
Quality of Service Aware
Distributed Object Systems

Svend Frølund, Jari Koistinen
Software Technology Laboratory
HPL-98-142
August, 1998

E-mail: [frolund,jari]@hpl.hp.com

QoS-specification,
QoS-enabled trading,
distributed object
systems,
object component
specification,
object interoperability,
quality of service,
object-oriented
programming

Computing systems deliver their functionality at a certain level of
performance, reliability, and security.  We refer to such non-
functional aspects as quality-of-service (QoS) aspects.  Delivering a
satisfactory level of  QoS is very challenging for systems that operate
in open, resource varying environments such as the Internet or
corporate intranets. A system that operates in an open environment
may rely on services that are deployed under the control of a different
organization, and it cannot per se make assumptions about the QoS
delivered by such services.  Furthermore, since resources vary, a
system cannot be built to operate with a fixed level of available
resources.  To deliver satisfactory QoS in the context of external
services and varying resources, a system must be QoS aware so that
it can communicate its QoS expectations to those external services,
monitor actual QoS based on currently available  resources, and
adapt to changes in available resources.
A QoS-aware system knows which level of QoS it needs from other
services and which level of QoS it can provide. To build QoS-aware
systems, we need a way to express QoS requirements and properties,
and we need a way to communicate such expression.  In a realistic
system, such expression can become rather complex.  For example,
they typically contain constraints over user-defined domains where
constraint satisfaction is determined relative to a user-defined
ordering on the domain elements.  To cope with this complexity we
are developing a specification language and accompanying runtime
representation for QoS expressions.  This paper introduces our
language but focuses on the runtime representation of QoS
expressions.  We show how to dynamically create new expressions at
runtime and how to use comparison of expressions as a foundation for
building higher-level QoS components such as QoS-based traders.

  Copyright Hewlett-Packard Company 1998

Internal Accession Date Only



Quality of Service Aware Distributed Object Systems

Svend Fr�lund

Hewlett-Packard Laboratories, frolund@hpl.hp.com

Jari Koistinen

Hewlett-Packard Laboratories, jari@hpl.hp.com

Keywords: QoS-speci�cation, QoS-enabled Trading, Distributed Object Systems, Object Component Speci�cation, Object

Interoperability

Computing systems deliver their functionality at a cer-
tain level of performance, reliability, and security. We refer
to such non-functional aspects as quality-of-service (QoS)
aspects. Delivering a satisfactory level of QoS is very chal-
lenging for systems that operate in open, resource varying
environments such as the Internet or corporate intranets.
A system that operates in an open environment may rely
on services that are deployed under the control of a di�er-
ent organization, and it cannot per se make assumptions
about the QoS delivered by such services. Furthermore,
since resources vary, a system cannot be built to operate
with a �xed level of available resources. To deliver satis-
factory QoS in the context of external services and varying
resources, a system must be QoS aware so that it can com-
municate its QoS expectations to those external services,
monitor actual QoS based on currently available resources,
and adapt to changes in available resources.

A QoS-aware system knows which level of QoS it needs
from other services and which level of QoS it can pro-
vide. To build QoS-aware systems, we need a way to ex-
press QoS requirements and properties, and we need a way
to communicate such expressions. In a realistic system,
such expressions can become rather complex. For exam-
ple, they typically contain constraints over user-de�ned do-
mains where constraint satisfaction is determined relative
to a user-de�ned ordering on the domain elements. To
cope with this complexity we are developing a speci�ca-
tion language and accompanying runtime representation
for QoS expressions. This paper introduces our language
but focuses on the runtime representation of QoS expres-
sions. We show how to dynamically create new expressions
at runtime and how to use comparison of expressions as a
foundation for building higher-level QoS components such
as QoS-based traders.

1. Introduction

1.1 Future of Distributed Enterprise Systems

c
 1998 Hewlett-Packard Company.

Enterprises increasingly rely on distributed computer
systems for business-critical functions. They often use
such systems for internal information sharing, handling
of business tasks such as orders and invoices, and ac-
counting. In addition, businesses increasingly rely on
distributed systems for their interactions with other
business such as partners, customers, and sub contrac-
tors.

Since distributed systems are business critical, they
must not only provide the right functionality, they must
also provide the right quality-of-service (QoS) charac-
teristics. By QoS, we refer to non-functional properties
such as performance, reliability, quality of data, timing,
and security. For some applications, best-e�ort QoS is
acceptable; while others require predictable or guaran-
teed levels of QoS to function properly. In real-time sys-
tems, for example, timing is essential for correctness. In
banking systems, security is necessary and must not be
compromised. Business-critical enterprise systems and
telecommunications systems must be highly available.

