
Quality-of-Service Specification
in Distributed Object Systems

Svend Frølund, Jari Koistinen
Software Technology Laboratory
HPL-98-159
September, 1998

E-mail: [frolund,jari]@hpl.hp.com

quality-of-service
specification,
distributed object
systems,
software design,
quality-of-service-
enabled systems

Traditional object-oriented design methods deal with the functional aspects
of systems, but they do not address quality of service (QoS) aspects, such as
reliability, availability, performance, security, and timing. However,
deciding which QoS properties should be provided by individual system
components is an important part of the design process. Different decisions
are likely to result in different component implementations and system
structures. Thus, decisions about component-level QoS should commonly be
made at design time, before the implementation is begun. Since these
decisions are an important part of the design process, they should be
captured as part of the design. We propose a general Quality-of-Service
specification language, which we call QML. In this paper we show how QML
can be used to capture QoS properties as part of designs. In addition, we
extend UML, the de-facto standard object-oriented modeling language, to
support the concepts of QML.

QML is designed to integrate with object-oriented features, such as
interfaces, classes, and inheritance. In particular, it allows specification of
QoS properties through refinement of existing QoS specifications. Although
we exemplify the use of QML to specify QoS properties within the categories
of reliability and performance, QML can be used for specification within any
QoS category— QoS categories are user-defined types in QML.

Sometimes, QoS characteristics and requirements change dynamically due
to changing user preferences, or changes in the environment. For such
situations static specification is insufficient. To allow for dynamic systems
that change and evolve over time, we provide a QoS specification run-time
representation. This representation enables systems to create, manipulate,
and exchange QoS information, and thereby negotiate and adapt to changing
QoS requirements and conditions.

To be published in Distributed System Engineering Journal, December, 1998, Vol. 5, Issue 4
 Copyright Hewlett-Packard Company 1998

Quality-of-Service Speci�cation in Distributed Object Systems 2

1. Introduction

1.1. Quality-of-Service in Software Design

In software engineering|like any engineering discipline|design is the activity that
allows engineers to invent a solution to a problem. The input to the design activity
consists of various requirements and constraints. The result of a design activity is a
solution in which all major architectural and technical problems have been addressed.
Design is an important activity since it allows engineers to invent solutions stepwise
and in an organized manner. It makes engineers consider solutions and trade various
system functions against each other.

To be useful, computer systems must deliver a certain quality of service (QoS)
to its users. By QoS, we refer to non-functional properties such as performance,
reliability, availability, and security. Although the delivered QoS is an essential
aspect of a computer system, traditional design methods, such as [5, 22, 4, 12, 7],
do not incorporate QoS considerations into the design process. We strongly believe
that, in order to build systems that deliver their intended QoS, it is essential to
systematically take QoS into account at design time, and not as an afterthought
during implementation.

TradingStation

TradingServiceI

RateServiceI
RateService

TradingService

Figure 1. Class diagram for the currency trading system

We use a simple example to illustrate the need for design-time QoS considerations.
Consider the currency trading system in Figure 1. Currency traders interact with the
trading station, which provides a user interface. To provide its functionality, the
trading station uses a rate service and a trading service. The rate service

provides rates, interests, and other information important to foreign exchange trading.
The trading service provides the mechanism for making trades in a secure way. An
inaccessible currency trading system might incur signi�cant �nancial loss, therefore it
is essential that the system is highly available.

It is important, at design time, to decide the QoS properties of individual system
components. For example, we need to decide the availability properties of the rate

service. We can decide that the rate service should be highly available so that the
trading station can rely exclusively on it for rate information. Alternatively, we can
decide that the rate service need not be highly available. If the rate service is
not highly available, the trading station cannot rely exclusively on it, but must be
prepared to continue operation if the rate service fails. To continue operation, the
trading station could connect to an external rate service. As the example shows,
di�erent availability properties for the rate service can result in di�erent system
architectures. It is important to decide on particular QoS properties, and thereby
chose a speci�c architecture, at design time.

Quality-of-Service Speci�cation in Distributed Object Systems 3

interface RateServiceI f
Rates latest(in Currency c1,in Currency c2) raises (InvalidC);

Forecast analysis(in Currency c) raises (Failed);

g;

Figure 2. The RateServiceI interface

Besides the system architecture, the choice of QoS properties for individual
components also a�ects the implementation of components. For example, the rate

service can be implemented as a single process or as a process pair, where the
process-pair implementation provides higher availability. Di�erent QoS properties
are likely to require di�erent implementations. Moreover, the QoS properties of a
component may a�ect the implementation of its clients. For example, with a single-
process implementation, the trading station may have to explicitly detect failures
and restart the rate service, whereas with a process-pair implementation, failures
may be completely masked for the trading station.

1.2. Quality-of-Service Speci�cation

In the previous section we argued that QoS properties of individual components re
ect
important design decisions, and that we need describe these QoS properties as part
of the design process. To capture component-level QoS properties, we introduce a
language called QML (QoS Modeling Language).

Consider the CORBA IDL [17] interface de�nition for the rate service in
Figure 2. A rate service provides one operation for retrieving the latest exchange
rates with respect to two currencies. The other operation performs an analysis and
returns a forecast for the speci�ed currency. The interface de�nition speci�es the
syntactic signature for a service but does not specify any semantics or non-functional
aspects. In contrast, we concern ourselves with how to specify the required or provided
QoS for servers implementing this interface.

QML has three main abstraction mechanisms for QoS speci�cation: contract

type, contract , and pro�le. QML allows us to de�ne contract types that represent
speci�c QoS aspects, such as performance or reliability. A contract type de�nes the
dimensions that can be used to characterize a particular QoS aspect. A dimension
has a domain of values that may be ordered. There are three kinds of domains: set
domains, enumerated domains, and numeric domains. A contract is an instance of
a contract type and represents a particular QoS speci�cation. Finally, QML pro�les
associate contracts with interfaces, operations, operation arguments, and operation
results.

The QML de�nitions in Figure 3 include two contract types Reliability and
Performance. The reliability contract type de�nes three dimensions. The �rst one
represents the number of failures per year. The keyword \decreasing" indicates that a
smaller number of failures is better than a larger one. Time-to-repair (TTR) represents
the time it takes to repair a service that has failed. Again, smaller values are better
than larger ones. Finally, availability represents the probability that a service is
available. In this case, larger values represent stronger constraints while smaller values
represent lower probabilities and are therefore weaker.

We also de�ne a contract named systemReliabilty of type Reliability. The

Quality-of-Service Speci�cation in Distributed Object Systems 4

type Reliability = contract f
numberOfFailures: decreasing numeric no/year;

TTR: decreasing numeric sec;

availability: increasing numeric;

g;

type Performance = contract f
delay: decreasing numeric msec;

throughput: increasing numeric mb/sec;

g;

systemReliability = Reliability contract f
numberOfFailures < 10 no/year;

TTR f
percentile 100 < 2000;

mean < 500;

variance < 0.3

g;
availability > 0.8;

g;

rateServerProfile for RateServiceI = pro�le f
require systemReliability;

from latest require Performance contract f
delay f
percentile 50 < 10 msec;

percentile 80 < 20 msec;

percentile 100 < 40 msec;

mean < 15 msec

g;
g;

from analysis require Performance contract f
delay < 4000 msec

g;
g;

Figure 3. Contracts and Pro�le for RateServiceI

contract speci�es constraints that can be associated with, for example, an operation.
Since the contract is named it can be used in more than one pro�le. In this case, the
contract speci�es an upper bound on the allowed number of failures. It also speci�es
an upper bound, a mean, and a variance for TTR. Finally, it states that availability
must always be greater than 0:8.

Next we introduce a pro�le called rateServerProfile that associates contracts
with operations in the RateServiceI interface. The �rst requirement clause states
that the server should satisfy the previously de�ned systemReliability contract.
Since this requirement is not related to any particular operation, it is considered a
default requirement and holds for every operation. Contracts for individual operations
are allowed only to strengthen (re�ne) the default contract. In this pro�le there is no

Quality-of-Service Speci�cation in Distributed Object Systems 5

default performance contract; instead we associate individual performance contracts
with the two operations of the RateServiceI interface. For latest we specify in
detail the distribution of delays in percentiles, as well as a upper bound on the mean
delay. For analysis we specify only an upper bound and can therefore use a slightly
simpler syntactic construction for the expression. Since throughput is omitted for both
operations, there are no requirements or guarantees with respect to this dimension.

We have now e�ectively speci�ed reliability and performance requirements on
any implementation of the rateServiceI interface. The speci�cation is syntactically
separate from the interface de�nition, allowing di�erent rateServiceI servers to have
di�erent QoS characteristics.

QoS speci�cations can be used in many di�erent situations. They can be used
during the design of a system to understand the QoS requirements for individual
components that enable the system as a whole to meet its QoS goals. Such design-
time speci�cation is the focus of this paper. QoS speci�cations can also be used
to dynamically negotiate QoS agreements between clients and servers in distributed
systems.

In negotiation it is essential that we can match o�ered and required QoS
characteristics. As an example, satisfying the constraint \delay < 10 msec" implies
that we also satisfy \delay < 20 msec." We want to enable automatic checking of such
relations between any two QoS speci�cations. We call this procedure conformance

checking , and it is supported by QML.
QML allows designers to specify QoS properties independently of how these

properties can be implemented. For example, QML enables designers to specify
a certain level of availability without reference to a particular high-availability
mechanism such as primary-backup or active replication.

QML supports the speci�cation of QoS properties in an object-oriented manner;
it provides abstraction mechanisms that integrate with the usual object-oriented
abstraction mechanisms such as classes, interfaces, and inheritance. Although QML
is not tied to any particular design notation, we show how to integrate QML with
UML [5], and we provide a graphical syntax for component-level QoS speci�cations.

QML is a general-purpose QoS speci�cation language; it is not tied to any
particular domain, such as real-time or multi-media systems, or to any particular
QoS category , such as reliability or performance.

1.3. Runtime Usage of QoS Speci�cations

Static QoS speci�cations are valuable, but have their limitations. they do not allow
objects of a system to be aware of the QoS they require or provide. In contrast, an
object that is QoS-aware is able to communicate and manipulate its QoS information.
It is also able to compare its QoS needs with what is provided by other objects.

To support QoS awareness, our goal is to allow the usage of QoS speci�cations
as �rst-class runtime entities. To facilitate e�cient description of QoS speci�cations,
such runtime entities should be based on the same concepts as QML. We have designed
a QML-based runtime QoS fabric, which we call QRR (QoS Runtime Representation).

QRR allows dynamic creation, manipulation, communication and comparison
of QoS speci�cations. Since QRR has the same concepts as QML, we can provide
e�cient translations between the two representations. Moreover, the precise de�nition
of QML's semantics carries over to QRR.

