
SoLOMon: Monitoring End-User Service Levels

Svend Fr�lund

Hewlett-Packard Laboratories, frolund@hpl.hp.com

Mudita Jain

Hewlett-Packard Laboratories, jainm@hpl.hp.com

Jim Pruyne

Hewlett-Packard Laboratories, pruyne@hpl.hp.com

The �rst step in enabling the management of distributed
applications to end-user expectations is the accurate and
timely monitoring of end-user metrics. Monitoring dis-
tributed applications encompasses a large and rapidly
changing set of users, applications, types of measurements,
and platforms. This heterogeneity and large scale imposes
two key challenges in monitoring end-user metrics: ex-
pressiveness and scalability. We need to express the met-
rics and their scope (both in time and space). The large
scale, diversity, and dynamic nature of the scope of the
measurements make it hard to specify metrics in a man-
ner such that they are easy to comprehend, extensible,
and uniform. These same reasons also make it hard to
gather the described metrics in a scalable and timely man-
ner. In this work we present the Activity Monitoring Lan-
guage (AML), for declaratively specifying metrics, and a
run-time system that implements the concepts in AML. To-
gether, they compose SoLOMon (Service Level Objective
Monitor), a system for the dynamic speci�cation and moni-
toring of end-user service levels and events relating to (dis-
tributed) applications. SoLOMon is expressive, scalable,
and extensible. Expressiveness in SoLOMon is a result of
AML, which makes the system programmable. SoLOMon's
scalability is a result of reducing events and measurements
as close to their physical source as is possible without the
loss of accuracy. The instrumentation independent nature
of SoLOMon makes it extensible.

1. Introduction

The technology for monitoring enterprise-scale sys-

tems has not kept pace with the deployment of large

scale, distributed, heterogeneous applications. This has

introduced several challenges for the IT departments of

enterprises. The set of users, applications, and plat-

forms that they must manage is becoming very large

and diverse, and is prone to rapid change. This envi-

ronment makes it very hard to express uniformly and

in an application independent way, the metrics that are

to be managed, and to keep up with the changes in the

scope of these metrics. Consider a usual task that a

system administrator may have to perform. She might

like to determine, for a particular SAP [1] application

(say SAPclient app) if the users in a particular work-

group see an average response time of 50 milliseconds or

less. With traditional performance monitors, she would

likely have to manually map \users in lab" to particu-

lar processes on particular machines. For example, she

may have to state that she is interested in all machines

on the subnet 15.25.57, if the user on the machine is

in the group fjoe, fred, . . . g, and the machine is run-

ning the process SAPclient app.exe. Moreover, once she

has mapped \users in lab" to particular machines, she

would likely have to manually extract the performance

data from log �les. For example, she may have to invoke

a script on each machine to compute the average of the

numbers in column 5 in the �le \/usr/sap/data," and

then aggregate the data across machines. The problems

encountered by the system administrator in monitoring

SAPclient app can be summarized as follows:

� There is a large semantic gap between the speci�-

cation of what she would like to measure, and the

type of measurement that is actually available.

� Each application presents di�erent types of mea-

surements and di�erent measurement interfaces to

the user. Thus, each monitoring solution is appli-

cation speci�c. There is no uniform way of carrying

over the solution for monitoring one application to

another, or of correlating metrics across applica-

tions.

� There is no easy, ubiquitous, scalable mechanism

for gathering, correlating, and transporting the

data from distributed sites to a central location.

� Most measurement systems do not have access to

end-to-end metrics, and thus do not provide com-

plete information.

Internal Accession Date Only



The necessity of solving this problem is manifest in

the number of products being released that aim at dif-
ferent subsections of the same space: \ApplicationEx-
pert" from Optimal, \NETSYS Advisor" from Cisco,

\VitalAnalysis" from VitalSigns, and \WebTrends for
Firewall and VPNs" from WebTrends.

Traditional network and systems management prod-
ucts that are trying to move towards application man-
agement solutions of the type described above include

HP (OpenView), IBM (Tivoli TME 10), Sun (Solstice),
and CA (Unicenter). However, these \enterprise man-
agement systems" are extremely complex and expensive

[7]. In fact, unable to deal with these management sys-
tems on their own, several companies are starting to
out-source network and system management.

1.1 SoLOMon

In this paper we present SoLOMon (Service Level
Objective Monitor), a system for the dynamic speci-
�cation and monitoring of end-user metrics and events

relating to (distributed) applications. SoLOMon is scal-
able, extensible, and instrumentation independent. The
architecture of SoLOMon is illustrated in Figure 1.

The frontend is an authoring tool for the Activity
Monitoring Language (AML). AML is used to tell the

gateway component what to monitor. AML is best
thought of as a programming language for a distributed
measurement system. It is used to declaratively spec-

ify what to measure, without worrying about how to
measure it.

The gateway component converts AML speci�cations
into streams of measurements. Streams of measure-

ments may have several consumers: graphical measure-
ment visualizers, report generators, noti�ers that apply
thresholds to streams and produce events and alarms,

and monitors that feed streams of measurements to
other tools. These consumers may be implemented by
anybody, and are not part of SoLOMon. In �gure 1,
we depict a monitor, reporter, and visualizer. These

perform measurement control on a gateway component.
The control operations specify which measurements the
tools are interested in. In return, the gateway provides

streams of measurements for the frontend tools.