Ideally we like all systems to be up 100% of the time,
be fully secure and deliver exceptional performance.
Unfortunately, building such systems is not realistic. In
practice, we need to make trade-o�s between QoS and
cost of development and between di�erent QoS cate-
gories. For example, achieving very high reliability is
not only technically di�cult, it is also very costly. Fur-
thermore, providing very high reliability will also im-
pose a performance overhead. QoS requirements, such
as reliability, cannot be considered in isolation, they
must be considered in the context of development cost
and other QoS requirements, such as performance and
security.

It is also common that a technology for satisfying one
QoS aspect will not be compatible with a technology
for satisfying another QoS aspect. As an example, it
might be di�cult to combine a group communication

April, 1998 QoS Awareness



mechanism for high availability with certain security

mechanisms.

To �nd the right solution for an enterprise computing

system, we need to understand the cost of not satisfying

certain QoS requirements and the cost of implementing

and using mechanisms that provide a speci�c QoS level.

To complicate things further, the cost of unsatisfactory

QoS characteristics may vary according to the time of

day, day of the week, and week of the year. It is also

the case that the relative importance of speci�c QoS

characteristics may vary over time. During day time

availability might be more important than performance

due to online sales transaction processing. During the

night, accounting functions might need maximum per-

formance to �nish within a certain time.

In summary, we believe that enterprises will become

increasingly dependent on distributed systems both for

internal business automation and for the interaction

with other enterprises and end customers. This will

not only require the right functionality to be provided

but also that the systems provide adequate quality-of-

service. There are many issues in building systems with

adequate QoS, and we believe that QoS must be con-

sidered systematically throughout the life-cycle of dis-

tributed enterprise systems. The goal is to support

QoS-enabled systems, and we present a QoS fabric that

is an essential building block for such systems.

1.2 QoS-Enabled Systems

We refer to systems that understand the notion of

QoS and can provide de�ned levels of QoS as QoS-

enabled systems. We believe that to build future enter-

prise systems we will need to make them QoS enabled.

QoS enabling involves many di�erent components such

as:

� Mechanisms : The ability to provide distinct lev-

els of QoS through combinations of mechanisms

such as di�erent reliability and security solutions.

� Adaptability : The ability to select services based

on the QoS that they provide. Examples of this is

QoS-based trading and QoS negotiation. Adapt-

ability also involves the ability to provide graceful

degradation.

� Monitoring : The ability to monitor the QoS that

is provided and received and to check compliance

with existing contracts.

� QoS Awareness : The ability to describe what

QoS can be provided by a speci�c service and what

QoS that it requires.

� Meta Data : Information about current load,

number of deals, and available resources.

Mechanisms

SLL

Group Comm.

Primary/Backup

QoS Awareness

trading monitoring
negotiation

FIG. 1. Dependencies for QoS Enabling

Today, most systems are not QoS enabled. Rather
they provide ad hoc or best-e�ort QoS. Sometimes spe-
cial security, reliability, or other mechanisms are used,
but applications are still unaware of the QoS that is re-
quired and provided. Figure 1 illustrates the dependen-
cies of the di�erent component of QoS enabling. First
one needs a variety of mechanisms|such as reliability

and encryption protocols|that enable a system to sat-
isfy QoS requirements. To be able to describe, negoti-
ate and monitor QoS, the system needs a special pro-
tocol and description technique that makes them QoS
aware. This paper focuses on such a language and a
runtime representation for making distributed systems
QoS aware.

1.3 QoS-Aware Systems

For a distributed system to deliver predictable QoS,
it must be QoS aware. A system typically has QoS
obligations towards its users and to ful�ll those obliga-

tions, it needs to receive predictable QoS from other sys-
tems. To deliver predictable QoS, a system must know
its obligations and it must know which requirements to
impose on other systems in order to meet those obli-
gations. Systems must establish QoS agreements with
each other and be able to monitor compliance of those
agreements. Establishing QoS agreements require that
systems know, and can can exchange, their respective
requirements and properties.

For example, consider a distributed currency trad-
ing system. The front-end component of the system
presents a user interface to human currency traders.
The front-end uses a rate service to get rate updates and
a currency trading service to perform currency trades.
In order for the front-end to deliver predictable QoS to

its human users, it must receive predictable QoS from
the rate service and currency trading service. For exam-
ple, the front-end may expect the rate service to be up
99 % of the time, deliver rate updates every minute, and
provide information for a speci�c set of currencies. If
the front-end is designed to work with a particular rate

2 April|1998



service, these expectations can be incorporated into the

overall system design. However, if the front-end con-

nects to a rate service on the Internet, it needs to be

explicit about these expectations and establish a QoS

agreement with a rate service based on these expecta-

tions.