QRR enables the construction of QoS-aware systems that can select services

Quality-of-Service Speci�cation in Distributed Object Systems 6

dynamically based on their QoS capabilities. It also allows objects to provide di�erent
levels of QoS based on current conditions, and communicate their current level of QoS
to other objects.

We organize the rest of this paper in the following way. In Section 2, we
introduce our terminology for distributed object systems. We present the dimensions
of reliability and performance that we use in Section 3. We describe QML in Section 4,
and we explain its integration into UML in Section 5. We use QML and the UML
extensions to specify the QoS properties of a computer-based telephony system in
Section 6. In Section 7 we describe a runtime representation for QoS speci�cation
information. The topic of Section 8 is related work, and Section 9 is a discussion of
our approach. Finally, in Section 10, we draw our conclusions.

2. Our Terminology for Object-Oriented Systems

We assume that a system consists of a number of services . A service has a number
of clients that rely on the service to get their work done. A client may itself provide
service to other clients.

A service has a service speci�cation and an implementation. A service
speci�cation describes what a service provides; a service implementation consists of
a collection of software and hardware objects that collectively provide the speci�ed
service. For example, a name service maintains associations between names and
objects. A name service can be replicated, that is, it can be implemented by a
number of objects that each contain all the associations. It is important to notice
that we consider a replicated name service as one logical entity even though it may
be implemented by a collection of distributed objects.

A client uses a service through a service reference, or simply a reference. A
reference is a handle that a client can use to issue service requests. A reference
provides a client with a single access point, even to services that are implemented by
multiple objects.

Traditionally, a service speci�cation is a functional interface that lists the
operations and attributes that clients can access; we extend this traditional notion of
a service speci�cation to also include a de�nition of the QoS provided by the service.
The same service speci�cation can be realized by multiple implementations, and the
same collection of objects can implement multiple service speci�cations.

3. Selected Dimensions

To specify QoS properties in QML, we need a way to formally quantify the various
aspects of QoS. A QoS category denotes a speci�c non-functional characteristic of
systems that we are interested in specifying. Reliability , security , and performance

are examples of such categories. Each category consists of one or more dimensions that
represent a metric for one aspect of the category. Throughput would be a dimension
of the performance QoS category. We represent QoS categories and dimensions as
user-de�ned types in QML.

To meaningfully characterize services with QoS categories we need valid
dimensions. We are particularly interested in the dimensions that characterize services
without exposing internal design and implementation details. Such dimensions enable
the speci�cation of QoS properties that are relevant and understandable for, in
principle, any service regardless of implementation technology.

Quality-of-Service Speci�cation in Distributed Object Systems 7

We describe a set of dimensions for reliability and performance. In [13] we have
reviewed a variety of literature and systems on reliability including work by Gray
et al. [11], Cristian [8], Reibman [19], Birman, [3], Ma�eis [16], Littlewood [15], and
others. As a result we propose the dimensions in Figure 4 for characterizing the
reliability of distributed object systems.

Name Type

TTR Time

TTF Time

Availability Probability

Continuous availability Probability

Failure masking set ffailure, omission, response, value, state, timing, late, earlyg

Server failure enum fhalt, initialState, rollBackg

Operation semantics enum fexactlyOnce, atLeastOnce, atMostOnceg

Rebinding policy enum frebind, noRebindg

Number of failures Unsigned Integer

Data policy enum fvalid, notValidg

Figure 4. Reliability dimensions

We use the measurable quantities of time to failure (TTF) and time to repair (TTR).
Availability is the probability that a service is available when a client attempts to
use it. Assume for example that service is down totally one week a year, then the
availability would be 51/52, which is approximately 0.98. Continuous availability

assesses the probability with which a client can access a service an in�nite number
of times during a particular time period. The service is expected not to fail and to
retain all state information during this time period. We could for example require
that a particular client can use a service for a 60 minute period without failure with
a probability of 0.999. Continuous availability is di�erent from availability in
that it requires subsequent use of a service to succeed but only for a limited time
period.

The failure masking dimension is used to describe what kind of failures a server
may expose to its clients. A client must be able to detect and handle any kind of
exposed failure. The above table lists the set of all possible failures that can be
exposed by services in general. The QoS speci�cation for a particular service will list
the subset of failures exposed by that service.

We base our categorization of failure types|shown in Figure 5|on the work
by Cristian [8]. If a service exposes omission failures, clients must be prepared to
handle a situation where the service simply omits to respond to requests. If a service
exposes response failures, it might respond with a faulty return value or an incorrect
state transition. Finally, if the service exposes timing failures, it may respond in an
untimely manner. Timing failures have two subtypes: late and early timing errors.
Services can have any combination of failure masking characteristics.

Operation semantics describe how requests are handled in the case of a failure.
We can specify that issued requests are executed exactlyOnce, atLeastOnce, or
atMostOnce.

Server failure describes the way in which a service can fail. That is, whether it
will halt inde�nitely, restart in a well de�ned initialState, or restart rolledBack
to a previous check point.

Quality-of-Service Speci�cation in Distributed Object Systems 8

failure

reponse

value state

earlylate

timingomission

Figure 5. Failure type hierarchy

The number of failures gives a likely upper bound for the number of times the
service will fail during a speci�c time period.

When a service fails the client needs to know whether it can use the existing
reference or whether it needs to rebind to the service after the service has recovered.
The rebinding policy is used to specify this aspect of reliability.

Finally, we propose that the client also needs to know if data returned by the
service still is valid after the service has failed and been restarted. To specify this we
need to associate data policy with entities such as return values and out arguments.

For the purpose of this paper we will propose a minimal set of dimensions
for characterizing performance. We are only including throughput and latency.
Throughput is the transfer rate for information, and can, for example, be speci�ed
as megabytes per second. Latency measures the time between the point that an
invocation was issued and the time at which the response was received by the client.

Dimensions such as those presented here constitute the vocabulary for QoS
speci�cation languages. We use the dimensions to describe the example in section 6.

4. QML: A Language to Specify QoS Properties

We describe the main design considerations for QML in Section 4.1. We already
introduced the fundamental concepts of QML in section 1. Sections 4.2{4.8 describe
the syntax and semantics of QML in more detail. For the full description of QML we
refer to the language de�nition in [9].

4.1. Basic Requirements

The main design consideration for QML is to support QoS speci�cation in an object-
oriented context. We want QML to integrate seamlessly with existing object-oriented
concepts. This overall goal results in the following speci�c design requirements for
QML:

� QoS speci�cations should be syntactically separate from other parts of service
speci�cations, such as interface de�nitions. This separation allows us to specify
di�erent QoS properties for di�erent implementations of the same interface.

� It should be possible to specify both the QoS properties that clients require and
the QoS properties that services provide. Moreover, these two aspects should be
speci�ed separately so that a client-server relationship has two QoS speci�cations:

Quality-of-Service Speci�cation in Distributed Object Systems 9

a speci�cation that captures the client's requirements and a speci�cation that
captures the service's provisioning. This separation allow us to specify the QoS
characteristics of a component, the QoS properties that it provides and requires,
without specifying the interconnection of components. The separation is essential
if we want to specify the QoS characteristics of components that are reused in
many di�erent contexts.

� There should be a way to determine whether the QoS speci�cation for a service
satis�es the QoS requirement of a client. This requirement is a consequence of
the separate speci�cation of the QoS properties that clients require and the QoS
properties that services provide.

� QML should support re�nement of QoS speci�cations. In distributed object
systems, interface de�nitions are typically subject to inheritance. Since
inheritance allows an interface to be de�ned as a re�nement of another interface,
and since we associate QoS speci�cations with interfaces, we need to support
re�nement of QoS speci�cations.

� It should be possible to specify QoS properties at a �ne-grained level. As
an example, performance characteristics are commonly speci�ed for individual
operations. As another example, the data policy dimension described in Section 3
is applicable to arguments and return values of operations. QML must allow QoS
speci�cations for interfaces, operations, attributes, operation parameters, and
operation results.

Other aspects such as negotiation and utility can be dealt with as mechanisms
using QML or possibly be part of future extensions of QML. This paper focuses on
the requirements listed above.

We have already brie
y introduced the fundamental concepts of QML: contract
type, contract , pro�le. The following sections will provide a more detailed description
of QML.

4.2. Contracts and Contract Types

A contract type contains a dimension type for each of its dimensions. We use three
di�erent dimension types: set, enumeration, and numeric. Figure 6 gives an abstract
syntax for contract and dimension types.

Contracts are instances of contract types. A contract type de�nes the structure
of its instances. In general, a contract contains a list of constraints. Each constraint
is associated with a dimension. For example, if we have a dimension \latency" in a
contract type, a contract instance may contain the constraint \latency < 10." Figure 7
gives an abstract syntax for contracts and constraints.

A contract may specify constraints for all or a subset of the dimensions in its
contract type. Omission of a speci�cation for a particular dimension indicates that
the contract is trivially satis�ed along that dimension.

In general, a constraint consists of a name, an operator, and a value. The name
is typically the name of a dimension, but, as we describe in Section 4.3, the name
can also be the name of a dimension aspect. The permissible operators and values
depend on the dimension type. A dimension type speci�es a domain of values. These
values can be used in constraints for that dimension. The domain may be ordered.
For example, a numeric domain comes with a built-in ordering (\<") that corresponds
to the usual ordering on numbers. Set and enumeration domains do not come with

Quality-of-Service Speci�cation in Distributed Object Systems 10

conType ::= contract fdimName1 : dimType
1
; : : : ;

dimNamek : dimType
k
; g

dimName ::= n

dimType ::= dimSort

j dimSort unit

dimSort ::= enum fn1 ; : : : ; nkg
j relSem enum fn1 ; : : : ; nkg with order

j set fn1 ; : : : ; nkg
j relSem set fn1 ; : : : ; nkg
j relSem set fn1 ; : : : ; nkg with order

j relSem numeric

order ::= order fni < nj ; : : : ; nk < nmg
unit ::= unit=unit j % j msec j : : :
relSem ::= decreasing j increasing

Figure 6. Abstract syntax for contract types

contract ::= contract fconstraint 1 ; : : : ;
constraint k; g

constraint ::= dimName constraintOp dimValue

j dimName faspect
1
; : : : ; aspect

n
; g

dimValue ::= literal unit

j literal

literal ::= n

j fn1 ; : : : ; nkg
j number

aspect ::= percentile percentNum constraintOp

dimValue

j mean constraintOp dimValue

j variance constraintOp dimValue

j frequency freqRange constraintOp

number%
freqRange ::= dimValue

j lRangeLimit dimValue ; dimValue

rRangeLimit

lRangeLimit ::= (j [
rRangeLimit ::=) j]
constraintOp ::= == j >= j <= j < j >

percentNum ::= 0 j 1 j : : : j 99 j 100
dimName ::= de�ned in Figure 6

unit ::= de�ned in Figure 6

Figure 7. Abstract syntax for contracts

a built-in ordering; for those types of domains we have to describe a user-de�ned
ordering of the domain elements. The domain ordering determines which operators
can be used in constraints for that domain. For example, we cannot use inequality
operators (\<," \>," \<=," \>=") in conjunction with an unordered domain.

