
Wanted: Programming Support for
Ensuring Responsiveness Despite
Resource Variability and Volatility

George H. Forman
Software Technology Laboratory
HPL-98-15
February, 1998

E-mail: gforman@hpl.hp.com

variability in
response time,
software
frameworks,
futures,
concurrency,
multi-threading,
multi-resolution,
incremental
quality of service,
dynamic resource
allocation,
prioritization,
task garbage
collection,
mobile computing,
Petra-Flow

Applications running in networked mobile computing
environments are prone to a great deal of variability in the
response time they experience from system services, such as
an (implicitly distributed) file system or (explicit)
networking. The range of variability is much greater than in
traditional computing environments and changes
dynamically. Without special programming considerations,
such applications will exhibit unacceptable user
responsiveness when resources are slow.
Therefore, applications need to be flexible about their resource
demands if they are to remain usable through periods of
degraded service. There exist known techniques to cope with
resource variability, including incremental (multi-resolution)
results, concurrency, and dynamic resource allocation.
However, their programming cost is substantial, and
infrastructure support is weak. This raises the need for
general-purpose software frameworks and mechanisms to
support these techniques.
The author briefly describes such a framework. Through the
use of annotated futures, it implicitly constructs a data-flow
graph of outstanding concurrent tasks, which affords a
degree of meta-level reasoning. The experimental
implementation capitalizes on this graph by automating
some resource allocation activities.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

2

1 Introduction
Our purpose here is to discuss the need for programming support to ensure that applications exhibit

good response time to the user despite resources that may give variable, and at times, unsatisfactory
service. We begin by motivating the problem of variability and the challenge of writing software to cope
with it. Later sections give known techniques for coping with variability and suggest a candidate
framework that supports these.

1.1 Response Time Variability

It can be extremely aggravating when the programs we use exhibit poor response time, especially if
our expectations of responsiveness are dumbfounded by high variability [Nic69,Rus86]. Supposing we
download an acclaimed program to our wireless-capable, Java-enabled mobile computer—it is prone to
exhibit poor responsiveness in our networked1 mobile computing environment for a number of reasons:

1. network bandwidth variation between wired and wireless access—to illustrate, there are 5 orders of
magnitude difference between 155 Mbps ATM and 9600 bps wireless modem,

2. variable network latency due to sporadic setup delay2—mobile computers may have to establish
wireless networking on demand to save on connection costs or to recover from lost connections,

3. variable network delays due to wireless interference—intermittent interference may cause reduced or
zero bandwidth for brief periods,

4. location-dependent resource variability as we change locations—e.g., in a conference room we may
have 2 Mbps wireless network service with a heavy-duty proxy server available, whereas on the road
we may resort to a 9600 bps wireless modem and our outdated home machine as proxy server,

5. variations in processing capability—the application might have been written with the expectation of a
266 MHz processor with specialized multimedia processing capabilities in hardware, whereas our
mobile device may have no special hardware for multimedia and might (always or at times) process
instructions much slower to save battery life and,

6. shared resource variability—shared resources, such as CSMA wireless networks, exhibit varying
responsiveness according to current user load, and

7. variable data magnitude—the trend toward sporadic inclusion of multimedia content into some
documents can drastically vary their transfer and processing time3.

Furthermore, applications running on mobile computers are likely to be dependent on the performance
of the network and remote services. This is because their use is often as a communicator or information
utility, and considering their limited computing resources, it is natural to compensate by employing remote
services. This dependence on remote services may be transparent to the application, such as with remote
file systems [Kis92], or remote virtual memory paging [Sch91].

1.2 Challenge to Programming

There is an inherent tradeoff between response time and the quality of results presented to the user
(amount of work done). For example, repainting a window as it is dragged with the mouse in real time
gives a higher quality experience than just dragging an outline of the window, but at the cost of less
responsive movement if insufficient computing resources are available.

Traditionally, programmers have managed this balance, often unawares, by static sizing: they scale the
amount of processing their application requires based on its response time on a specific platform, typically
their own. Such applications running on less endowed platforms will exhibit poor responsiveness, and on
more endowed platforms will forgo opportunities for higher quality. With variable resources, both
disadvantages may be experienced at different times.