Figure 2 illustrates the structure of this simple sys-

tem and how QoS information need to 
ow dynamically

in the system.

To facilitate the establishment of QoS agreements in

distributed object systems, we need a way to specify

the QoS requirements of clients (such as the front-end

of the currency trading system) and the QoS properties

of services (such as the rate service). We also need a

way to communicate these speci�cations and compare

them to determine if a particular service meets the re-

quirements of a particular client.

The use of QoS speci�cations in distributed systems

requires adequate tool support. Constructing and man-

aging QoS speci�cations in an ad hoc manner is compli-

cated because of the expressive power required and be-

cause we need to compare speci�cations to determine if

one satis�es another. In terms of expressive power, QoS

speci�cations essentially consist of constraints. How-

ever, the structure of these constraints is fairly com-

plex. We need constraints over user-de�ned domains

with a user-de�ned ordering, and we need constraints

over statistical properties, such as mean, variance, and

percentiles. Moreover, we need to bind these constraints

to �ne-grained entities, such as operation arguments,

and to coarse-grained entities, such as interfaces. The

required expressive power also makes it hard to com-

pare speci�cations in an ad-hoc manner. For example,

the comparison algorithm must operate on user-de�ned

domains and take user-de�ned orderings into account.

Rather than use the data structures of conventional

programming languages, we have a developed a special-

purpose speci�cation language, called QML. To make it

practical, we have integrated QML with existing tech-

nologies for distributed systems, such as interface de�-

nition languages, and design languages (UML).

This paper describes a QML-based QoS fabric that

allows us to systematically use QoS speci�cations at

runtime. Our QoS fabric is called QRR (QoS Runtime

Representation). It enables higher-level QoS functions,

such as establishment of QoS agreements.

For the purpose of this paper we will use QML to

introduce the fundamental concepts behind QRR, be-

cause QML supports these concepts in the most di-

rect manner. We then show how these concepts can

be mapped to QRR as a combination of C++ classes

and CORBA IDL type de�nitions. Because the basic

types of QRR are speci�ed in IDL, we can communi-

cate QRR objects in a CORBA infrastructure. QRR is

not inherently tied to C++ or CORBA IDL, we could

RateService

CurrencyTrading

QoS Offer

QoS Offer

Front−end

QoS Requirement

QoS Requirement

FIG. 2. Structure of the currency trading system

also implement QRR in JAVA and other languages, and

DCOM and other distributed object infrastructures.

In pursuing QoS mechanisms for distributed object

systems we have come to appreciate a speci�cation and

representation format for QoS highly. Few QoS mech-

anisms can be built without one. In addition, open

systems will require a common speci�cation technique

and format analogously to the IDL and IIOP standards.

We believe QML and QRR could be a �rst step towards

such a standard and enable more widely deployed QoS

mechanism in future distributed object systems.

The paper is organized as follows. Section 2 intro-

duces QML and its underlying concepts for QoS spec-

i�cation. We then describe QRR in Section 3.1. We

outline how we represent the QML concepts in terms of

C++ and CORBA IDL, and we show the architecture of

the QRR QoS fabric. We illustrate how to use QRR to

implement distributed object systems with predictable

QoS in Section 4. Finally, we give a brief overview of

related work in Section 5, and we conclude in Section 6.

2. QML: A Language for QoS Speci�cation

QML is a general-purpose QoS speci�cation lan-

guage; it is not tied to any particular domain, such as

real-time or multi-media systems, or to any particular

QoS category, such as reliability or performance. QML

captures the fundamental concepts involved in the spec-

i�cation of QoS properties. Here, we give a brief intro-

duction to these fundamental concepts. For a complete

QML language de�nition, including formal syntax and

semantics, consult [5].

QML has three main abstraction mechanisms for

QoS speci�cation: contract type, contract , and pro�le.

A contract type represents a speci�c QoS category, such

as performance or reliability. Contract types a user-

de�ned abstractions, there are no built-in contract types

in QML. A contract type de�nes the dimensions that

can be used to characterize a particular QoS category.