The domain for a set dimension contains elements that are sets of name literals.

Quality-of-Service Speci�cation in Distributed Object Systems 11

type T = contract f // A contract type expression

s1: decreasing set f e1, e2, e3, e4 g with order fe2<e1, e1<e3, e3<e4g;
e1: increasing enum f a1, a2, a3 g with order fa2<a1, a3<a2g;
n1: increasing numeric mb / sec;

g;

T contract f // A contract expression of type T

s1 <= f e1, e2 g;
e1 < a2;

n1 < 23;

g;

Figure 8. Example contract type and contract expressions

We specify a set domain using the keyword set, as in \set fn1; : : : ; nkg." This
de�nes a set domain where the domain elements are subsets of the set \fn1; : : : ; nkg."
The constraints over a set dimension will then be constraints with set values, as in
\failures == fresponse; omissiong."

The domain for an enumeration dimension contains elements that are name
literals. We specify an enumeration domain using the keyword enum. For example,
we could de�ne an enumeration domain as follows: \enum fn1; : : : ; nkg." Here, the
domain will contain the name literals \n1; : : : ; nk," and we can specify constraints as
\dataPolicy== valid."

The domain of a numeric dimension contains elements that are real numbers.
Constraints for a numeric dimension are written as \latency< 10."

Elements of numeric dimensions are always ordered. We can specify a user-de�ned
ordering for set and enumerated dimensions in the following way: \order fvalid <

invalidg." When dimensions are ordered we need to specify whether larger or smaller
values are considered stronger. As an example consider the dimension of availability. A
larger numeric value for availability is a stronger that a smaller, we say that availability
is an \increasing" dimension. Other dimensions, such as delay, are \decreasing" since
smaller values are consider as stronger guarantees. Consequently, QML requires that
we de�ne ordered dimensions as either decreasing or increasing. For the data validity
enum decreasing semantics seems most intuitive, since valid also satis�es invalid.

The example in Figure 8 gives an example of a contract type expression followed
by a contract expression. Note that the contract expression is explicitly typed with
a contract type name, this explicit typing enables the QML compiler to determine a
unique contract type for any contract expression. So far we have only covered the
syntax for contract values and contract types. In Section 4.4, we describe how to
name contract values and contract types, and how to use those names in contract
expressions.

4.3. Aspects

In addition to simple constraints QML supports more complex characterizations that
are called aspects . An aspect is a statistical characterization; QML currently includes
four generally applicable aspects: percentile, mean, variance, and frequency . Aspects
are used for characterizations of measured values over some time period.

Quality-of-Service Speci�cation in Distributed Object Systems 12

contractTypeName contract f
s1 f percentile 20 < f e1, e2 gg;
e1 f

frequency a1 <= 10 %;

frequency a2 >= 80 %;

g;
n1 f

percentile 10 < 20;

percentile 50 < 45;

percentile 90 < 85;

percentile 100 <= 120;

mean >= 60;

variance < 0.6;

g;
g;

Figure 9. Example contract expression

The percentile aspect de�nes an upper or lower value for a percentile of the
measured entities. The statement percentile P denotes the strongest P percent of the
measurements or occurrences that have been observed. The aspect \percentile 80 <
6" states that the 80th percentile of measurements for the dimensions must be less
than 6. We allow a constraint for a dimension to contain more than one percentile
aspect, as long as the same percentile P does not occur more than once.

QML also allows the speci�cation of frequency constraints for individual values
which is useful with enumerated types, and for ranges, which is useful with numeric
dimensions. Rather than specifying speci�c numbers for the frequency, QML allows
us to specify the relative percentage with which values in a certain range occur. The
constraint \frequency V > 20%" means that in more that 20% of the occurrences we
should have the value V . The literal V can be a single value or if the dimension has an
ordering, and only then, it may be a range. The constraint \frequency [1; 3) > 35%"
means that we expect 35% of the actual occurrences to be larger than 1 and less than
or equal to 3.

Figure 9 shows some examples of aspects in contract expressions. The contract
expression is preceded by the name of its corresponding contract type. For s1 we
de�ne one constraint for the 20th percentile. The meaning of this is that the strongest
20% of the value must be less than the speci�ed set value.

For e1 we de�ne the frequencies that we expect for various values. For the value
a1 we expect a frequency of less than or equal to 10%. For a2 we expect a frequency
greater than or equal to 80%, and so forth.

The constraint on n1 de�nes bounds for values in di�erent percentiles over the
measurements of n1. In addition, we de�ne an upper bound for the mean and the
variance.

4.4. De�nition of Contracts and Contract Types

The de�nition of a contract type binds a name to a contract type; the de�nition of a
contract binds a name to the value of a contract expression. Figure 10 illustrates the
abstract syntax to de�ne contracts and contract types. In the astract syntax, we use

Quality-of-Service Speci�cation in Distributed Object Systems 13

decl ::= conTypeDecl j conDecl
conTypeDecl ::= type y = conType

conDecl ::= xc = conExp

conExp ::= y contract

j xc re�ned by

fconstraint1 ; : : : ; constraint k ; g
conType ::= de�ned in Figure 6

contract ::= de�ned in Figure 7

constraint ::= de�ned in Figure 7

Figure 10. Abstract syntax for de�nition of contracts and contract types

type Reliability = contract f
failureMasking: decreasing set fomission, lostResponse, noExecution,

response, responseValue, stateTransitiong;
serverFailure: enum fhalt, initialState, rolledBackg;
operationSemantics: decreasing enum fatLeastOnce, atMostOnce, onceg with

order fonce < atLeastOnce, once < atMostOnceg;
rebindingPolicy: decreasing enum frebind, noRebindg with

order fnoRebind < rebindg;
dataPolicy: decreasing enum fvalid, invalidg with

order fvalid < invalidg;
numOfFailure: decreasing numeric failures/year;

MTTR: decreasing numeric sec;

MTTF: increasing numeric day;

reliability: increasing numeric;

availability: increasing numeric;

g;

Figure 11. Example contract type de�nition

xc as a generic name for contracts and y as a generic name for contract types.
We can de�ne a contract B to be a re�nement of another contract A using the

construct \B = A re�ned byf: : :g" where A is the name of a previously de�ned
contract. The contract that is enclosed by curly brackets (f: : :g) is a \delta" that
describes the di�erence between the contracts A and B. We say that the delta re�nes
A and that B is a re�nement of A. The delta can specify QoS properties along
dimensions for which speci�cation was omitted in A. Furthermore, the delta can
replace speci�cations in A with stronger speci�cations. The notion of \stronger than"
is given by a conformance relation on constraints. We describe conformance in more
detail in Section 4.8.

Figure 11 and Figure 12 illustrates how a named contract type (Reliability)
can be de�ne and how contracts of that type can be de�ned respectively. The contract
type Reliability has the dimensions that we have identi�ed within the QoS category
of reliability described in section 3

The contract systemReliability is an instance of Reliability; it captures
a system wide property, namely that operation invocation has \exactly once" (or
transactional) semantics. The systemReliability only provides a guarantee about

Quality-of-Service Speci�cation in Distributed Object Systems 14

systemReliability = Reliability contract f
operationSemantics == once;

g;

nameServerReliability = systemReliability f
serverFailure == rolledBack;

g;

type Performance = contract f
latency: decreasing numeric msec;

throughput: increasing numeric kb/sec;

g;

traderResponse = Performance contract f
latency f percentile 90 < 50 msec g;

g;

Figure 12. Example contract de�nitions

the invocation semantics, and does not provide any guarantees for the other dimensions
speci�ed in the Reliability contract type.

The contract nameServerReliability is de�ned as a re�nement of another
contract, namely the contract bound to the name systemReliability. In
the example, we strengthen the systemReliability contract by providing a
speci�cation along the serverFailure dimension, which was left unspeci�ed in the
systemReliability contract.

4.5. Pro�les

According to our de�nition, a service speci�cation contains an interface and a QoS
pro�le. The interface describes the operations and attributes exported by a service;
the pro�le describes the QoS properties of the service. A pro�le is de�ned relative to
a speci�c interface, and it speci�es QoS contracts for the attributes and operations
described in the interface. We can de�ne multiple pro�les for the same interface, which
is necessary since the same interface can for example have multiple implementations
with di�erent QoS properties.

Once de�ned, a pro�le can be used in two contexts: to specify client QoS
requirements and to specify service QoS provisioning. Both contexts involve a binding
between a pro�le and some other entity. In the client context this other entity is
the service reference used by the client; in the service context, the entity is a service
implementation. We discuss bindings in Section 4.7. Here, we describe a syntax for
pro�le values, and in Section 4.6 we describe a syntax for pro�le de�nition.

Figure 13 gives an abstract syntax for pro�les. A pro�le is a list of requirements,
where a requirement speci�es one or more contracts for one or more interface entities,
such as operations, attributes, or operation parameters. If a requirement is stated
without an associated entity, the requirement is a default requirement that applies by
default to all entities within the interface in question. Our intention is that the default
contract is the strongest contract that applies to all entities within an interface. We
can then explicitly specify a stronger contract for individual entities by using the

Quality-of-Service Speci�cation in Distributed Object Systems 15

pro�le ::= pro�le freq
1
; : : : ; req

n
; g

req ::= require contractList

j from entityList require contractList

contractList ::= conExp
1
; : : : ; conExp

n

entityList ::= entity
1
; : : : ; entity

n

entity ::= opName

j attrName

j opName :parName

j result of opName

opName ::= identi�er

attrName ::= identi�er

parName ::= identi�er

conExp ::= de�ned in Figure 10

Figure 13. Abstract syntax for pro�les

declaration ::= conTypeDecl

j conDecl

j pro�leDecl

pro�leDecl ::= xp for intName = pro�leExp

pro�leExp ::= pro�le

j xp re�ned by freq
1
; : : : ; req

n
; g

intName ::= identifier

conTypeDecl ::= de�ned in Figure 10

conDecl ::= de�ned in Figure 10

pro�le ::= de�ned in Figure 13

req ::= de�ned in Figure 13

Figure 14. Abstract syntax for de�nition of pro�les

re�nement mechanism.
Contracts for individual entities are de�ned as follows: \from e require C."

Here e is an entity and C is a contract. We use C as a delta that re�nes the
default contract of the enclosing pro�le. Using individual entity contracts as deltas
for re�nement means that we do not have to repeat the default QoS constraints as
part of each individual contract.

Although a pro�le refers to speci�c operations and arguments within an interface,
the �nal association between the pro�le and the interface is established in a pro�le
de�nition. Such de�nitions are described in section 4.6.