The gateway component itself can receive measure-
ments from two sources: agents in a measured sys-
tem or a measurement repository. The measurement

repository contains historical data whereas the agents
provide current data. Both the agents and repository
are subject to measurement control. The measurement

control for agents turn low-level data providers on and
o�, and determine how measurements are aggregated.
Providers represent the instrumentation points in the
application being managed. Collectors allow hierarchi-

cal aggregation of data from providers. The provider
abstraction gives a uniform interface to the heteroge-

neous instrumentation points in the various applications
managed by SoLOMon.

The measurement control for the repository control
aggregation and retrieval of historical data. The repos-
itory has a database in which it stores historical mea-
surement data. We populate the repository through
the monitor tool. The monitor tool obtains a live mea-
surement feed from the gateway component based on
AML speci�cations, and directs this live feed into the
repository. The repository only contains the measure-
ment that the user explicitly redirects to it|we can only
present historical views on measurements that were ex-
plicitly collected.

In Figure 1 we use the term measurement to refer to
measurement data at di�erent levels of abstraction and
reduction. The measurements coming from the agents
in the network are likely to be at a lower level of re-
duction than the measurements being fed to the moni-
tor tool|the measurements from agents are per-agent
views, whereas the measurements being passed on to
the monitor tool are likely aggregated across agents to
provide a combined view.

We designed SoLOMon with the following aims.

� Provide abstractions that make it easier to map

end-user business metrics to monitoring instruc-

tions. The instructions for traditional monitoring

systems, such as Measureware and Glance [9], are

more for resource monitoring rather than service

monitoring.

� Provide scalable end-user monitoring. In monitor-

ing true end-to-end user activity, we can expect to

have a very large number of measurement points. It

is essential that we can collect large-scale measure-

ments without ooding the monitored system with

collection tra�c. Our approach is to perform mea-

surement reduction as close to the measurement

source as possible.

� Provide extensibility via a means for describing

user-de�ned metrics and a means for integrating

new types of instrumentation points while the sys-

tem is in operation.

To provide notational convenience AML speci�ca-
tions were designed to be composable. Therefore it is
possible to write complex speci�cations as a composi-
tion of a number of simple speci�cations. For exam-
ple, it is be possible to construct the AML speci�cation
for an organization as a composition of speci�cations
for the di�erent entities that make up the organization.
This notational convenience is important as we expect
end users to visually compose and re�ne existing AML
speci�cations rather than starting from scratch. In par-
ticular, we envision the frontend tools to come with a
library of common AML speci�cations that can be tai-
lored for the domain of interest to the end user.

The main contribution of AML is not its syntax, but
the abstraction and formalization of the concepts that
arise in the consideration of distributed monitoring.

2 August|1998



Monitor Repository

Reporter

Visualizer

Gateway

AML
Authoring
Tool

Measurement control

Measurements

Screen

Report

Providers

Measured system

Agents

FIG. 1. Architecture of The SoLOMon Monitoring System

AML has a runtime representation that allows AML

speci�cations to be �rst-class objects in the SoLOMon

runtime system. We need this runtime representation

so that the frontend tools can communicate AML spec-

i�cations to the gateway component, and so that the

gateway component can control the physical measure-

ment providers.

We believe that the SoLOMon architecture can be

leveraged by outsourcers. The SoLOMon concepts can

help manage out-sourced systems according to service

level agreements (SLAs). The key component of an SLA

are the service level objectives (SLOs) that de�ne the

measurable performance goals of a system. An AML

speci�cation formally captures the concepts that com-

prise an SLO in a form that can be used to instruct a

distributed measurement system.

SoLOMon also provides a framework that integrates

the areas of event management and performance man-

agement. AML speci�cations can be written to per-

form much of the operational management functions

performed by event management systems as well as pro-

ducing the types of metrics associated with performance

or service management. SoLOMon integrates the two

by using a single infrastructure for both purposes, and

using the same stream of observed events for both pur-

poses.

The remainder of the paper is organized as follows.

Section 2 describes AML in more detail, and section

3 describes an approach for implementing SoLOMon.

Section 4 describes work related to SoLOMon. Conclu-

sions and future work are presented in section 5.

2. AML: A Language to Program

Distributed Measurement Systems

In this section we describe the design of the Activ-

ity Monitoring Language (AML), that provides a high-

level frontend to distributed measurement systems. We

use AML to declaratively specify what to measure (not

how to measure it). The constructs of AML are de-

signed with scalability in mind; we want to perform

as much measurement reduction as close to the physi-

cal measurement source as possible. In AML, this goal

manifests itself in constructs that can be sub-divided

and therefore calculated in a distributed manner. In

the next section, we describe these constructs, and how

they combine to create high level views on a distributed

system with simple instrumentation points.

2.1 Language Constructs

Each construct in AML is designed to perform one

step in the process of transforming instrumentation or

measurement into metrics with more semantic value.

At the lowest level, we de�ne providers and provider

types which encapsulate di�erent instrumentation or

measurement points in a system. Above these, we de�ne

metrics which are procedures to convert these instru-

mentation points into values. Response time is a typi-

cal metric. The combination of a metric and a provider

creates a source which can be viewed as a stream of val-

ues that can be controlled (e.g. turned on or o�). The

highest level construct is the reducer which transforms

one stream of values (such as a source) into another. For

example, a reducer may periodically output the mean

value of a stream of incoming values. In the following

August|1998 3



sections, we describe each of these constructs in more
detail by showing examples of how they are used.