A dimension has a domain of values that may be or-

dered. There are three kinds of domains: set domains,

enumerated domains, and numeric domains. A con-

tract is an instance of a contract type and represents

a particular QoS speci�cation. Finally, QML pro�les

April|1998 3



associate contracts with interface entities , such as op-

erations, operation arguments, and operation results.

We use the currency trading example from the intro-

duction to illustrate the QML speci�cation mechanisms.

We show how to specify QoS properties for a rate ser-

vice object. Figure 3 gives a CORBA IDL [14] interface

de�nition for a rate service object. It provides an oper-

ation, called latest, for retrieving the latest exchange

rates with respect to two currencies. It also provides an

operation, called analysis, that returns a forecast for

a speci�ed currency. The interface de�nition speci�es

interface RateServiceI f
Rates latest(in Currency c1,in Currency c2)

raises(InvalidC);

Forecast analysis(in Currency c) raises(Failed);

g;

FIG. 3. The RateServiceI interface described in CORBA

IDL

type Reliability = contract f
numberOfFailures: decreasing numeric no/year;

TTR: decreasing numeric sec;

availability: increasing numeric;

g;

type Performance = contract f
delay: decreasing numeric msec;

throughput: increasing numeric mb/sec;

g;

systemReliability = Reliability contract f
numberOfFailures < 10 no / year;

TTR f
percentile 100 < 2000;

mean < 500;

variance < 0.3

g;
availability > 0.8;

g;

rateServerProfile for RateServiceI = pro�le f
require systemReliability;

from latest require Performance contract f
delay f

percentile 80 < 20 msec;

percentile 100 < 40 msec;

mean < 15 msec

g;
g;

from analysis require Performance contract f
delay < 4000 msec

g;
g;

FIG. 4. Contracts and Pro�le for RateServiceI

the syntactic signature for a service but does not specify

any semantics or non-functional aspects. Using QML,

we can specify the QoS properties for this interface.

The QML de�nitions in Figure 4 include two con-

tract types Reliability and Performance. The

Reliability contract type de�nes three numeric di-

mensions. The �rst dimension (numberOfFailures)

represents the number of failures per year. The keyword

\decreasing" indicates that a smaller number of failures

is better than a larger one. Time-to-repair (TTR) rep-

resents the time it takes to repair a service that has

failed. Again, smaller values are better than larger

ones. Finally, the dimension called availability rep-

resents the probability that a service is available. For

the availability dimension, larger values are better

than smaller values.

In Figure 4 we also de�ne a contract called

systemReliabilty of type Reliability. The contract

speci�es constraints over the dimensions de�ned in the

Reliability contract type. The �rst constraint speci-

�es an upper bound for the number of failures. The sec-

ond constraint applies to the TTR dimension. This con-

straint uses statistical properties, such as mean, vari-

ance, and percentiles, to characterize QoS along the TTR

dimension. In QML, we refer to such statistical proper-

ties as dimension aspects . The aspect \percentile 100

< 2000" states that the 100th percentile must be less

than 2000.

Next, we introduce a pro�le called rateServerProfile

that associates contracts with entities in the rateServiceI

interface. The �rst requirement clause in the pro�le

states that the service should satisfy the previously de-

�ned systemReliability contract. Since the clause

does not refer to any particular operation, it is consid-

ered a default requirement that applies to every opera-

tion within the rateServiceI interface. Being part of a

default requirement, the systemReliability contract

is called a default contract for the pro�le. Contracts for

individual operations are allowed only to strengthen (re-

�ne) the default contract. In the rateServerProfile

there is no default performance contract; instead we as-

sociate individual performance contracts with the two

operations of the RateServiceI interface. For latest

we specify in detail the distribution of delays in per-

centiles, as well as a upper bound on the mean delay.

For analysis we specify only an upper bound and can

therefore use a slightly simpler syntactic construction

for the expression. Since throughput is omitted for

both operations, there are no requirements or guaran-

tees with respect to this dimension.

We have now speci�ed example reliability and per-

formance requirements for the rateServiceI interface.

Although the rateServerProfile is speci�ed in terms

of an interface (rateServiceI), it characterizes the QoS

of a particular implementation of this interface. We

can specify multiple pro�les for the same interface, and

4 April|1998



use distinct pro�les for di�erent implementations. The

key to this 
exibility is that QoS speci�cations are not

embedded within an interface, but de�ned as separate

entities.