For each contract type, such as reliability, that a pro�le involves, we may specify
zero or one default contract. In addition, at most one contract of a given type can be
explicitly associated with an interface entity.

If, for a given contract type T , there is no default contract and there is no explicit
speci�cation for a particular interface entity, the semantics is that no QoS properties
within the category of T are associated with that entity.

Quality-of-Service Speci�cation in Distributed Object Systems 16

interface NameServer f
void init();

void register(in string name, in object ref);

object lookup(in string name);

g

nameServerProfile for NameServer = pro�le f
require nameServerReliability;

from lookup require Reliability contract f
rebindPolicy == noRebind;

g;
g

Figure 15. The interface of a name server

4.6. De�nition of Pro�les

A pro�le de�nition associates a pro�le with an interface and gives the pro�le a name.
A general requirement is that the interface entities referred to by the pro�le must exist
in the related interface. The syntax for pro�le de�nition is given in Figure 14. The
de�nition \id for intName = prof " gives the name id to the pro�le which is the
result of evaluating the pro�le expression prof with respect to the interface intName .
The pro�le name can be used to associate this particular pro�le with implementations
of the intName interface or with references to objects of type intName.

A pro�le expression (pro�leExp) can be a pro�le, or an identi�er with a \f: : :g"
clause. If the expression is a pro�le value, the de�nition binds a name to this value. If
a pro�le expression contains an identi�er and a \f: : :g" clause, the identi�er must be
the name of a pro�le, and the \f: : :g" clause then re�nes this pro�le. The de�nition
gives a name to this re�ned pro�le.

If we have a pro�le expression \A re�ned by f: : :g," then the delta must either
add to the speci�cations in A or make the speci�cations in A stronger. The delta
can add speci�cations by de�ning individual contracts for entities that do not have
individual contracts in A. Moreover, the delta can specify a default contract if no
default contract is speci�ed in A. The delta can strengthen A's speci�cations by
giving individual contracts for entities that also have an individual contract in A.
The individual contract in the delta are then used as a contract delta to re�ne the
individual contract in A. Similarly, the delta can specify a contract delta that re�nes
the default contract in A. We give a more detailed and formal description of pro�le
re�nement in [9].

To exemplify the notion of pro�le de�nition, consider the interface of a
name server in Figure 15. The pro�le called nameServerProfile is a pro�le
for the NameServer interface; it associates various contracts with the operations
de�ned with the NameServer interface. The nameServerProfile associates the
nameServerReliability contract (introduced in Figure 12) as the default contract,
and it associates a re�nement of the nameServerReliability contract with the
lookup operation.

Notice that the contract for the lookup operation must re�ne the default contract
(in this case, the default contract is nameServerReliability). Since the contract for

Quality-of-Service Speci�cation in Distributed Object Systems 17

binding ::= clientBinding

j serviceBinding

clientBinding ::= refDecl with pro�leExp

serviceBinding ::= serviceDecl with pro�leExp

refDecl ::= identi�er : intName

serviceDecl ::= identi�er implements intName

Figure 16. Abstract syntax for bindings

//Client side binding

myNameServer: NameServer with nameServerProfile;

//Implementation binding

myNameServerImp implements NameServer

with nameServerProfile;

Figure 17. Example bindings

operations must always re�ne the default contract, it is implicitly understood that the
contract expression in an operation contract is in fact a re�nement.

4.7. Bindings

There are many ways in which QoS pro�les can be bound to speci�c services. They
can be negotiated and associated with deals between clients and server, or they
can be associated statically at design or deployment time. For the purpose of this
paper we will provide an example binding mechanism that allows clients to statically
bind pro�les to references. In addition, we allow a server to state the pro�le of its
implementation. These bindings could be used to ensure compatible characteristics for
clients and servers as well as runtime monitoring. An abstract syntax for our notion
of binding is illustrated in Figure 16.

Figure 17 illustrates our notion of binding. In the �rst example the client declares
a reference called myNameServer as a reference to a name server. The client's QoS
requirements are expressed by means of the pro�le called nameServerProfile. In the
second example, the implementation called myNameServerImp is declared to implement
the service speci�cation that consists of the interface called NameServer and the pro�le
called nameServerProfile.

The binding mechanism need not be a part of QML but has been included here
for clarity. Bindings are more closely related to interface speci�cation, design and
implementation languages. As an example we will propose a binding mechanism for
UML in section 5.

4.8. Conformance

We de�ne a conformance relation on pro�les, contracts, and constraints. A stronger
speci�cation conforms to a weaker speci�cation. We need conformance at runtime
so that client-server connections do not have to be based on exact match of QoS
requirements with QoS properties. Instead of exact match, we want to allow a service

Quality-of-Service Speci�cation in Distributed Object Systems 18

to provide more than what is required by a client. Thus, we want service speci�cations
to conform to client speci�cations rather than match them exactly.

Pro�le conformance is de�ned in terms of contract conformance. Essentially, a
pro�le P conforms to another pro�le Q if the contracts in P associated with an entity
e conform to the contracts associated with e in the pro�le Q.

Contract conformance is in turn de�ned in terms of conformance for constraints.
Constraint conformance de�nes when one constraint in a contract can be considered
stronger, or as strong as, another constraint for the same dimension in another contract
of the same contract type.

To determine constraint conformance for set dimensions, we need to determine
whether one subset conforms to another subset. Conformance between two subsets
depends on their ordering. In some cases, a subset represents a stronger commitment
than its supersets. As an example, let us consider the failure-masking dimension.
If a value of a failure-masking dimension de�nes the failures exposed by a server, a
subset is a stronger commitment than its supersets (the fewer failure types exposed, the
better). If, on the other hand, we consider a payment protocol dimension for which sets
represent payment protocols supported by a server, a superset is obviously a stronger
commitment than any of its subsets (the more protocols supported, the better). Thus,
to be able to compare contracts of the same type the dimension declarations need to
de�ne whether subsets or supersets are stronger.

A similar discussion applies to the numeric domain. Sometimes, larger numeric
values are considered conceptually stronger than smaller. As an example, think of
throughput. For dimensions such as latency, smaller numbers represent stronger
commitments than larger numbers.

In general, we need to specify whether smaller domain elements are stronger
than or weaker than larger domain elements. The decreasing declaration implies
that smaller elements are stronger than larger elements. The increasing declaration
means that larger elements are stronger than smaller elements. If a dimension is
declared as decreasing, we map \stronger than" to \less than" (<). Thus, a value is
stronger than another value, if it is smaller. An increasing dimension maps \stronger
than" to \greater than" (>). The semantics will be that larger values are, considered
stronger.

We want conformance to correspond to constraint satisfaction. For example, we
want the constraint d < 10 to conform to the constraint d < 20. But d < 10 only
conforms to d < 20 if the domain is decreasing (smaller values are stronger). To achieve
the property that conformance corresponds to constraint satisfaction, we allow only
the operators f==; <=; <g for decreasing domains, and we allow only the operators
f==; >=; >g for increasing domains. Thus, if we have an increasing domain, the
constraint d < 20 would be illegal.

If a pro�le Q is a re�nement of another pro�le P , Q will also conform to P .
Re�nement is a static operation that gives a convenient way to write QoS speci�cations
in an incremental manner. Conformance is a dynamic operation that, at runtime, can
determine whether one speci�cation is stronger than another speci�cation. For more
details on conformance we refer to [9].

5. An Extension of the Uni�ed Modeling Language

In order to make QoS considerations an integral part of the design process, design
notations must provide the appropriate language concepts. We have already presented

Quality-of-Service Speci�cation in Distributed Object Systems 19

a textual syntax to de�ne QoS properties. Here, we extend UML [5] to support the
de�nition of QoS properties. Later, we will use CORBA IDL [17] and our extension
of UML [5] to describe an example design that includes QoS speci�cations.

In UML, classes are represented by rectangles. In addition, UML has a type

concept that is used to describe abstractions without providing an implementation.
Types are drawn as classes with a type stereotype annotation added to it. In UML,
classes may implement types. The UML interface concept is a specialized usage of
types. Interfaces can be drawn as small circles that can be connected to class symbols.
A class can use or provide a service speci�ed by an interface. The example below shows
a client using (dotted arrow) a service speci�ed by an interface called I . We also show
a class Implementation implementing the I interface but in this example the interface
circle has been expanded to a class symbol with the type annotation.

Our extension to UML allows QoS pro�les to be associated with uses and
implements relationships between classes and interfaces. A reference to a pro�le is
drawn as a rectangle with a dotted border within which the pro�le name is written.
This pro�le box is then associated with a uses or implements relationship.

Implementation

Client

RequiredProfile

ProvidedProfile

I

<<type>>
I

Figure 18. UML extensions

In example 18, the client requires a server that implements the interface I

and satis�es the QoS requirements stated in the associated RequiredProfile. The
Implementation on the other hand promises to implement interface I with the QoS
properties de�ned by the ProvidedProfile pro�le. The pro�les are de�ned textually
using our QoS speci�cation language.

Our UML extension allows object-oriented design to be annotated with pro�le
names that refer to separately de�ned QoS pro�les. Notice that our UML extension
associates pro�les with speci�c implementations and usages of interfaces. This allows
di�erent clients of the same interface to require di�erent QoS properties, and it allows
di�erent implementations of the same interface to provide di�erent QoS properties.

6. Example

To illustrate QML and demonstrate its utility, we use it to specify the QoS properties
of an example system. The example shows how QML can help designers decompose

Quality-of-Service Speci�cation in Distributed Object Systems 20

EventService TraderService

PhoneServiceSystem

Figure 19. High-level architecture

application level QoS requirements into QoS properties for application components.
The example also demonstrates that di�erent QoS trade-o�s can give rise to di�erent
designs.

This example is a simpli�ed version of a system for executing telephony services,
such as telephone banking, ordering, etc. The purpose of having such an execution
system is to allow rapid development and installation of new telephony services.
The system must be scalable in order to be useful both in small businesses and
for servicing several hundred simultaneous calls. More importantly|especially from
the perspective of this paper|the system needs to provide services with su�cient
availability.

Executing a service typically involves playing messages for the caller, reacting to
key strokes, recording responses, retrieving and updating databases, etc. It should be
possible to dynamically install new telephone services and upgrade them at runtime
without shutting down the system. The system answers incoming telephone calls and
selects a service based on the phone number that was called. The executed service
may, for example, play messages for the caller and react to events from the caller or
events from resources allocated to handle the call.

Telephone users generally expect plain old telephony to be reliable, and they
commonly have the same expectations for telephony services. A telephony service
that is unavailable will have a severe impact on customer satisfaction, in addition,
the service company will loose business. Consequently, the system needs to be highly
available.