2.1.1 Providers and Provider Types Provider types
de�ne the world of instrumentation in the system under
consideration. Provider types are user-de�ned because
the type of information (events) may vary widely from
one domain to another, and new types are likely to arise
in the future. For our monitoring infrastructure to work
with heterogeneous information sources, both old and
new, we need to provide a facility for describing the
type of information available from any given source of
instrumentation.

In Figure 2, we give an example of the AML syntax
for de�ning a provider type for ARM [12] providers.
ARM is an application instrumentation API, that pro-
vides a method of demarking the beginning and ending
of a logical transaction. The de�nition has two sec-
tions: an attribute section and an event section. The at-
tributes de�ne properties of the providers of type ARM.
In this case, providers have attributes that capture the
user of the process in which the instrumentation is em-
bedded, the name of the application, and the name of
the activity (transaction) initiated by the enclosing pro-
cess. Individual providers will bind names to these at-
tributes. For example, if the process is owned by a user
called \joe," the attribute user would be bound to the
text string \joe." The binding of values to these names
will happen at run-time, so will not be seen as part of
the AML speci�cation which is put in place a-priori.

The event section declares the di�erent kinds of
events that ARM providers can produce. In this case,
we assume that ARM providers can produce start and
stop events. These correspond to the API calls of the
same names. Events also have attributes. The at-
tributes of an event characterize it and help distinguish
between di�erent instances of the same event. For ex-
ample, for start events, we want to know when the
event occurred. Thus, timestamp is an attribute of the
start event. An instance of a start event contains
a value for the timestamp attribute. This value is of
type long, and represents the time at which the start

provider ARM f
attributes

user: string;

application: string;

activity: string;

events

start(tranID: uuid, timestamp: long);

stop(tranID: uuid, timestamp: long,

status int);

g;

FIG. 2. The AML de�nition for an ARM provider type.

event occurred. As we see in the next section, event at-

tributes also provide names used when de�ning metric

procedures.

To further illustrate the notion of provider type, we

give the AML de�nition for a hypothetical provider type

that captures CCMS providers in Figure 3. CCMS is

the name of the monitoring system in the SAP/R3 en-

vironment. In this example, a CCMS provider produces

events called responseTime. These events correspond

to the completion of a business transaction. In contrast

to ARM events, where we get an event for both the be-

ginning and end of a transaction, we get CCMS events

only for transaction completions. If we want to com-

pute a response time metric over ARM events, we have

to compute the time di�erence between the start and

stop events. With CCMS, the response time is already

available as an attribute of the responseTime events.

2.1.2 Metrics The next higher level of abstraction in

AML is the metric. A metric is a procedure that com-

putes values from provider events. Figure 4 de�nes a

metric to compute response time values. First, we use

the keyword metric to de�ne the type and unit of the

metric. Then we de�ne the procedures for computing

values from events. We need to de�ne a di�erent proce-

dure for each provider type as di�erent provider types

support di�erent events. In this way, higher level con-

structs can be written in terms of metrics without re-

gard to the underlying providers that generate the val-

ues. The de�nition in Figure 4 contains procedures for

providers of type ARM and CCMS. The values com-

puted by the response time metric are of type oat. In

general, metric values can be composite entities, such

as pairs or records over other values.

The procedure to compute response time values from

ARM events is complex because these values are com-

puted based on two correlated events. We need the

start and stop events from the same transaction to

compute a valid response time. We therefore need to

correlate events over a transaction. We use pattern

matching over event attributes to describe event correla-

tion. A pattern speci�es acceptable values for (some of)

the attributes in an event. For example, in Figure 4, we

provider CCMS f
attributes

user: string;

application: string;

events

responseTime(eventID: uuid, time: long);

g;

FIG. 3. The AML de�nition for a hypothetical CCMS

provider type.

4 August|1998



describe a pattern that matches all stop events whose

attribute status has a value of \ok":

stop(status == "ok") (1)

Notice that in (1) we do not specify values for all at-

tributes. If a pattern does not specify a value for an

attribute, it trivially matches the attribute.

For the purposes of event correlation we need to de-

scribe patterns whose attribute values depend on at-

tribute values in other events. For example, to corre-

late ARM start and stop events, we need to construct

a pattern for the stop event that contains the tranID

value from the start event. We use the following syn-

tax to express this:

stop(status == "ok",tranID == t).timestamp -

start(t = tranID).timestamp (2)

In (2), the == is a comparison operator and the = es-

tablishes a binding. The expression t = tranID estab-

lishes a binding for t. We can then use t in specifying

patterns. Thus, when we write tranID == t we con-

struct a pattern based on the value of t.

Notice that expression (2) may be evaluated only

when all patterns are matched. Here there is only one

pattern: the pattern for stop events. This pattern is

matched whenever there is a successful stop event that

has a tranID equal to that of a previous start event.

We can access the attributes of the resulting matched

event. To use the value of event attributes we use a dot

(\.") notation as follows:

stop(status == "ok",tranID == t).timestamp (3)

The result of evaluating (3) is the value bound to

the attribute timestamp of the stop event that matches

the contained pattern. We can then perform arithmetic

expressions over these event attribute values. In the

response time metric our operator is subtraction.