Intuitively we would say that the constraint

\delay < 10" is stronger than the constraint \delay <

20." This relationship between the two constraints is

due to the fact that delay is a decreasing dimension

(smaller values are better) and the fact that the value 10

is smaller than the value 20. In QML, we formalize this

notion of \stronger than" for constraints and de�ne a

general conformance relation over constraints. Stronger

constraints conform to weaker constraints. We then

use this conformance relation on constraints to de�ne

conformance relations on contracts and pro�les. Con-

formance is an important aspect of QoS speci�cations

because it enables us to compare speci�cations based

on constraint satisfaction rather than exact match. As

we show in Section 4, conformance is essential for im-

plementing a QoS-based trader: the QoS-based trader

should select any service whose QoS properties conform

to the client's requirements, the trader should not just

select the services whose properties are identical to the

client's requirements.

QoS speci�cations can be used in many di�erent sit-

uations. They can be used during the design of a sys-

tem to understand and document the QoS requirements

that must be imposed on individual components to en-

able the system as a whole to meet its QoS goals. In [6]

we show how to use QML at design time. The focus of

this paper is the use of QoS speci�cations as �rst-class

entities at runtime.

3. Requirements for a QoS Fabric

Our QoS fabric, QRR, is based on the following re-

quirements:

1. QRR should support the same fundamental con-

cepts as QML. We want to use the same QoS spec-

i�cation concepts during design and implementa-

tion. Using the same concepts implies that QML's

precise, formal de�nition [5] carries over to QRR.

A precise de�nition improves the interoperability

of di�erent QRR/QML components.

2. Since some QoS requirements may not be known

until runtime, it should be possible to dynami-

cally create new QRR speci�cations. Rather than

use dynamic compilation for such speci�cations,

we want to call generic creation functions in the

QRR library. Dynamic compilation implies that

the QML compiler must be available at all nodes

in a distributed system. Moreover, dynamic compi-

lation is likely to impose a signi�cant performance

penalty.

3. It should be possible to explicitly check consis-

tency of dynamically created speci�cations against

the static semantic rules of QML/QRR. The QML

compiler checks the rules for compiled speci�ca-

tions. We need a library function that checks the

rules for dynamically created speci�cations.

4. Once created, there should be ways to manipulate

QRR speci�cations. For example, a QoS o�ering

by a server may have to be adjusted relative to the

current execution environment to accurately re
ect

what QoS the client will actually receive.

5. QRR should impose a minimal overhead and be

scalable.

6. QRR should provide a minimal set of generic build-

ing blocks for runtime QoS speci�cation. In partic-

ular, QRR speci�cations should be independent of

the mechanisms and applications that use them.

For example, in negotiation, as well as trading, we

are interested in agreements between parties in-

volving commitments from both sides. Thus we

are dealing with structures consisting of pairs of

QoS speci�cations (one for each party). Rather

than provide an agreement abstraction in QRR, we

only provide the basic building blocks that repre-

sent QoS speci�cations. It is then up to the mech-

anisms and applications to use these basic building

blocks to create composite structures.

We are implementing QRR to satisfy these require-

ments. Currently, we have implemented a prototype

QML compiler and a prototype QRR library. We have

successfully compiled QML speci�cations into QRR, in-

stantiated those speci�cations in a CORBA environ-

ment, communicated the speci�cations between dis-

tributed components, and compared them using a con-

formance checking function that is part of the QRR

library.

3.1 QRR: A QML-Based QoS Fabric

The QRR implementation contains a generic C++ li-

brary that allows applications to create QRR speci�ca-

tions and to check conformance of these speci�cations.

This library is linked into applications that use QRR.

The library de�nes a number of data types that are used

to represent QRR speci�cations in C++. These data

types are generated from CORBA IDL type de�nitions

to facilitate the communication of QRR speci�cations

between distributed CORBA objects.

In addition to the generic library, the implementation

also contains a QML to QRR compiler. This compiler

emits a mix of IDL and C++ code to represent a partic-

ular QML speci�cation. The emitted IDL code consists

of types that represent that QML speci�cation. The

C++ code contains functions to create QRR instances

of the QML speci�cation. The emitted IDL code is

translated into C++ using a conventional IDL compiler.