Following the categorization by Gray et al. [11], we want the telephony service to
be a highly-available system which means it should have a total maximum down-time
of 5 minutes per year. The availability measure will then be 0.99999. We assume
the system is built on a general purpose computer platform with specialized computer
telephony hardware. The system is built using a CORBA [17] Object Request Broker
(ORB) to achieve scalability and reliability through distribution.

6.1. System Architecture

We call the service execution system module PhoneServiceSystem. As illustrated by
Figure 19, it uses an EventSystem module and a TraderService module.

Opening up the PhoneServiceSystem module in Figure 20, we see its main
classes and interfaces. Classes are drawn as rectangles and interfaces as circles.

Quality-of-Service Speci�cation in Distributed Object Systems 21

<<type>>
PlayerI

<<type>>
RecorderI

<<type>>
DatabaseI

<<type>>
ResourceICallHandle

ServiceI

Service
Executor

TraderService::
Trader

EventService::
PushConsumer

TraderService::TraderI

TraderService::TraderI

RecorderImpl

DatabaseImplPlayerImpl

EventService::
PushSupplier

CallHandlerImpl
CallHandlerI

OtherDatabaseImpl

EventService::
PushConsumer

TraderProfile_P

TraderProfile_R

ESPCProfile_P

ESPSProfile_R

ResourceProfile_R

PlayerProfile_P

ESPSProfile_P

RecorderProfile_P
DatabaseProfile_P

DatabaseProfile_P

SEProfile

CallHandler_P

Figure 20. Class diagram for PhoneServiceSystem

Classes implement and use interfaces. As an example, the diagram shows that
ServiceExecutor implements ServiceI and uses TraderI. In the diagram we have
included references to QML pro�les|such as PlayerProfile P|of which a subset will
be described in section 6.2. To ease the reading of the diagram we have named required

and provided pro�les so that they end with the letters R and P respectively. We have
omitted to draw some interrelationships for the purpose of keeping the diagram simple.

CallHandlerI, ServiceI, and ResourceI are three important interfaces of the
system. The model also shows that the system uses interfaces provided by the
EventService and TraderService.

When a call is made, the CallHandlerImpl receives the incoming call through
the CallHandlerI interface and invokes the ServiceExecutor through the ServiceI
interface. CallHandlerImpl receives the telephone number as an argument and maps
that to a service identity. When CallHandlerImpl calls the ServiceExecutor it
supplies the service identi�er as an argument and a CallHandle. The CallHandle

Quality-of-Service Speci�cation in Distributed Object Systems 22

interface ServiceI f
void execute(in ServiceId si, in CallHandle ch) raises (InvalidSI);

boolean probe() raises (ProbeFailed);

g;

Figure 21. The ServiceI interface

contains information about the call|such as the speech channel|that is needed
during the execution of the service. A new instance of CallHandle is created and
initialized by the CallHandler when an incoming call is received. The information in
the CallHandle remains unchanged for the remainder of the call.

In order to execute a service, the ServiceExecutor retrieves the service
description associated with the received service identi�er. It also needs to allocate
resources such as databases, players, recorders, etc. To obtain resources, the
ServiceExecutor calls the Trader. Each resource o�er its services when it is initially
started by contacting the trader and registering its o�er. To reduce complexity of the
diagram we omit showing that resources use the trader.

ServiceExecutor uses the PushSupplier and implements the PushConsumer

interface in the EventService module. Resources connect to the event service by
using the PushConsumer interfaces. The communication between the service executor
and its resources is asynchronous. When the service executor needs a resource to
perform an operation, it invokes the resource which returns immediately. The service
executor will then continue executing the service or stop to wait for events. When the
resource has �nished its operation, it noti�es the service executor by sending an event
through the event service. This communication model allows the service executor to
listen for events from many sources at the same time, which is essential if, for example,
the service executor simultaneously initiates the playing of menu alternatives and waits
for responses from the caller.

Figure 20 also includes references to QoS pro�les. In new designs, clients and
services are usually designed to match each others needs therefore the same pro�le
often speci�es both what clients expect and what services provide. When clients and
services refer to the same pro�les, it becomes trivial to ensure that the requirements
by a client are satis�ed by the service. To point out an example, CallHandlerImpl
requires that the ServiceI interface is implemented with the QoS properties de�ned
by SEProfile P and at the same time ServiceExecutor provides ServiceI according
to the same QoS pro�le.

In other cases, such as the Trader, are expected to preexist and therefore
have previously speci�ed QoS properties. In those situations we have one contract
specifying the required properties and another contract specifying what is provided.
Consequently we need to make sure the provided characteristics satisfy the required;
this is referred to as conformance and is discussed in section 4.8.

We will now present simpli�ed versions of three main interfaces in the design.
The ServiceI interface provides an operation, called execute, to start the execution
of a service. The service identi�er is obtained from a table that maps phone numbers
to services. The CallHandle argument contain channel identi�ers and other data
necessary to execute the service.

The Trader allows resources to o�er and withdraw their services. Service
executors can invoke the find or findAll operations on the Trader to locate the

Quality-of-Service Speci�cation in Distributed Object Systems 23

interface TraderI f
OfferId offer(in OfferRec or, in Object obj) raises (invalidOffer);

Match find(in Criteria cr) raises (noMatch);

MatchSeq findAll(in Criteria cr) raises (noMatch);

void withdraw(in OfferId o) raises (noMatch);

g;

Figure 22. The TraderI interface

interface PlayerI : ResourceI f
void play(in CallHandle ch, in MsgSeq ms) raises (InvalidMsg);

void stop(in CallHandle ch);

g;

Figure 23. The PlayerI interface

resources they need. Using a trader allows us to decouple ServiceExecutors and
resources. This decoupling make it possible to smoothly introduce new resources and
remove malfunctioning or deprecated resources. Observe that this is a much simpli�ed
trader for the purpose of this paper.

Finally, we have the PlayerI that represents a simple player resource. Players
allow us to play a sequence of messages on the connection associated with the supplied
CallHandle. The idea is that a complete message can be built up by a sequence of
smaller phrases. The interface allows the service executor to interrupt the playing of
messages by calling stop.

6.2. Reliability

We have already shown in Figure 20 how pro�les are associated with uses and
implements relationships between interfaces and classes. We will now in more depth
discuss what the QoS pro�les and contracts should be for this particular design. For
the contracts we will use the dimensions proposed in section 3. We will not present
any development process with which you identify important pro�les and their content.

To meet end-to-end reliability requirements, the underlying communications
infrastructure, as well as the execution system, must meet reliability expectations. We
assume that the communications infrastructure is reliable, and focus on the reliability
of the service execution system.

From a telephone user's perspective, the interface CallHandlerI represents the
peer on the other side of the line. Thus, to provide high-availability to telephone users,
the CallHandlerI service must be highly-available.

To provide a highly-available telephone service, we require that the
CallhandlerImpl has very short recovery time and long time between failures. Due to
the expected shopping behavior of telephone service users we must require the repair
time (MTTR) to not signi�cantly exceed 2 minutes and that the variance is small.

The CallHandler does not provide any sophisticated failure masking, but it has
a special kind of object reference that does not require rebinding after a failure. We
are prepared to accept on average 2 failures per year. If the service fails, any executing
and pending requests are discontinued and removed. This means we have a at most

Quality-of-Service Speci�cation in Distributed Object Systems 24

CallServerReliability = Reliability contract f
MTTR f

percentile 100 <= 2;

variance <= 0.3

g;
TTF f

percentile 100 > 0.05 days;

percentile 80 > 100 days;

mean >= 140 days;

g;
availability >= 0.99999;

contAvailability >= 0.99999;

failureMasking == f omission g;
serverFailure == initialState;

rebindPolicy == noRebind;

numOfFailure <= 2 failures/year;

operationSemantics == atMostOnce;

g;

CallHandlerProfile_P for CallHandlerI = pro�le f
require CallServerReliability;

g

Figure 24. Contract and binding for CallHandler

once operation semantics. The contract and pro�le of CallHandlerI as provided by
CallHandlerImpl is described in Figure 24.

From Figure 20 we can see that the reliability of CallHandlerI directly depends
on the reliability of service de�ned by ServiceI. ServiceExecutor can not provide
any services without resources. Unless ServiceExecutor can handle failing traders
and resources the reliability depends directly on the reliability of TraderI and any
resources it uses. In this example we want to keep the ServiceExecutor as small
and simple as possible, therefore we propagate high-availability requirements from
CallHandlerI to the trader and the resources. This is certainly a major design
decision which will a�ect the design and implementation of the other components
of the system.

We expect the ServiceExecutor to have a short recovery time since it holds no
information that we wish to recover. If it fails, the service interactions it currently
executes will be discontinued. We assume that users consider it more annoying if a
session is interrupted due to a failure than if they are unable to connect to the service.
We therefore require the ServiceExecutor to be reliable in the sense that it should
function adequately over the duration of a typical service call. Calls are estimated
to last 3 minutes on average with 80% of the calls less than 5 minutes. With this in
mind, we will require that the service executor provides high continuous availability
with a time period of 5 minutes.

Since the recovery time is short, we can allow more frequent failures without
compromising the availability requirements.

The ServiceExecutor recovers to a well de�ned initial state and will forget
about all executions that where going on at the time of the failure. The contract

Quality-of-Service Speci�cation in Distributed Object Systems 25

ServiceExecutorReliability = Reliability contract

f
MTTR < 20 sec;

TTF f
percentile 100 > 0.05 days;

percentile 80 > 20 days;

mean > 24 days;

g
availability >= 0.99999;

contAvailability > 0.999999 ;

failureMasking == f omission g;
serverFailure == initialState;

rebindPolicy == rebind;

numOfFailure <= 10 failures/year;

operationSemantics == atMostOnce;

g;

SEProfile for ServiceI = pro�le f
require ServiceExecutorReliability;

require Reliability contract f dataPolicy == invalid; g;
g;

Figure 25. Contract and binding for service

states that rebinding is necessary, which means that when the service executor is
restarted, the CallHandler receives a noti�cation that it can obtain a reference to the
ServiceExecutor by rebinding. Pending requests are executed at most once in case
of a failure; most likely they are not executed at all which is considered acceptable for
this system. The contract and pro�le used for ServiceI are described in Figure 25.

Although the ServiceExecutor itself can recover rapidly, it still depends on the
Trader and the resources.

We expect the Trader to have a relatively short recovery time, which relaxes
the mean time to failure requirements slightly. We insist that all types of telephony
services can be executed when the system is up, which means that all resources must
be available and consequently satisfy the high-availability requirements.

The reliability contract for the Trader (Figure 27) is based on a general contract
(HAServiceReliability) for highly-available services. The contract is abstract in the
sense that it only states the availability requirements and leaves several of the other
dimensions unspeci�ed. The Trader pro�le re�nes it by stating that the recovery time
should be short.