1 The scope of this paper does not include overcoming delays due to complete network disconnection, an
important feature in some mobile computing environments.
2 CDPD call setup time is a few seconds, whereas analog cellular modems typically require 20-30 seconds.
3 Some of these issues are more general than mobile computing.

3

The follow-on is dynamic sizing: programmers write their application to size its workload according to
the environment. For example, measure network bandwidth and scale the image resolution to be transferred
so that it meets a response time target. This lies at the heart of much of the work in quality of service
negotiation [e.g., Zha93]. Consider what is required: (1) applications capable of multiple service levels, (2)
a predictive model of the response time/workload at each service level, (3) a mechanism to sense the
current resources of the environment for selecting a service level, (4) optionally, the capability to make
resource reservations, which may have to be revoked later, (5) the capability to monitor an ongoing
operation to detect early that it will not meet its objective due to either changes in the environmental
resources/reservations or errors in the performance model, and (6) a mechanism to cancel and renegotiate
an operation at a different service level, preferably not throwing away work that has already been
accomplished.

This is a lot to get working correctly. In addition, the paradigm of quality of
service negotiation breaks down in environments where resource variability may be
highly dynamic. In a volatile environment, the measurement of current resources has
little bearing on the actual resources available when the operation is finally
performed. At high volatility, the system may be reduced to thrashing as it constantly
renegotiates service levels. The conceptual graph to the right distinguishes variable
resource environments along two axes: the range of variation and the rate of variation
(volatility). Dynamic sizing is appropriate for a wider range of variation than static
sizing; however, “flexible” techniques are required to expand into the space of high
volatility. The remainder of this paper addresses techniques and support for building
applications that can operate effectively in all these regions.

2 Obtaining Responsive Behavior Despite Variability and Volatility
How can applications behave with good responsiveness towards the user, even though the resources

they depend on are unpredictable? We forward four principal techniques [For96,Dui90]:

Incremental Results (a.k.a. multi-resolution encoding, progressive transmission/computation): The notion
is to do the most important bits first and improve on quality as resources become available, if at all
possible, without taking any more time than it would have taken to do the work in the straightforward
order. This technique can be applied to a broad variety of domains: images, movies, audio, object
graphics, 3-D models, compound documents—even to the order in which portions of a graphical user-
interface are drawn.

Concurrency: In traditional, sequential programming, the time to complete each statement depends on the
response time of those before it, even if there is no data dependency. This is perilous for response time
in an environment where some tasks may unpredictably take a long time. By making tasks independent
of each other wherever possible (e.g., all but for data-flow constraints), the opportunity for forward
progress is maximized. This is especially important in mobile computing, where the dependence on
remote services may be implicit and non-obvious to the programmer, making it difficult to predict the
portions of their application that need special attention to ensure non-blocking behavior. We can
minimize this risk by exposing as much concurrency as possible.

Dynamic prioritization: As the user’s priorities shift, revealed for example by shifting focus between
windows, the outstanding tasks associated with each window may be profitably re-prioritized to
allocate most resources to what the user is currently attending to, at the cost of delaying tasks that are
not of immediate interest.

Cancellation: In an environment where asynchronous tasks may take a long time to finish, newer user
actions can cause outstanding tasks to become obsolete. By detecting these situations and terminating
obsolete tasks proactively, we can conserve resources, improving responsiveness for the tasks of
current interest.

These responsiveness-enhancing techniques come with a significant cost in programming complexity,
and so are used only sparingly by today’s programmers. Programming support for these techniques by

range of variation

static
sizing

dynamic
sizing

ra
te

 o
f

va
ri

at
io

n

flexible

4

popular languages and libraries is weak and spotty, at best. Thread interfaces are relatively low level and
inconvenient to use for small pieces of concurrent work.

We therefore propose an important area for software research: to develop general purpose
frameworks that effectively support programmers in building applications that exhibit good
responsiveness in volatile, variable-resource environments, e.g., general support for the techniques
listed above.

3 The Petra-Flow Framework
Here we very briefly summarize one such candidate framework, Petra-Flow [For96]. The basic notion

is to use futures to expose concurrency, and extend their capabilities to support the incremental delivery of
results to their consumers. The framework supplies implicit data management and synchronization for the
incremental results, which conceptually flow down through a data-flow graph.