April|1998 5



3.2 Representation

We describe the representation of QML constructs

in terms of CORBA IDL and C++. Pro�les are rep-

resented as instances of the profile struct shown in

Figure 5. They contain the pro�le name, the interface

name, a sequence of default contracts (dcontracts),

and a sequence (profs) of structs, each associating an

interface entity with a set of contracts. The profs se-

quence represents the individual contracts of the pro-

�le. In QRR, all pro�les are instances of the profile

struct. For a particular pro�le speci�ed in QML, the

QML compiler emits a C++ function that constructs

an instance of the profile struct. The C++ function

also constructs and assigns appropriate data structures

to the �elds of this struct.

struct profile f
string pname;

string iname;

contractSeq dcontracts;

entityProfileSeq profs;

g;

FIG. 5. IDL for pro�le

QoS constraints are represented as instances of the

struct constraint in Figure 7. A constraint struct

has a sequence of aspect structs, as well as a tag

indicating whether it is a simple constraint|such as

\delay < 10'|or a set of aspects representing statisti-

cal characterizations. We de�ne a separate struct type

for each aspect kind, however, the �gure only shows

the struct used to represent mean aspects. Because

IDL does not allow polymorphism for structs, we can-

not directly re
ect the relationship between the general

notion of aspects, captured by the aspect struct, and

particular aspect types such as mean. Instead of de�n-

ing particular aspect types as subtypes of aspect, we

de�ne an any �eld in instances of aspect that contains

a particular aspect instance. We also de�ne a type tag

in instances of aspect that indicates which particular

aspect type has been wrapped in the any �eld.

We provide two alternative representations for con-

tracts and contract types. In the generic representa-

tion, all contracts are instances of the same type, and

this type is then part of the QRR library. In the static

representation, only contracts of the same QML con-

tract type are instances of the same QRR type. In ad-

dition, the QRR types used for the static representation

are emitted by the QML compiler.

The static representation requires that the emitted

QRR types are linked into the application that instan-

tiates them. On the other hand, the static representa-

tion facilitates a more e�cient implementation of con-

formance checking and other QRR functions.

With the generic representation, applications can

dynamically create and communicate contracts whose

types are not known at compile time. However, ma-

nipulation and analysis of contracts is less e�cient in

the generic mapping because the structure of contracts

must be discovered dynamically.

Although we describe them as separate representa-

tions, our goal is to allow their simultaneous use to

achieve maximum 
exibility and performance. Since

our current implementation only supports the static

representation, we only give a brief overview of the

generic representation and concentrate primarily on the

static representation.

The IDL de�nitions in Figure 8 describe some ele-

ments of the generic contract representation. In the

generic representation, all contracts are instances of

the struct called contract. A contract's dimensions

are then represented as a sequence of structs of type

dimension. A contract has a type identi�er (tid) that

refers to its contract type. Contract types are built from

various generic structs that capture all the information

about domains and their ordering. These type repre-

sentations are quite elaborate as they contain informa-

tion about all values, how these values are ordered, and

whether the dimension is increasing or decreasing. Due

to space constraints we do not describe these type struc-

tures in detail in this paper.

With the static representation, the QRR compiler

will map a QML contract type into a number of C++

classes and an IDL struct. The C++ classes repre-

enum aspectKind f
ak_freq, ak_perc,

ak_mean, ak_var,

ak_simple

g;

struct mean f
operators op;

value num;

g;

struct aspect f
aspectKind ak;

any asp;

g;

typedef sequence <aspect> aspects;

enum constrKind f ck_simple, ck_stat g;

struct constraint f
constrKind ck;

aspects asps;

g;

FIG. 7. IDL for aspect and constraint

6 April|1998



struct dimension f
string name;

constraint constr;

g;

struct contract f
tid ct;

sequence<dimension> dims;

g;

FIG. 8. IDL for generic contracts

sent the contract type itself. They contain information

about the domain elements and the domain ordering for
the dimensions de�ned in the contract type. The IDL

struct is used to represent contracts that are instances
of the contract type. An instance of the emitted IDL

struct represents a particular contract.

Reliability PerformanceSecurity

contractType

dimensionType

domain

enumDomain setDomain numDomain

opSemantics failureMasking

FIG. 6. Class diagram for contract type representation.

The emitted C++ classes inherit from, and adds

to, a set of contract type base classes implemented
in the QRR library. Figure 6 shows|using UML [3]

notation|a simpli�ed view of the C++ classes for con-
tract types in the static representation. Emitted classes

are grayed and classes de�ned in the QRR library are
white.

Sub-classes of contractType represent the emitted
classes for speci�c contract types. These classes contain
data members that represent the dimensions in the con-

tract type. They also contain a conformance checking
function. Since the conformance checking function is

emitted on a per-contract type basis, can directly refer
to the type's dimensions as data members.

If the contract types contain set or enumeration do-
mains that are ordered, we also emit C++ classes that

represent these domains. The domain classes are sub-
classes of the library class called domain. The main

role of emitted domain classes is to provide information
about the domain ordering.