The computation of metric expressions over multi-

ple events requires that events be stored. When a new

metric responseTime: oat msec;

responseTime for ARM f
val =

stop(status == "ok",

tranID == t).timestamp -

start(t = tranID).timestamp;

g;

responseTime for CCMS f
val = responseTime.time;

g;

FIG. 4. Procedures that compute the response time metric

for providers of type ARM and CCMS.

event occurs, it may trigger the evaluation of a metric

expression. For example, the occurrence of a stop event

may cause the metric response time to be evaluated

if a corresponding start event has occurred previously.

In order to determine that such a start has in fact hap-

pened, we need to store old start events. One question

then is: when can we safely delete events? We choose

the semantics that the evaluation of a metric expression

causes deletion of all the participating events. In other

words, a given metric expression may use an event in

only one evaluation. As measurement systems typically

operate in resource constrained environments, forcing

this semantics in the speci�cation allows for e�cient

implementations. Although, events are removed after

they have been used in a computation, we still need a

policy to deal with events that are never used in com-

putations. For example, we may never see a stop event

that matches a given start event. The runtime system

must ensure that we do not store such start events for-

ever. One possible policy is to have an expiration time

for events. Notice that garbage collection of events is a

general problem for event-based measurement systems

with correlation. For example, a measurement system

based solely on ARM instrumentation would face the

same issue.

Consider the expression for computing response time

values for CCMS providers:

val = responseTime.time; (4)

There are no patterns involved in expression (4). So

we can evaluate this expression for each responseTime

event. The result of the expression is the value bound

to the event attribute called time. The response time

metric de�nitions for ARM and CCMS provide us with

a single notion of response time for both CCMS and

ARM though the underlying events produced by the

corresponding instrumentation are very di�erent.

2.1.3 Sources and Filters Providers and metrics

provide a de�nition of where events come from and

how they combine to produce values. Here, we describe

sources which represent a stream of values being pro-

duced by a metric. A source can be turned on and

o� at run-time. When a source is turned on, it pro-

duces a stream of values: the values computed from the

metric over provider events. For example, we could cre-

ate an ARM source that associates the response time

metric with the providers that all support the ARM

provider type. If we turned on the source, we would get

a stream of response time values. Each value in the

stream would correspond to two events: a start and

stop event, at the underlying providers. We associate

metrics with providers based on �lters over the provider

attributes.

The following is the de�nition of a source:

August|1998 5



source responseTimeSource: oat;

responseTimeSource = responseTime from

�lter f user == ``joe''g; (5)

In (5), the �rst statement declares a source in-

stance, responseTimeSource. responseTime is the

name of a metric. The expression \�lter f user ==

``joe''g" instantiates a �lter that matches on an at-

tribute user in providers. The �lter will select all

providers where this attribute is bound to the text

string \joe." The from keyword associates the �lter

with the metric. The second statement thus binds the

source responseTimeSource to the result of associating

the responseTime metric with all providers that have

a user named \joe."

2.1.4 Reducers The association of a �lter and a met-

ric gives rise to a source. This is a primitive source, its

values are computed directly by the metric expression.

AML treats these sources as �rst class entities, and de-

�nes operators over sources so that new sources can be

constructed from old sources. A reducer is an operator

over sources.

One class of reducers provide time intervalization of

measurement data. For example, sum is a built in re-

ducer that takes a source S and a number T , and returns

a source S0. Each value in S0 is a sum of values from

S. A sum value that equals the sum of S values over

the interval T appears in S0 every T time units. If over

a particular interval no values appear in S, a special

null value appears in S0 as the value for that particular

interval.

As illustrated in Figure 5, we can use the built-in

sum reducer and a built-in count reducer to construct

a user-de�ned reducer mean. The count reducer re-

turns a source that contains values equaling the num-

ber of values from the input source over a given time

interval. The mean reducer computes the time-averaged

mean for the values in a source S given as input. The

mean reducer also takes a number period, which rep-

resents the interval for time averaging. mean returns a

source that contains the mean of S values computed on

period time boundaries.

In Figure 5, we compute arithmetic expressions over

sources. We use a division operator \/" on the sources

returned by sum and count. The semantics of apply-

ing division to two sources is that the two sources are

merged to provide another source. In general, the result

of merging two sources according to a binary operator

is a source whose values are constructed from a per-

value application of the operator on the values of the

two merged sources.

To describe the semantics of source operations, we

need some way to operationally capture the semantics

reducer mean(source S: oat, period: long) f
val = sum(S,period) / count(S,period);

g;

FIG. 5. A reducer that computes the time-averaged mean

value of the values from source S.

of a source. We use a stream of values to represent
the runtime behavior of a source. We use the following
notation to represent sources:

s = (t,v1 v2 v3 ...) (6)

(6) represents a source s that is time intervalized on an
interval of length t. The source produces the values v1,
v2, v3, and so on one after each interval t. With this
notation, we can now capture the semantics of a binary
source operation, such as division, in this way:

(t,v1 v2 v3 ...) / (t,v4 v5 v6 ...) =

(t,v1/v4 v2/v5 v3/v6 ...)