This bipartite DAG of concurrent tasks and program storage locations is constructed implicitly
according to the read/write parameters of annotated asynchronous procedure calls (futures). The graph
affords a global view of the outstanding work to be done and gives opportunities for standard compiler
optimizations. For example, the framework automatically eliminates write-after-write and read-after-write
hazards via an analog of variable renaming. This avoids having to delay execution of a new task that might
overwrite a needed data value. The framework also detects when the old value to be generated is dead, in
which case, it performs the equivalent of garbage collection on the graph. Obsolete tasks are those on
which no program output or variable is dependent. Obsolete tasks might occur, for example, when moving
on to a new Web page before the incremental processing of the previous page is complete. Any tasks that
become obsolete are signaled to terminate by sending them an exception. Once they have all ended, the
anonymous storage locations are recycled.

This global view of the outstanding work to be done and its interdependencies is leveraged in two
other important ways: dynamic resource allocation and debugging views. When the relative priority of an
output changes, such as when a window is iconified or brought to the foreground, the Petra-Flow
framework supports propagating this priority change to the upstream tasks, as appropriate to the
programmer-selected priority semantics. Such shifts in priority can be propagated to network connections
and remote servers, as well.

The main point is that all of these responsiveness-enhancing features are factored out of the
applications themselves and implemented just once in a general purpose framework, leveraging
software re-use. Details of the Petra-Flow framework, a C++ implementation on pthreads, and its
practical evaluation in three application areas can be found in [For96]4.

4 Conclusion
We believe successful applications must offer the user consistently acceptable response time despite

tremendously variable service from the mobile computing environment. Mobility and wireless networking
cause much of this variability.

Further, we believe it is both essential and practical to develop programming support for techniques
that insulate against service variability. Without this, programmers must expend much more effort to
implement such techniques, and so they will be applied only sparingly. This results in software that locks
up awkwardly during periods of scarce resources. Which software would you rather have?

Finally, we believe that solutions in this space will find great use beyond mobile computing as well.
Stationary computers are facing increased service variability with the ubiquitous use of wide area
networking and resource sharing, and the sporadic inclusion of multimedia content. Interestingly, there is a
related need in building troubleshooting tools for IT administrators—such tools must operate robustly and
with robust performance even when the environment is behaving poorly, unlike typical user applications,
which give themselves permission to simply quit or hang if, say, the distributed file system is not working
(promptly).

4 We found that incremental processing of results is particularly prone to lock priority inversion. The thesis
also contains a novel locking mechanism that reduces this problem.

5

Acknowledgements

I am grateful to John Zahorjan for his guidance and clarity of thought in this research. I also wish to
thank Keith Moore and Chelliah Muthusamy for their support and valuable feedback on this position paper.

References

[Dui90] D. Duis and J. Johnson. Improving user-interface responsiveness despite performance limitations.
In IEEE COMPCON, Spring ’90, pages 380-386, 1990.

[For96] G. H. Forman. Obtaining responsiveness in resource-variable environments. PhD dissertation,
Computer Science & Engineering Dept., Univ. of Washington, 1996.
Available at ftp://ftp.cs.washington.edu/tr/1998/01/UW-CSE-98-01-05.PS.Z

[Kis92] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Code file system. ACM
Transactions on Computer Systems, 10(1):3-25, Feb. 1992.

[Nic69] R. S. Nickerson. Man-computer interaction: a challenge for human factors research. IEEE
Transactions on Man-Machine Systems, 10:164-180, Dec. 1969.

[Rus86] A. Rushinek and S. F. Rushinek. What makes users happy? Communications of the ACM,
29:594-598, 1986.

[Sch91] B. N. Schilit and D. Duchamp. Adaptive remote paging for mobile computers. TR CUCS-004-91,
Dept. of Computer Science, Columbia University, Feb. 1991.

[Zha93] L. Zhang, S. Deering, D. Estrin, S. Shenker and D. Zappala. RSVP: A New Resource
ReSerVation Protocol. IEEE Network, 7(5):8-18, 1993.