In addition to the C++ classes, the compiler also

emits an IDL struct de�nition for each contract type.

The name of this struct is the contract type name with

i appended to it. The struct has one �eld for each

dimension. Each �eld has the same name as the corre-

sponding dimension and is of type constraint.

In Figure 9 we show a QML contract type called

Reliability and the corresponding emitted IDL

struct.

An instance of the Reliability i struct will hold

instances of constraints that in turn hold the aspects

speci�ed for each individual constraint. An instance

also contains the type identi�er of its contract type.

Currently, we represent type identi�ers as text strings.

Notice that QML has a 
at name space for contract

types.

The programmer can manually instantiate instances

of contract structs, such as Reliability i. Manual

instantiation is tedious because the programmer must

explicitly create structs that represent the constraints of

the contract struct. To automate the instantiation pro-

cess, the QML compiler emits instantiation functions

for each contract and pro�le declared in QML. Without

going into much detail, but still give a concrete sense

of how these instantiation functions are constructed, we

provide a simple contract in Figure 11 and the corre-

sponding emitted construction function in Figure 7.

Running these simple de�nitions through the QML

to QRR compiler will produce the static representation

which is a struct with name T i. The compiler also

emits the C++ class T, which describes the contract

type and implements conformance checking. In addi-

tion, it produces a function|shown in Figure 12|with

the same name as the speci�ed contract (in this case C).

When C is called it will return an instance of T i rep-

resenting the constraints speci�ed in C. The C function

uses the same lower level functions as are provided to

applications that manually composes contracts and pro-

�les. Similarly, we produce functions for pro�les that

build up the corresponding QRR structures.

type Reliability = contract f
numberOfFailures: decreasing numeric;

TTR: decreasing numeric;

availability: increasing numeric;

g;

struct Reliability_i f
tid ct;

numberOfFailures constraint;

TTR constraint;

availability constraint;

g;

FIG. 9. IDL for statically generated contracts

April|1998 7



type T = contract f
l : increasing numeric msec;

s : enum finitial, amnesia,

noguarantee, rolledbackg;
g;

C = T contract f
l f

percentile 40 < 50 ;

mean < 20

g;
s == amnesia;

g;

FIG. 11. A simple contract type and contract

3.3 Library Functions

When an application needs to check conformance, it

invokes the library function conformsTo whose signa-

ture is shown in Figure 13. This function takes two

pro�les, and checks conformance between their con-

tracts. Inside pro�les, contracts are stored as a pair

consisting of a contract type name and an element of

type any . For a performance contract, the any ele-

ment will contain an instance of type Performance i

and the contract type name will be the string \Perfor-

mance". To check conformance between performance

contracts, the conformsTo will use the string \Perfor-

mance" to lookup the C++ object which represents

T_i * C()f
T_i * _C;

_C = new T_i;

_C->ct = CORBA::string_dup("T");

//Create aspects for l

aspect * _l;

_C->l.asps.length(2);

_C->l.ck = ck_stat;

_l = qml_perc_asp(le,40,(float)50);

_C->l.asps[0] = *_l;

delete _l;

_l = qml_mean_asp(le,(float)20);

_C->l.asps[1] = *_l;

delete _l;

//Create simple for s;

aspect * _s;

_C->s.asps.length(1);

_C->s.ck = ck_simple;

_s = qml_simp_constr(eq,(float)2/*amnesia*/);

_C->s.asps[0] = *_s;

delete _s;

return _C;

g;

FIG. 12. Emitted function that creates a T contract

performance contract types at runtime. This object

is of type Performance and will have a virtual func-

tion called conformsTo (the signature of this function

is given in Figure 13 as Performance::conformsTo).

The Performance::conformsTo function is emitted. It

expects two any arguments that both contain instances

of the struct Performance i. Since it is emitted, the

Performance::conformsTo function knows which ob-

jects to extract from the any arguments.

Figure 13 also shows the signatures of some of the

functions provided by the library to dynamically cre-

ate and check QRR speci�cations. As an example, the

checkSem function will check the static semantics of a

pro�le instance.

To dynamically create pro�les, we need to create con-

tracts and aspects and build the appropriate runtime

structure. The construction of such runtime structures

can involve many operations and be error prone. We

therefore intend to provide more convenient program-

ming abstractions in the future. The current library

implementation only provides convenience functions for

individual aspects. The functions qml perc asp and

qml freq asp are examples of such functions for per-

centile and frequency aspects respectively.