In general, we only allow operators to work on
sources that are either all unintervalized or that are
intervalized with the same period. For unintervalized
sources, the division operator would work as follows:

(,v1 v2 v3 ...) / (,v4 v5 v6 ...) =

(,v1/v4 v2/v5 v3/v6 ...)

We allow the usual set of arithmetic operators over
sources. In addition, we provide a number of built-in
reducers to provide intervalization of sources. At this
time, the built-in reducers are sum, count, min, and
max.

Time intervalization of data requires state in the re-
ducer that performs the time intervalization. For ex-
ample, the sum reducer must store a sum value that
is updated whenever the input source produces a value.
The sum value is set to 0 on interval boundaries, and
it is written to the output source before it is set to
0. It is hard, in general, to e�ciently implement user-
de�ned reducers with state in a distributed manner. We
have therefore decided that user-de�ned reducers can-
not have state. In particular, it is only built-in reducers
that can accomplish time intervalization.

Distributed events may be combined into one value,
and we do not assume clock synchronization or bounded
clock skew between machines. Thus a value may be the
result of two events that ostensibly occur at very di�er-
ent times. The semantics of a time-stamp for this value
is unclear. The values produced by metrics and reduc-
ers therefore do not have an absolute timestamp as an
implicit attribute. A result is that if we store uninterval-
ized data in the repository, we cannot later intervalize
this data. Similarly, when values are time intervalized,
we ignore the time at which the value was itself com-
puted. For example, due to transportation delays, a
value may arrive at a reducer much later than when it

6 August|1998



was actually computed. Thus we choose to time inter-

valize a stream of values according to the clock at the

reducer's computer. However, if we store intervalized

data, we can increase the intervalization period when

we retrieve it.

The mean reducer in Figure 5 provides a general way

to describe time averaging of measurement data. For

example, we can use the mean reducer to measure the

average response time for the user \joe" in the following

way:

interval = ...;

source responseTimeSource: oat;

responseTimeSource = responseTime

from �lter f user == ``joe''g;
avgResponseTime =

mean(responseTimeSource,interval);

We use AML to declaratively construct source val-

ues that represent what we want to measure. AML

describes the construction of sources, not the instanti-

ation of sources. Source instantiation is done by the

gateway component. The gateway provides a program-

ming interface for turning sources on and o� at runtime.

For example, it might provide a method instantiate

that given a source returns a stream of values, where

the values in the stream are produced according to the

source speci�cation. The gateway might also provide a

method to deactivate a stream. It serves the role of a

stream factory, the entity that creates streams based on

sources. We describe the interface between AML and

the gateway in more detail in Section 3.

2.2 Discussion

We provide an extensible infrastructure that can

handle information from a variety of heterogeneous

sources, and reduce the information in a consistent man-

ner across di�erent sources. This extensibility and het-

erogeneity is not available in traditional measurement

systems, such as DMS [16, 13]. The key to this ex-

tensibility is our notion of provider type that creates

a common vocabulary for measurement sources. As we

have previously mentioned, the concept of provider type

serves many of the same purposes as interface de�nition

languages, such as CORBA IDL. Where IDL provide

language neutrality, provider types provide instrumen-

tation infrastructure neutrality.

We use the concept of an event as the common de-

nominator for heterogeneous measurement data. Pro-

ducing events imposes minimal requirements on partic-

ipating instrumentation points because the concept of

an event does not require any processing, such as time

intervalization, of measurement data. Having events

at the base layer gives rise to a \push" model for

measurement collection and processing. Some legacy

systems are likely to support a \pull" model instead.
We can integrate such legacy systems into the AML
world by wrapping them by code that periodically pulls
the legacy measurement system and produces an AML
event. In the future we may consider allowing pre-
intervalized data to be an external measurement source
in AML.

One important question is where reducers can be
computed. Our goal is to compute reductions as close
to the measurement source as possible. However, dis-
tributing the computation of reductions is not always
possible. It turns out that we can (statically) identify
the class of distributable reducers.

Consider the expression t = f(s1; : : : ; sn), where t

and s1 : : : sn are sources. The function f represents
the expression over the sources s1 : : : sn. If the sources
are unintervalized, we compute a value for t when all
sources si have a value. We compute one value for t

based on n values|one from each si. If f is a built-in
reducer, or if all sources si are identical, we can dis-
tribute it, otherwise it is computed by the gateway. If
the si are intervalized on the same interval, the source
t will have that interval as well. At the end of each
interval, the n values from the sources si are combined
into one value for the source t.

3. Implementing AML

The implementation of AML needs to satisfy the fol-
lowing properties.

� It must be scalable. That is, it must support large

numbers of data sources on a large number of dis-

tributed resources.

� It must be low overhead. This requirement not only

supports the need for scalability, but it also ensures

that SoLOMon does not overly perturb systems on

which it is running.

� It must be timely. The goal of SoLOMon is to pro-

vide nearly real-time monitoring of a distributed

system. The implementation must, therefore, re-

port results soon enough after the events that com-

pose them occur.

� It must be extensible. Over time, new primitives

or extensions to the base speci�cation language

may be made. The implementation needs to sup-

port these updates without requiring signi�cant

changes. In addition, the language itself may de�ne

encapsulations for new data sources, and it should

be easy to integrate these data sources with the

implementation.

The implementation is encapsulated in an \agent",
which is simply a process or daemon that runs on every
machine on which AML speci�cations can be executed.