In addition, we state that o�er identi�ers and object references returned by the
trader are valid even after a failure. This means that an o�er identi�er returned before
a failure can be used to withdraw an o�er after the Trader has recovered. Also, any
references returned by the Trader are valid during the Trader's down period as well
as after it has recovered, assuming, of course, that the services referred to by the
references have not failed.

The start-up time for a service execution is very important; the time between a
call is answered and the service starts executing must be short and de�nitely not more
than one second. A start-up time that exceeds one second can make users believe there

Quality-of-Service Speci�cation in Distributed Object Systems 26

is a problem with the connection and therefore hang-up the phone, the consequence
being both an unsatis�ed customer and a lost business opportunity.

Having analyzed and estimated the execution times in the start-up execution path,
we require that the find and findAll operations on the Trader respond quickly. We
do not anticipate the throughput to constitute a bottleneck in this case.

We can relax the performance requirements for the offer and withdraw

operations on the Trader. The reason being that these operations are not time critical
from the service execution point of view. We specify the performance in Figure 27 as
part of the TraderProfile P pro�le.

The performance pro�le makes it clear that the implementation of TraderI should
give invocations of find and findAll higher priority than invocations of offer and
withdraw.

A resource service represents a pool of hardware and software resources that are
expected to be highly-available. If a resource service is down, it is likely that there
are major hardware or software problems that will take a long time to repair. Since
failing resource services are expected to have long recovery times, they need to have,
in principle, in�nite MTTF to satisfy high availability requirements. This does not mean
that individual resource cannot fail, but it does mean that there must be su�cient
redundancy to mask failures.

In Figure 26 we de�ne a general contract, called ResourceReliability, for
ResourceI. The contract captures that resources need to be highly available. Each
speci�c resource type|such as PlayerReliability|will then re�ne this general
contract to specify its individual QoS properties.

6.3. Discussion

The speci�cation of reliability and performance contracts, and the analysis of inter-
component QoS dependencies, have given us many insights and important guidance.
As an example, it has helped us realize that the Trader needs to support fast fail-over
and use a reliable storage. We also found that the reliability of resources is essential,
and that, in this example system, resource services should be responsible for their
own reliability. The explicit speci�cation also allows us to assign well-de�ned values
to various dimension which make design goals and requirements mreo clear.

QML allows detailed descriptions of the QoS associated with operations,
attributes, and operation parameters of interfaces. This level of detail is
essential to clearly specify and divide the responsibilities among client and service
implementations. The re�nement mechanism is also essential. Re�nement allows us to
form hierarchies of contracts and pro�les, which allows us to capture QoS requirements
at various levels of abstraction.

Due to the limited space of this paper, we have not been able to include a full
analysis or speci�cation of the example system. In a real design, we also need to study
what happens when various components fail, estimate the frequency of failures due
to programming errors, etc. We also need to ensure that the QoS contracts provided
by components actually allows the clients to satisfy requirements imposed on them.
There are various modeling techniques available that are applicable to selected types
of systems; see Reibman et al. [19] for an overview.

In our case, high availability requirements for CallHandler have resulted in
strong demands on other services in the application. Another design alternative
would be to demand that components such as the ServiceExecutor can handle failing

Quality-of-Service Speci�cation in Distributed Object Systems 27

ResourceReliability = Reliability contract f
availability >= 0.99999;

failureMasking == f failure g;
serverFailure == initialState;

rebindPolicy == rebind;

g;

PlayerReliability =

ResourceReliability re�ned by f
MTTR = 7200 sec;

TTF f
percentile 100 > 2000 days;

percentile 80 > 6000 days;

mean >= 7000 days;

g;

availability >= 0.99999;

contAvailability >= 0.999999;

failureMasking == failure;

serverFailure == initialState;

rebindPolicy == rebind;

numOfFailure <= 0.1 failures/year;

operationSemantics == least_once;

dataPolicy == no_guarantees;

g;

PlayerProfile_P for PlayerI = pro�le f
require PlayerReliability;

g;

Figure 26. Contract and binding for resources

resources and switch to other resources when needed. This would require more from
the ServiceExecutor, but allow resource services to be less reliable.

Despite the limitations of our example, we believe that it demonstrates three
important points: QoS should be considered during the design of distributed systems;
QoS requires appropriate language support; QML is useful as a QoS speci�cation
language.

Firstly, we want to stress that considering QoS during design is both useful and
necessary. It will directly impact the design and make developers aware of non-
functional requirements.

Secondly, QoS cannot be e�ectively considered without appropriate language
support. We need a language that helps designer capture QoS requirements and
associate these with interfaces at a detailed level. We also need to make QoS
requirements and o�ers �rst class citizens from a design language point of view.

Finally, we believe the example shows that QML is suitable to support designers
in involving QoS considerations in the design phase.

Quality-of-Service Speci�cation in Distributed Object Systems 28

HAServiceReliability = Reliability contract f
availability >= 0.99999;

failureMasking == f omission g;
serverFailure == initialState;

rebindPolicy == rebind;

numOfFailure <= 10 failures/year;

operationSemantics == once;

g;

TraderProfile_P for TraderI = pro�le f
require HAServiceReliability re�ned by f

MTTR f
percentile 100 < 60 ;

variance <= 0.1;

g
g;

from offer.OfferId, result of find, findAll require Reliability

contract f dataPolicy == valid; g;

from find, findAll require Performance

contract f latency f percentile 90 < 50 g; g;

from offer, withdraw require Performance

contract f latency f percentile 80 < 2000 g; g;
g;

Figure 27. Contract and binding for the Trader

7. QoS Speci�cations at Runtime

7.1. QoS-aware Systems

So far in this paper, we have used QoS speci�cations to create abstraction boundaries
between objects. We used QML to extend the traditional notion of interface to cover
non-functional properties. However, to build systems that deliver predictable QoS,
it is often necessary to use QoS speci�cations as part of object implementations as
well. We introduce the notion of QoS-aware objects, which means that objects know
which level of QoS they require and provide, and that they are able to communicate
this knowledge to other objects. As we elaborate in the following, QoS awareness
is necessary if we want to deploy objects in open systems or if we want to monitor
compliance of QoS contracts at runtime.

The con�guration of an open system may change over time. New services may be
dynamically added or removed, and the connection between clients and services may
change over time. Another characteristic of an open system is that no single entity
controls system evolution. The Internet is an example of an open system. In an open
system, we cannot a priori set up QoS contracts between clients and services. We
do not know which services will be available over time, nor do we know which level

Quality-of-Service Speci�cation in Distributed Object Systems 29

of QoS these services will provide. In open systems, we want to make clients and
services QoS aware so that client-server connections can be established dynamically
based on client QoS requirements and service QoS properties. In contrast, we say a
system is closed when the structure and interconnections are de�ned statically during
con�guration or deployment. It is then the task of the con�guration to match objects
so that QoS requirements for the system as a whole are meet.

Consider the currency trading system described in Section 1. In an open system
the trading station would be willing to connect to any rate service as long as it provides
adequate QoS. In order to select an object the trading station could communicate the
QoS it requires as well as its own QoS characteristics to an intermediate broker.
The broker will compare|by using the QML conformance relation|the clients
speci�cations with those of objects o�ering the RateServiceI interface. When
matching o�ers are found the broker will connect the client and the server objects.

QoS-aware objects may use statically constructed QoS speci�cations or create
speci�cations dynamically based on environmental and end-user requirements. A
QoS-aware object may provide multiple modes of operation each o�ering di�erent QoS
depending on the QoS it receives from other objects and its run-time environment.
To support QoS awareness, we need more than a speci�cation language, we need
to support QoS speci�cations as �rst-class entities that can be dynamically created,
communicated, and manipulated.

Another example of the bene�ts of QoS-awareness is illustrated by the example
in section 6. In the example we describe how QML helps us break down the QoS
requirements for the system as a whole to QoS speci�cations for individual objects.
The focus of the example is on static speci�cation where we implicitly assumed a
closed system. Let us instead assume that the system is open. This could for
example manifest itself in that resources can be added dynamically. To satisfy QoS
requirements the service executor will need to request resources with speci�c QoS
characteristics. The QoS of resources must be explicitly speci�ed and we need to be
able to compare speci�cations dynamically. This again, will require that we have the
means for creating, manipulating, comparing, and communicating QoS speci�cations
as runtime entities.

It is very hard|and in most cases impossible|to verify statically that a
component in will fact provide speci�ed QoS. An alternative to veri�cation is to
monitor requests between objects and determine whether the speci�ed QoS is satis�ed.
Monitoring itself imposes its own set of issues that we consider outside the scope
of this paper. An interesting aspect is, however, that monitoring requires runtime
representations of QoS speci�cations.

To support construction of open systems with predictable QoS, and to support
compliance monitoring of QoS contracts, we create a QoS fabric where QoS
speci�cations are �rst-class entities at runtime. In the next section we brie
y describe
implementation of this fabric.

7.2. QRR: A QML-Based QoS Fabric

Besides being e�cient and scalable, we have the following requirements for our QRR
QoS runtime fabric:

(i) QRR should support the same fundamental concepts as QML. We want to use the
same QoS speci�cation concepts during design and implementation. Using the
same concepts also implies that the precise, formal de�nition of QML carries over

Quality-of-Service Speci�cation in Distributed Object Systems 30

to QRR. A precise de�nition will in turn signi�cantly improve interoperability of
di�erent QRR/QML components.

(ii) It should be possible to easily create new QRR speci�cations at runtime by calling
generic library functions. Since the QoS requirements of an application may not
be known at compile time, we do not want to insist that all QRR speci�cations
arise from compiled QML speci�cations.

(iii) Although QML is purely declarative and does not support speci�cations that
change over time, we need to support runtime manipulation of QRR speci�cations.
For some QoS categories, such as performance, the level of QoS that a service
can provide depends on its dynamic runtime environment and the availability of
resources in that environment. To enable speci�cations that re
ect the dynamic
availability of resources, we need to support runtime manipulation of QRR
speci�cations.

We are implementing QRR to satisfy these requirements. Currently, we have
implemented a prototype QML compiler and a prototype QRR library. We have
successfully compiled QML speci�cations into QRR, instantiated those speci�cations
in a CORBA environment, communicated the speci�cations between distributed
components, and compared them using a conformance checking function that is part of
the QRR library. The following section describes the basic implementation principles
in more detail.

7.3. Implementation Architecture

This section presents the main principles behind the implementation of QRR. The
reader may wish to consult [10] for more details on the implementation and for
examples of its use.

The QRR implementation consists of a C++ library that allows applications to
create QRR speci�cations and to check conformance of these speci�cations. Some of
the data types used by the library are generated from CORBA IDL type de�ntions
to facilitate the communication of QRR speci�cations between distributed CORBA
objects. The QRR compiler emits a mix of IDL and C++ code to represent a particular
QML speci�cation. The emitted IDL code consists of types that represent the QML
speci�cation. The C++ code contains functions to create QRR instances of the QML
speci�cation.

