231 X15 +X 207

F231 X15 +X5 +X3 +X 200

Apart from the, currently unimplemented, method of Schoof, Pila et al

the above methods do not seem very pleasing. It is a good general principle

never to choose a curve with `special structure', and all of the above schemes

use `special' properties of the curves to make the group order computation

easier.

To see why one should avoid special curves one only has to look at the

history of elliptic curve cryptography. In the past various authors proposed

using supersingular or anomalous curves as they o�ered some advantages

over other more general curves. However, both types of curves are now

known to be weak, see [14], [22], [24] and [25]. Hence it is probably worth

adopting the principle of always avoiding special curves of any shape or form.

In the current authors opinion this is the major open problem with using

hyperelliptic curves for cryptographic purposes: How to choose a suitable

curve e�ciently.
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3. The discrete logarithm problem in hyperelliptic Jacobians

The security of hyperelliptic cryptosystems is based upon the di�culty

of solving the discrete logarithm problem in the Jacobian of the curve. We

summarize the main characteristics of the possible attacks on the hyper-

elliptic discrete logarithm problem below. The reader should note that in

all but one case they closely mirror analogues for the elliptic curve discrete

logarithm problem.

Apart from the generic discrete logarithm algorithms such as the baby-

step / giant-step and the rho/kangaroo method there are three known meth-

ods which are speci�c to hyperelliptic curves. Two of these give rise to two

weak classes of hyperelliptic curve cryptosystems:

1. Curves of order n over Fq such that ql � 1 (mod n) for some small

value of n. This is due to a generalization of the method of Menezes

et al [14] for supersingular elliptic curves due to Frey and R�uck [9].

2. Anomalous curves over Fp and in general curves which have a large

subgroup of order p in a �eld of characteristic p. This attack uses

a generalization due to R�uck [21] of the anomalous curve attack for

elliptic curves due to Semaev, Satoh, Araki and Smart, see [22], [24]

and [25].

However, such cases are easy to check for and only eliminate a small fraction

of all possible curves.

For hyperelliptic curves the most interesting case, from a theoretical

standpoint, is when the genus is large in comparison to the size of the �eld of

de�nition of the Jacobian. In this case there are conjectured subexponential

methods. The �rst of these was due to Adleman, De Marrais and Huang

which is based on the number �eld sieve factoring method.

Paulus [17] and Flassenberg and Paulus [7] have implemented such a

method for solving discrete logarithms in Jacobians of hyperelliptic curves.

Flassenberg and Paulus did not, however, use the method of Adleman, De

Marrais and Huang directly. Instead they made use of the fact that our

hyperelliptic curves correspond to real quadratic function �eld extensions.

Then using the analogy between quadratic function �elds and quadratic

number �elds they adapted the class group method of Hafner and McCurley

[10] (see also [5]). This combined, with a sieving operation, provided a

working method which could be applied to hyperelliptic curves of small

genus. It should be pointed out that although Flassenberg and Paulus did

not actually solve discrete logarithm problems their methods are such that

they can be easily extended so that they do.

Flassenberg and Paulus compared their algorithm to the baby-step /

giant-step approach. Over �nite prime �elds, Fp , their implementation of

the Hafner-McCurley method beat the baby-step / giant-step method, as

soon as 3g > log p. However, this is only given a very small sample size.

But it would appear, for theoretical reasons as well, to be a good rule of
7



thumb to avoid curves for which 2g > log q. Hence if q � F231 then we

should avoid curves whose genus is larger than eleven.

4. Implementation

We implemented the group law in the Jacobian for curves of arbitrary

genus over F2n and Fp , where p is a prime. We decided to choose values of

p and n such that p and 2n are less than 232. This choice was to make sure

that our basic arithmetic could all be �tted into single words on our com-

puter. Such curves and �elds have attracted some interest in the community

in recent years since they may o�er some implementation adavantages. In

even characteristic we used a trinomial basis while in odd characteristic we

used a small inlined machine code subroutine to perform the modular multi-

plication. Field inversion in both cases was carried out using a modi�cation

of the binary method.

The general multiplication algorithm on the Jacobian for curves de�ned

over odd characteristic �elds ended up being around twice as slow as that for

even characteristic �elds, of an equivalent size, in genus two. In genus �ve

the odd characteristic �elds were nearly three times slower. This fact led us

to only implement a full digital signature scheme in characteristic two.

For the signing operation the multiplication performed is on the �xed

group generator. Hence this can be e�ciently accomplished using a precom-

puted table of powers of the generator. The veri�cation step requires two

multiplications, one of the generator and one of a general point. Hence for

veri�cation we cannot use precomputed tables and the di�culty of doubling

an element will dominate the computation.

Our timings, in milliseconds, for a hyperelliptic variant of the DSAmethod

(HCDSA) are given in Table 2. These timings were obtained on a Pentium

II 266MHz using the Visual C++ compiler. We also give an estimate of the

timings for an elliptic curve (ECDSA) systems with approximately the same

group order.

Table 2. HCDSA and ECDSA Timings

Curve Field Sign Verify

HCDSA g = 5 F231 28 93

HCDSA g = 6 F231 29 116

HCDSA g = 7 F231 49 195

ECDSA F2161 10 35

ECDSA Fp 7 27

So we see that even though the �nite �eld elements �t into a single word

the extra cost of the polynomial arithmetic needed for operations in the

Jacobian make the time needed to perform the complete set of hyperelliptic

curve operations around three times slower.
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Of course further work could result in signi�cant speed ups for hyperel-

liptic systems. For example at present there appears to be no notion akin to

the projective representation in elliptic curves. Another possible avenue for

improvement is to use Frobenius expansions. Not as much work has been

carried out in the hyperelliptic case to the study of Frobenius expansions

compared to the elliptic curve case. These are useful for curves de�ned

over small sub�elds, such as those used above. The only cases having been

considered in the hyperelliptic case are in [12]. However, for elliptic curves

Frobenius expansions techniques can be made very fast in all characteristics,

see [16], [26] and [27].
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