August|1998 7



3.1 Dataow Expression Trees

Both reducers and metrics contain expressions. Met-

ric expressions compute values from events and reducer

expressions combine sources. Both types of expressions

are represented as dataow expression trees in the run-

time system. An expression tree represents a program-

matic statement as a collection of nodes that represents

speci�c operations, and link to sub-nodes that represent

the operands. For an introduction to dataow, refer to

any of [6, 2, 8].

Traditionally, the evaluation of an expression tree

is a simple recursive descent of the tree in which the

child operation nodes are �rst evaluated, and their val-

ues are used to evaluate the operation node at the cur-

rent level. However, AML expression trees are evalu-

ated in a bottom-up manner. For example, an expres-

sion tree that represents a metric will have leaf nodes

that corresponds to provider events. The tree evalua-

tion is triggered by event occurrences at the leaf nodes.

The expression tree for a reducer will also be evaluated

bottom-up. Here, the leaf nodes represent the sources

being reduced, and the root represents the source which

is the result of the reducer. The evaluation of a reducer

expression tree is triggered by values being produced by

the leaf sources. Due to their asynchronous nature, we

refer to the runtime expression trees as dataow expres-

sion trees.

The expression of each individual metric and reducer

will be represented as a tree. However, these trees will

be composed at runtime, reecting the instantiation of

sources. Thus, the representation of an instantiated

source is, in general, a dataow graph that is built from

dataow expression trees.

In the following, we describe the translation of each

of AML's constructs into expression trees. As an exam-

ple, we will use the AML metric de�ned in Figure 6.

This is a simple metric that takes the response time

from a CCMS sensor, and multiplies its value by two.

3.2 Implementing Sources

As suggested by the AML syntax, a \provider" is a

source for generating events. When a provider registers

with an AML agent, it informs the agent about its at-

tributes, the values bound to those attributes, and the

events that it may generate. The AML agent is able

to accept inputs from a variety of sources, as long as

they conform to the \provider" Application Program-

ming Interface (API). In some cases, such as ARM [12],

an existing event-based API can be easily implemented

as a pass through to the AML agent. In other cases,

translation code layers can be used to pass events or

measurements taken from other systems into the AML

agent. For example, a management system such as

WBEM [4] gives access to a great number of system

metrics. To provide the ability to monitor WBEM in-

formation, the site-IT organization using AML would

create a translation layer between WBEM and AML.

This translation layer implements the \provider" lan-

guage construct of AML. As mentioned previously, we

expect the AML compiler to generate stub code from

provider type speci�cations. The stubs generated for a

particular provider type will de�ne the data format for

registration and event generation for providers of that

type.

When an event occurs, the provider generates an

event object, populates it with values for each of its

�elds, and passes it into an \eventInput" node via the

agent's API. As illustrated in Figure 7, the \eventIn-

put" node is the means of putting events into the ex-

pression tree context. These nodes form the interface

between the AML evaluator agent and the provider. In

practice, this interface is presented as a speci�c API.

This API contains methods for registering providers

when they start up and for transporting events from

these providers into the AML evaluator agent. This

API needs to be highly optimized to reduce the over-

head associated with the generation of events.

The following are some of the issues that arise in

implementing the provider abstraction and the Event

Input node.

� Filtering. Recall that AML supports the ability to

�lter incoming events according to their attributes.

Hence, if an event has the attribute user, then we

can �lter for response times for user \joe". In im-

plementing the provider abstraction, we need the

ability to execute these �lters, which will be handed

down in executable form by the run-time support.

Evaluating these �lters at the source is crucial to

the scalable nature of AML's implementation.

� Event distribution. There may be more than one

high-level goal that is subscribing to a particular

event. Assuming that there is an expression tree

per goal, the event needs to be distributed to the

Event Input nodes of each expression tree that sub-

scribes to it.

� Garbage collection. We need to know when an

event is no longer useful and can be safely dis-

carded. This knowledge is best kept in the

\eventInput" node, and not the provider abstrac-

tion. A variety of strategies for garbage collect-

ing events are possible including bounding the total

bu�er size, or the lifetime of a single event.

responseTimeX2 for CCMS f
val = responseTime.time * 2;

g;

FIG. 6. A simple metric

8 August|1998



SelectAttr(time) Constant(2)

*

Event Input

FIG. 7. The expression tree for the simple metric

3.3 Implementing Metrics

Figure 7 shows the expression tree that represents
the metric in Figure 6. At the bottom, the node labeled

EventInput corresponds to an event entering the sys-

tem. This node simply propagates the event up the tree
to it's parent the SelectAttr node. This node selects

a speci�c event attribute value, in this case the time

attribute, and propagates it up the tree to the multipli-

cation node. When the multiplication node receives the
value, it can look to its children to determine if they

all have values ready. In this case they will because

the constant node always has a ready value. When the
multiplication node is evaluated, it will pass its value

on up to its parent.

This approach is simple, and it helps satisfy a num-

ber of our criteria, including extensibility and timeli-
ness. We can extend AML with new language features

by introducing new types of tree nodes without break-

ing the overall structure. As an example, Section 3.5

describes how this approach permits us to implement
AML in a distributed environment. Additionally, in

some dynamic environments such as Java or ActiveX,

we can load the implementations for new types of nodes

into a running implementation. Because the evaluation
is driven by event occurrences rather than elapsed time,

the results generated will be timely with respect to the

events that generate them.