In the following, we brie
y describe how we represent the various QML constructs
in a mixture of CORBA IDL and C++. Pro�les are de�ned as instances of the profile
struct shown in Figure 28. They contain the pro�le name, interface name, a sequence of
default contracts (dcontracts), and a sequence (profs) of structs, each associating an
entity with a set of contracts. The profs sequence represents the individual contracts
of the pro�le. In QRR, all pro�les are instances of the profile struct. For a particular
pro�le speci�ed in QML, the QML compiler emits a C++ function that constructs an
instance of the profile struct.

QoS constraints are represented as instances of the struct constraint in
Figure 29. A constraint struct has a sequence of aspect structs as well as a tag
indicating whether it is a simple constraint|such as \delay < 10'|or a set of aspects
representing statistical characterizations. We de�ne a separate struct type for each
aspect kind, however the �gure only shows the struct used to represent mean aspects.

Quality-of-Service Speci�cation in Distributed Object Systems 31

struct profile f
string pname;

string iname;

contractSeq dcontracts;

entityProfileSeq profs;

g;

Figure 28. IDL for pro�le

enum aspectKind f
ak_freq, ak_perc,

ak_mean, ak_var,

ak_simple

g;

struct mean f
operators op;

value num;

g;

struct aspect f
aspectKind ak;

any asp;

g;

typedef sequence <aspect> aspects;

struct constraint f
constrKind ck;

aspects asps;

g;

Figure 29. IDL for aspect and constraint

Because IDL does not allow polymorphism for structs, we wrap aspect instances in
any type along with a type tag.

We provide two alternative representations for contracts and contract types. In
the generic representation, all contracts are instances of the same type, and this type
is then part of the QRR library. In the static representation, only contracts of the
same QML contract type are instances of the same QRR type. In addition, the QRR
types used for the static representation are emitted by the QML compiler.

The static representation requires that the emitted QRR types are linked into
the application that instantiates them. On the other hand, using distinct QRR types
for distinct contract types facilitates a more e�cient implementation of conformance
checking and other QRR functions.

With the generic representation, applications can dynamically create and
communicate contracts whose types are not known at compile time. Although we
describe them as separate representations, our goal is to allow their simultaneous
use to achieve maximum
exibility and performance. We only describe the static

Quality-of-Service Speci�cation in Distributed Object Systems 32

type Reliability = contract f
numberOfFailures: decreasing numeric;

TTR: decreasing numeric;

availability: increasing numeric;

g;

struct Reliability_i f
tid ct;

numberOfFailures constraint;

TTR constraint;

availability constraint;

g;

Figure 30. IDL for statically generated contracts

representation in the following.
With the static representation, each QML contract type will result in the

generation of two things: a C++ description of the contract type and an IDL struct
used to instantiate contracts of that type. The emitted contract type description
inherits from, and adds to, a set of contract type base classes implemented in the
QRR library. The emitted type description contains information about the various
dimensions declared as part of the contract type. For each ordered, user-de�ned
domain, the emitted code contains a function that computes the domain ordering. For
each contract type, the emitted code also contains a function for checking conformance
between contracts of that type.

In addition to the emitted C++ code, the compiler also emits an IDL struct
de�nition for each contract type. The name of this struct is the contract type name
with i appended to it. The struct has one �eld for each dimension. Each �eld has
the same name as the corresponding dimension and is of type constraint.

In Figure 30 we show a QML contract type called Reliability and the
corresponding emitted IDL struct.

An instance of the Reliability i struct will hold instances of constraints that in
turn hold the aspects speci�ed for each individual constraint. An instance also contains
the type identi�er of its contract type. Currently, we represent type identi�ers as text
strings. Notice that QML has a
at name space for contract types.

The programmer can manually instantiate instances of contract structs, such
as Reliability i. Manual instantiation is tedious because the programmer must
explicitly create structs that represent the constraints of the contract struct. To
automate the instantiation process, the QML compiler emits instantiation functions
for each contract and pro�le declared in QML.

When an application needs to check conformance, it invokes the library function
conformsTo whose signature is shown in Figure 31. This function takes two pro�les,
and checks conformance between their contracts. Inside pro�les, contracts are stored
as a pair consisting of a contract type name and an element of type any . For a
performance contract, the any element will contain an instance of type Performance i

and the contract type name will be the string \Performance". To check conformance
between performance contracts, the conformsTo will use the string \Performance"
to lookup the C++ object which represents performance contract types at runtime.

Quality-of-Service Speci�cation in Distributed Object Systems 33

int conformsTo(profile &stronger,profile &weaker);

int Performance::conformsTo(CORBA::Any *stronger,CORBA::Any *weaker);

int checkSem(profile &p);

template <class elemType>

aspect * qml_perc_asp(operators op,int pe,elemType val);

template <class elemType>

aspect * qml_freq_asp(operators op,int fr,rangeType l,elemType low,

elemType high,rangeType r);

Figure 31. Some library function signatures

This object is of type Performance and will have a virtual function called conformsTo

(the signature of this function is given in Figure 31 as Performance::conformsTo).
The Performance::conformsTo function is emitted. It expects two any arguments
that both contain instances of the struct Performance i. Since it is emitted, the
Performance::conformsTo function knows which objects to extract from the any

arguments.
Figure 31 also shows the signatures of some of the functions provided by the

library to dynamically create and check QRR speci�cations. As an example, the
checkSem function will check the static semantics of a pro�le instance.

To dynamically create pro�les, we need to create contracts and aspects and
build the appropriate runtime structure. The construction of such runtime structures
can involve many operations and be error prone. We therefore intend to provide
more convenient programming abstractions in the future. The current library
implementation only provides convenience functions for individual aspects. The
functions qml perc asp and qml freq asp are examples of such functions for
percentile and frequency aspects respectively.

7.4. Small Example

To give intuition about how to use QRR speci�cations, we describe a simple QoS
compatibility-checking mechanism that allows a client to ask a server whether its
requirements are compatible with what the server can provide.

First, let's assume that a programmer is implementing a server A that provides
an interface I1 and uses a server B that implements an interface I2. Since we are
concerned with applications that are developed to meet and adapt to QoS requirement,
we also assume that the programmer will specify the QoS for servers that implement
I1 and I2 using QML.

To support the QoS-checking mechanism the server implements the interface
QoSAware, which we describe in Figure 32. The operation compatible allows the
client to send the pro�le it requires to the server. The server responds with true if
the client's requirements and the server's capabilities are compatible; and with false
otherwise. If the pro�le is semantically invalid, the operation raises an exception.

In our small example, we can describe|in QML|the requirements of server A
on server B as a pro�le for the interface I2. We can also describe the QoS provided

Quality-of-Service Speci�cation in Distributed Object Systems 34

interface QoSAware f
exception invalidProfilefg;
boolean compatible(in profile p)

raises (invalidProfile);

g;

Figure 32. QoSAware interface

CORBA::Environment env;

profile * p = i2_prof();

if (I2ref->compatible(*p,env) f
//OK to use this server

....

g else f
//use another server

....

g;

Figure 33. Client call

by A as a pro�le for interface I1. Having de�ned those pro�les and the contracts that
they use we can emit QRR code that can be compiled and linked with the client and
server respectively.

We can create the speci�ed pro�les in server A by invoking the emitted functions
that have the same names as the pro�les speci�ed in QML. If we have a pro�le named
i2 prof specifying A's requirements on I2, A objects would use an emitted function
called i2 prof to create an QRR instance of this pro�le. The C++ code in Figure 33
illustrates how a pro�le can be created and sent with an ordinary CORBA request.

The implementation of compatible simply takes the pro�le speci�ed for the server
and checks its conformance to the pro�le supplied by the client. The implementation
checks the static semantics of the pro�le before doing performance checking. In the
future we intend to include information in a pro�le that allows a program to determine
whether a pro�le has already been checked for semantic validity or not. With this extra
information, we can avoid redundant semantic checks. Figure 34 describes a simple
implementation of a server that supports the QoSAware interface.

In the example, the client directly communicated its requirements to the server.
However, in many situations, QoS speci�cations are not communicated directly
between clients and servers. Instead, the speci�cations tend to be used by third
party components, such as monitoring or negotiation mechanisms. The third party
component could also be a management service or anything else that requires to know
about and can in
uence QoS requirements and agreements. We believe QML and
QRR are useful for a wide range of uses in QoS-aware distributed object systems.

8. Related Work

Common object-oriented analysis and design languages, such as UML [5],
Objectory [12], Booch notation [4], and OMT [22], generally lack concepts and
constructs for QoS speci�cation. In some cases, they have limited support to deal

Quality-of-Service Speci�cation in Distributed Object Systems 35

CORBA::Boolean B_serverImpl::compatible(profile &p,CORBA::Environment &ev)

f
if (! checkSem(p) f

throw QoSAware::invalidProfile();

g;

if(conformsTo(myprof(),p))f
cout << "Conformance... " << endl;

return 1;

g
else f

cout << "Non-conformance..." << endl;

return 0;

g
g;

Figure 34. Server implementation

with temporal aspects or call semantics [4].
Interface de�nition languages, such as OMG IDL [17], specify functional

properties and lack any notion of QoS. TINA ODL [25] allows the programmer to
associate QoS requirements with streams and operations. A major di�erence between
TINA ODL and our approach is that they syntactically include QoS requirements
within interface de�nitions. Thus, in TINA ODL, one cannot associate di�erent QoS
properties with di�erent implementations of the same functional interface. Moreover,
TINA ODL does not support re�nement of QoS speci�cations, which is an essential
concept in an object-oriented setting.

Similarly, Becker and Geihs [1] extend CORBA IDL with constructs for QoS
characterizations. Their approach su�ers from the same problem as the TINA ODL
approach: they statically bind QoS characterizations to interface de�nitions. They
also allow QoS characteristics to be associated only with interfaces, not individual
operations. In addition, they support only limited domains and do not allow
enumerations or sets. Finally, they allow inheritance between QoS speci�cations, but
it is unclear what constraints they enforce to ensure conformance. QoS speci�cations
are exchanged as instantiations of IDL types without any particular structure.

There are a number of languages that support QoS speci�cation within a single
QoS category. The SDL language [14] has been extended to include speci�cation
of temporal aspects. The RTSynchronizer programming construct allows modular
speci�cation of real-time properties [20]. These languages are all tied to one particular
QoS category. In contrast, QML is general purpose; QoS categories are user-de�ned
types in QML, and can be used to specify QoS properties within arbitrary categories.