3.4 Implementing Reducers

As discussed previously, the AML language intro-
duces a set of built-in reduction operations: sum,

count, max, and min. These reduction operators are

commutative and associative. Thus, they have the im-
portant property that we can perform these operations

on a subset of all values, and combine these intermedi-
ate values to determine the proper global value. That
is,

a + b + c = (a + b) + c =

a + (b + c) = (b + a) + c

These properties permit us to perform reductions in
a distributed fashion, and bring the results together at
a later time to get the global result.

To implement reducers in AML, we introduce new
expression tree nodes corresponding to each of the built-
in reducers. Unlike normal expression tree nodes, these
nodes accumulate their values over an interval (note
that in the AML speci�cation, these reducers require
a period over which to reduce), and pass their values
up the tree only after that time has elapsed. At the

beginning of each interval, the current value is set to a
null value so that accumulation can begin fresh for the
next interval. By accumulating at the node, we need
not change the behavior of the expression tree evaluator
or the behavior of other nodes. Note that we do not
consider the issue of untimely delivery of events. The
reducer accumulates all values rceived during a time

interval regardless of when these values were actually
computed at their physical source.

3.5 Distributed evaluation

Evaluating AML speci�cations in a distributed envi-
ronment presents some interesting problems. First, how
do we accurately evaluate expressions involving multi-
ple machines. Second, what is the mechanism by which

distribution is performed. In both cases, the extensibil-
ity and exibility of the tree structure is the key.

Like reduction, distribution relies on our ability to

introduce new expression tree nodes to create new func-
tionality. To perform distribution, we simply introduce
\communication" nodes into the tree. When one of
these nodes receives a value, it communicates it to an-
other communication node on another machine that re-
ceives the value, then passes it up its expression tree.
Di�erent forms of communication nodes can be imple-

mented to handle di�erent communication infrastruc-
tures. In this way, we can easily port the entire AML
evaluator to a new communication subsystem by imple-
menting only one type of node. The rest of the system
is insulated from these changes.

Other issues in distributed evaluation include time-
liness, naming issues (domains), and scalability (evalu-
ating attributes when they are encountered, �ltering).

Figure 8 combines these concepts by showing how
the mean reducer of Figure 5 would be handled in a
distributed environment. At the bottom, we assume a
value has been created, perhaps by the multiplication

August|1998 9



node of the previous example. This node feeds both the

Sum and the Count nodes locally. This corresponds to
the fact that a source, S, in the reducer de�nition is

passed to both the sum and the count reducers. Both
the Sum and Count nodes are parameterized by the in-

terval, so they accumulate all of their values during that
interval, then pass them up to their corresponding com-

munication nodes. These nodes simply pass the value
across the communication substrate to the correspond-

ing communication nodes on the other end. The sub-
trees below the lowest communication nodes would be

replicated across all hosts in the system. The upper
communication nodes would only be on a central node,
and would pass values they receive up to the two Sum

nodes. Note here that the global operator to reduce in-
dividual Count operations is a sum, not another count.

Finally, when the interval is complete, the two values
are passed up to the division operator where the �nal,

global mean is computed. Because of the semantics of
a mean, the only place possible to do this division is at

a global point where all values are known.

4. Related Work

HP's Data Source Integration (DSI) language [11] is

used in conjunction with the HPMeasureware collection
agent [9]. DSI allows external measurement providers

to use the Measureware collection infrastructure. A DSI
speci�cation de�nes the format of a particular class of

measurement data that is produced by an external mea-
surement provider. In addition to the data format, DSI

also speci�es what the measureware agent should do
with the data. For example, a DSI speci�cation may

SUM(interval)
SUM(interval)

SUM(interval)
SUM(interval)

/
/

"Value"
"Value"

Receiver
Receiver

SUM(interval)
SUM(interval)

COUNT(interval)
COUNT(interval)

Sender
Sender

Receiver
Receiver

Sender
Sender

FIG. 8. An expression tree computing a mean across two

systems

contain instructions about logging policies and inter-

valization periods. In contrast to AML, DSI only ad-

dresses the interaction between measurement providers

and a single collection agent. DSI does not support dis-

tributed and hierarchical measurement reduction, not

does it support control of measurement providers based

on their attributes.

The InfoVista system [5] contains a language for de-

scribing metrics. It is possible to describe composite

metrics in terms of simpler metrics. However, InfoVista

does not support distributed computation of metrics:

composite metrics are computed at a centralized mea-

surement server. Instead of attribute-based naming of

measurement sources, InfoVista uses a model-based ap-

proach. Each managed element (in our case each ap-

plication component with an instrumentation point) is

represented as a separate object in InfoVista. Measure-

ment control is then expressed as explicit binding of

metrics to managed elements. We believe attribute-

based naming is more scalable, and therefore more ap-

propriate for monitoring end-user metrics. The Info-

Vista language does not support computation of met-

rics based on events. The base level of the language is

primitive metrics, which are computed outside of the

InfoVista system.

The distributed measurement system (DMS) [16, 13]

is an architecture for collecting performance measure-

ments from distributed applications. DMS has per-

computer measurement agents that collect, intervalize,

and transport measurement data to a central location.

An agent can receive measurement data from multi-

ple measurement sources on its computer. The notion

of threshold in DMS allows control of individual mea-

surement sources. They can be turned on and o� and

instructed to operate at di�erent levels of data aggre-

gation. A threshold corresponds to an intensity level

for measurement data. However, DMS only provides a

�xed set of intensity levels, there is no way to de�ne cus-

tom thresholds and use them for existing DMS measure-

ment sources. Moreover, DMS measurement sources

have unique names, there is no support for attribute-

based naming. Finally, DMS does not separate the

concepts of metric and intervalization: intervalization

is an inherent property of metrics. For example, there

is no way to obtain unintervalized response time data.

The stream concept in dataow languages, such as

Lustre [14] and ESTEREL [3], is similar to our notion

of a source. Where AML provides reducers to perform

computation of sources, these languages provide opera-

tors to perform computation over stream values. How-

ever, the data operators in Lustre and ESTEREL do

not support any notion of intervalization. Furthermore,

Lustre and ESTEREL do not support attribute-based

naming of data sources, nor do they provide operators

to specify the computation of values based on events.

10 August|1998



A number of management systems are based on the
observation and correlation of events. The MODEL sys-
tem [15] is an example of an event correlation system.
HP's IT/Operations (IT/O) [10] is another example.
Event correlation systems generally observe events at
multiple locations in a distributed system, and attempt
to reduce the low-level events observed to higher-level
events that capture the state of the managed system.
Where these systems convert measurement data and
low-level events to higher-level events, AML converts
low-level events to measurement data using metrics.

5. Conclusion

Managing large-scale distributed enterprise applica-
tions requires that we can accurately and e�ciently
monitor end-user metrics, such as availability and re-
sponse time. Two key challenges in monitoring such
metrics are scalability and expressiveness. The popula-
tion of users is typically very large, and the monitoring
system must be able to scale to very large numbers of in-
strumentation points. Also, the expression of measured
metrics and the scope of measurement (both time and
space) must be exible to accommodate a wide range of
management functions. We have introduced SoLOMon,
a distributed monitoring framework designed to provide
scalability and expressiveness. SoLOMon's scalability is
primarily achieved by reducing measurements as close
to their physical source as possible. Expressiveness in
SoLOMon is a result of using a high-level language,
AML, as a declarative front end to the measurement
system, making the system programmable.

The SoLOMon framework is built around the notion
of reducing events to values. A topic for future work
would be to extend the framework to provide ways to
generate events from values. Another extension is to
provide operators that reduce events to other events.

6. Acknowledgements

The work reported in this paper has bene�tted
greatly from interactions and discussions with a number
of individuals. We want to acknowledge the contribu-
tions of Muthusamy Chelliah who participated in the
early design meetings. Joe Martinka continually sup-

ported and encouraged our endeavors into distributed
measurement systems. We thank Joe Sventek for his
comments on a draft version of this paper. Finally, we
thank Brad Askins and Pankaj Garg for their feedback
on our work.

References

1. SAP AG. Database Administration, chapter 9. SAP AG, May

1997.

2. "Arvind, K.P. Gostelow, and W. Plou�e". "an asynchronous

programming language and computing machine". Technical

Report "UCI-TR114a", "U.C. Irvine", "Dept. of Information

and Computer Science, UC Irvine", "December" "1978".

3. G. Berry and G. Gonthier. The esterel synchronous pro-

gramming language: Design, semantics, and implementation.

Science of Computer Programming, 19:87{152, 1992.

4. Industry Consortium. Web based enterprise management ini-

tiative. http://wbem.freerange.com, 1997.

5. InfoVista Corporation. It quality of service management solu-

tions. Technology white paper from http://www.infovistacorp.com/,

March 1997.

6. "J.B. Dennis". "First Version of a Data Flow Procedure Lan-

guage", volume "19" of "Lecture Notes in Computer Science".

"Sprintger-Verlag", "1974".

7. Caryn Gillooly. Enterprise management: Disillusionment.

Information Week, pages 46{56, February 1998.

8. "J.R. Gurd, C.C. Kirkham, and I. Watson". "the manch-

ester prototype dataow computer". "Communications of the

ACM", "28"("1"):"34{52", "January" "1985".

9. Measureware agent: User's manual, 1995.

10. Hp openview it/operations concepts guide, June 1996.

11. Measureware agent: Data source integration guide, June

1996.

12. Hewlett-Packard. Application response management.

http://www.hp.com/-openview/rpm/arm/index f.html, 1997.

13. J.Martinka, R. Friedrich, and T. Sienknecht. Murky trans-

parencies: Clarity through performance engineering. Proc. of

the Intl. Conf. on Open Distributed Processing (ICODP'95),

February 1995.

14. N.Halbwachs, P.Caspi, P.Raymond, and D.Pilaud. The syn-

chronous dataow programming language lustre. Proc. of the

IEEE, 79(9), September 1991.

15. D. Oshie, A. Mayer, S. Kliger, and S. Yemini. Event model-

ing with the model language. In A. Lazar, R. Saracco, and

R. Stadler, editors, Integrated Network Management, 1997.

16. R.Friedrich, J.Martinka, T.Sienknecht, and S. Saunders. Inte-

gration of performance measurement and modeling for open

distributed processing. Proc. of the Intl. Conf. on Open

Distributed Processing (ICODP'95), February 1995.

August|1998 11