The speci�cation and implementation of QoS constraints have received a great
deal of attention within the domain of multimedia systems. In [21], QoS constraints are
given as separate speci�cations in the form of entities called QoS Synchronizers. A
QoS Synchronizer is a distinct entity that implements QoS constraints for a group
of objects. The use of QoS Synchronizers assumes that QoS constraints can be
implemented by delaying, reordering, or deleting the messages sent between objects
in the group. In contrast to QML, QoS Synchronizers not only specify the QoS
constraints, they also enforce them. The approach in [24] is to develop speci�cations

Quality-of-Service Speci�cation in Distributed Object Systems 36

of multimedia systems based on the separation of content, view, and quality. The
speci�cations are expressed in Z. The speci�cations are not executable per se, but
they can be used to derive implementations. In [2], multimedia QoS constraints are
described using a temporal, real-time logic, called QTL. The use of a temporal logic
assumes that QoS constraints can be expressed in terms of the relative or absolute
timing of events. Campbell [6] proposes pre-de�ned C-language structs that can
be instantiated as QoS speci�cations for multimedia streams. The expressiveness
of the speci�cations are limited by the C language, thus there is no support for
statistical distributions. Campbell does, however, introduce separate attributes for
capturing statistical guarantees. It should be noted that Campbell does not claim
to address the general speci�cation problem. In fact, he identi�es the need for
more expressive speci�cation mechanisms that include statistical characterizations.
In contrast to QML, the multimedia-speci�c approaches only address QoS within a
single domain (multimedia). Moreover, these approaches tend to assume stream-based
communication rather than method invocation.

Zinky et al. [26, 27] present a general framework, called QuO, to implement QoS-
enabled distributed object systems. The notion of a connection between a client and
a server is a fundamental concept in their framework. A connection is essentially a
QoS-aware communication channel; the expected and measured QoS behaviors of
a connection are characterized through a number of QoS regions . A region is a
predicate over measurable connection quantities, such as latency and throughput.
When a connection is established, the client and server agree upon a speci�c region;
this region captures the expected QoS behavior of the connection. After connection
establishment, the actual QoS level is continuously monitored, and if the measured
QoS level is no longer within the expected region, the client is noti�ed through an
upcall. The client and server can then adapt to the current environment and re-
negotiate a new expected region.

QuO does not provide anything corresponding to re�nement, conformance, or
�ne-grained characterizations provided by QML.

Within the Object Management Group (OMG) there is an ongoing e�ort to
specify what is required to extend CORBA [17] to support QoS-enabled applications.
The current status of the OMG QoS e�ort is described in [18], which presents a set of
questions on QoS speci�cation and interfaces. We believe that our approach provides
an e�ective answer to some of these questions.

9. Discussion

Developing a QoS speci�cation language is only the �rst step towards supporting QoS
considerations in general and, as this paper suggest, as an integral part of the design
process. We need methods that address the process aspects of designing with QoS
in mind. For example, we need methods that help the designer make QoS-based
trade-o�s, and methods that help the designer decompose the application-level QoS
requirements into QoS properties for individual components. In addition to methods,
we also need tools that can check consistency and satisfaction of QoS speci�cations.
For example, it would be desirable, to have a tool that can check whether a running
service meets its QoS speci�cation. Although a speci�cation language is not a complete
solution, we still believe it is an important step.

Specifying QoS properties at design time is only the starting point; eventually we
need to implement the design and ensure that the QoS requirements are satis�ed in the

Quality-of-Service Speci�cation in Distributed Object Systems 37

implementation. An important issue that must be addressed in the implementation,
is what action to take at runtime if the QoS requirements cannot be satis�ed in the
current execution environment, for example, what should happen if the actual response
time is higher than the stated response time requirement. In most applications, it is
not acceptable for a service to stop executing because its QoS requirements cannot be
satis�ed. Instead, one would expect the service to adapt to its environment through
graceful degradation.

For a service to adapt to its environment, it must be noti�ed about divergence
from speci�ed requirements, and it must be able to dynamically specify relaxed
requirements to the infrastructure, and to the services it depends upon, to
communicate how it can gracefully degrade and thereby adapt to the current execution
environment. We believe that our concepts of pro�le and contract can be used
to specify QoS requirements at runtime as well as at design time. To facilitate
runtime speci�cation, we need pro�les and contracts to be �rst class values in the
implementation language. To achieve this, we can de�ne a mapping from QML into
the implementation language; for example, if the implementation language is C++,
one could map contract types into classes and contracts into objects instantiated from
those classes. The important thing to notice is that the concepts remain the same.

10. Concluding Remarks

We argued that taking QoS into account during the design of distributed
object systems signi�cantly in
uences design and implementation decisions. Late
consideration of QoS aspects will often lead to increased development and maintenance
costs as well as systems that fail to meet user expectations.

We proposed a language, called QML, that allows developers to explicitly deal
with QoS as they specify interfaces. We showed how QML can be used for QoS
speci�cation in class model and interface designs of distributed object systems. QML
allows QoS speci�cations to be separated from interfaces and associated with uses
and implementations of services. QML contains a re�nement mechanism allows reuse
and customization of QoS contracts. The re�nement mechanism also allows us to
deal with the interaction between QoS speci�cation and interface inheritance; thus we
truly support object-oriented design. We also described how we can use conformance
checking to determine whether one speci�cation satis�es another. Finally, QML allows
QoS speci�cation at a �ne-grained level|operation arguments and return values|that
we believe is necessary in many applications and for many QoS dimensions.

Although this paper primarily focused on the usage of QML in the context of
software design, we intend to use it for the implementation and management of QoS
in general. As described in Section 7, we provide programming language de�nitions
that can be used to construct QoS speci�cations at runtime and treat them as �rst-
class entities. These runtime entities are used to o�er and require QoS characteristics
at the application programming interface level.

Our experience suggests that the concepts and language proposed in this paper
will provide a sound foundation for future QoS speci�cation languages and integration
of such languages with general object-oriented speci�cation and design languages.

Quality-of-Service Speci�cation in Distributed Object Systems 38

Acknowledgments

The work presented in this paper has bene�ted greatly from interaction with, and
feedback from, our colleagues in the Software Technology Laboratory at Hewlett-
Packard Laboratories. In particular, we thank Evan Kirshenbaum for his insightful
and detailed feedback. We also thank Brad Askins, Pankaj Garg, Mudita Jain, Reed
Letsinger, Mary Loomis, Joe Martinka, Keith Moore, Aparna Seetharaman, and Dean
Thompson. We acknowledge the feedback from Derek Coleman at Hewlett-Packard,
J�rgen N�rg�ard at Beologic, and Christian Becker at the University of Frankfurt.

References

[1] C. R. Becker and K. Gheis. Maqs|Management for Adaptive QoS-Enabled Services. In

Proceedings of IEEE Workshop on Middleware for Distributed Real-Time Systems and

Services, December, 1997.

[2] G. Blair, L. Blair, and J. B. Stefani. A Speci�cation Architecture for Multimedia Systems in

Open Distributed Processing. Computer Networks and ISDN Systems, 29, 1997. Special

Issue on Speci�cation Architecture.

[3] K. P. Birman. ISIS: A System for Fault-Tolerant Distributed Computing. Department of

Computer Science, Cornell University. TR86-744, April, 1986.

[4] G. Booch. Object-Oriented Analysis and Design. Benjamin-Cummings Corp. 1994.

[5] G. Booch, I. Jacobson, and J. Rumbaugh. Uni�ed Modeling Language. Rational Software

Corporation, version 1.0, January 1997.

[6] A. T. Campbell. A Quality of Service Architecture. PhD thesis, January, 1996.

[7] D. Coleman, P. Arnold, S. Bodo�, C. Dolin, F. Hayes, and P. Jeremaes. Object-Oriented

Development: The Fusion Method. Prentice-Hall. 1994.

[8] F. Cristian. Understanding Fault-Tolerant Distributed Systems. Communications of the ACM ,

Vol. 34, No. 2, February 1991.

[9] S. Fr�lund and J. Koistinen. QML: A Language for Quality-of-Service Speci�cation. Hewlett-

Packard Laboratories, Technical Report HPL-98-10, February, 1998.

[10] S. Fr�lund and J. Koistinen. Quality of Service Aware Distributed Object Systems. Hewlett-

Packard Laboratories, Technical Report HPL-98-142, July, 1998.

[11] J. Gray and S. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann.

1993.

[12] I. Jacobson, M. Christerson, and Persson. Object-Oriented Software Engineering. Addison-

Wesley, 1992.

[13] J. Koistinen. Dimensions for Reliability Contracts in Distributed Object Systems. Hewlett-

Packard Laboratories, Technical Report HPL-97-119, October, 1997.

[14] S. Leue. Specifying Real-Time Requirements for SDL Speci�cations|a Temporal Logic-Based

Approach. Protocol Speci�cation, Testing, and Veri�cation XV. in Proceedings of the Fifteenth

IFIP WG6 . June, 1995.

[15] B. Littlewood. Software Reliability Modelling. In Software Engineer's Reference book . Section

31, Butterworth-Heinemann Ltd.,1991.

[16] S. Ma�eis. Adding Group Communication and Fault-Tolerance to CORBA. in Proceedings of

the USENIX Conference on Object-Oriented Technologies. June, 1995.

[17] Object Management Group. The Common Object Request Broker: architecture and

speci�cation, July 1995. revision 2.0.

[18] Object Management Group. Quality of Service: OMG Green paper . Draft revision 0.4a, June

12, 1997.

[19] A. L. Reibman and M. Veeraraghavan. Reliability Modeling: An Overview for System Designers.

IEEE Computer , April, 1991.

[20] S. Ren and G. Agha. RTSynchronizer: Language Support for Real-Time Speci�cations in

Distributed Systems. ACM SIGPLAN Workshop on Languages, Compilers, and Tools for

Real-Time Systems, La Jolla, California, June, 1995.

[21] S. Ren, N. Venkatasubramanian, and G. Agha. Formalizing multimedia qos constraints using

actors. In Proceedings of the Second IFIP International Conference on Formal Methods for

Open, Object-Based Distributed Systems, 1997.

[22] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, B. Lorensen, and W. Lorenson. Object-

Oriented Modeling and Design, Prentice-Hall, 1991.

Quality-of-Service Speci�cation in Distributed Object Systems 39

[23] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Arguments in System Design. ACM

Transactions om Computer Systems, Vol. 2, No. 4, November, 1984.

[24] R. Staehlin, J. Walpole, and D. Maier. Quality-of-Service Speci�cation for Multimedia

Presentations. Multimedia Systems, 3(5/6), November, 1995.

[25] TINA Object De�nition Language. Telecommunications Information Networking Consortium,

June 1995.

[26] J. A. Zinky, D. E. Bakken, and R. D. Schantz. Architectural Support for Quality-of-Service for

CORBA objects. Theory and Practice of Object Systems, Vol. 3(1), 1997.

[27] J. A. Zinky, D. E. Bakken, and R. D. Schantz. Overview of Quality of Service for Distributed

Objects. in Proceedings of the Fifth IEEE conference on Dual Use, May, 1995.