3.4 Programming Model

To give the reader a better feel for the program-

ming model o�ered by QRR, we describe a simple QoS

compatibility-checking mechanism that allows a client

to send its QoS requirements in the form of a QRR pro-

�le to a server. The server checks whether it can satisfy

the client's requirements.

int conformsTo(profile &stronger,profile &weaker);

int Performance::conformsTo(CORBA::Any *stronger,

CORBA::Any *weaker);

int checkSem(profile &p);

template <class elemType>

aspect * qml_perc_asp(operators op,

int pe ,

elemType val);

template <class elemType>

aspect * qml_freq_asp(operators op,

int fr,

rangeType l,

elemType low,

elemType high,

rangeType r);

FIG. 13. Some library function signatures

8 April|1998



interface QoSAware f
exception invalidProfilefg;
boolean compatible(in profile p)

raises (invalidProfile);

g;

FIG. 10. QoSAware interface

To support the QoS-checking mechanism, the server

implements the interface QoSAware, which we describe

in Figure 10. The operation compatible allows the

client to send the pro�le it requires to the server. The

server responds with true if the client's requirements

and the server's capabilities are compatible; and with

false otherwise. If the pro�le is semantically invalid, the

operation raises an exception.

To make the QoS checking more concrete, let us as-

sume that a server A provides an interface I1 and uses

a server B that implements an interface I2. We can de-

scribe, in QML, the requirements of server A on server

B as a pro�le for the interface I2. We can also de-

scribe the QoS provided by A as a pro�le for interface

I1. Having de�ned those pro�les and the contracts that

CORBA::Environment env;

profile * p = i2_prof();

if (I2ref->compatible(*p,env) f
//OK to use this server

....

g else f
//use another server

....

g;

FIG. 14. Client call

CORBA::Boolean B_serverImpl::compatible(

const profile & p,

CORBA::Environment & _ev)

f
profile &p1 = (profile &)p;

if (! checkSem(p1) f
throw QoSAware::invalidProfile();

g;

if(conformsTo(myprof(),p1))f
cout << "Conformance... " << endl;

return 1;

g
else f

cout << "Non-conformance..." << endl;

return 0;

g
g;

FIG. 15. Server implementation

they use we can emit QRR code that can be compiled

and linked with both servers. Notice that server A plays

the role of client relative to server B.

We can create the speci�ed pro�les in server A by in-

voking the emitted functions that have the same names

as the pro�les speci�ed in QML. If we have a pro�le

named i2 prof specifying A's requirements on I2, A

objects would use an emitted function called i2 prof

to create an QRR instance of this pro�le. The C++

code in Figure 14 illustrates how a pro�le can be cre-

ated and sent with an ordinary CORBA request.

The implementation of compatible simply takes the

pro�le speci�ed for the server and checks its confor-

mance to the pro�le supplied by the client. We as-

sume that the server obtains its own pro�le by invok-

ing a function called myprof. The implementation of

compatible checks the static semantics of the pro�le

before doing performance checking. In the future we

intend to include information in a pro�le that allows

a program to determine whether a pro�le has already

been checked for semantic validity or not. With this

extra information, we can avoid redundant semantic

checks. Figure 15 describes a simple implementation

of a server that supports the QoSAware interface.

3.5 Discussion

In the generic mapping, contracts can be created,

embedded in pro�les and communicated even if they

are not statically known. We could require that it is

decided up front whether the generic or static mapping

will be used during a session. If we use the generic

mapping we would initially send contract type descrip-

tions for all contract types to be used during the ses-

sion. This would ensure that each communicating peer

has all contract type descriptions available. Using the

static mapping, on the other hand, we require that all

contract types are known statically and compiled into

the participating objects. If a received contract is an

instance of an unknown type, the receiver can do little

more but raise an exception. Having a strict separation

of the generic and static mapping, and only use one of

them during a particular session, would simplify the im-

plementation, but it would also be quite in
exible. In

the case of the generic mapping, it also imposes unnec-

essary performance overhead when contract types are

already known.

We envision a protocol for exchange of QoS speci�-

cations where the communicating parties assume that

contract types are known by all parties but where each

participant is also prepared to transmit type informa-

tion on demand to other parties. This more 
exible

scheme can be used for the generic mapping. It will also

be useful in the future when we allow a combination of

generic and static mapping. The problem of locating

April|1998 9



type information at runtime is similar to the problem

of locating code for migrating objects in Emerald [9].

Global consistency of types is another issued that

we are considering. It is necessary to have a mecha-

nism for identifying and comparing types to determine

if they are the same. The current implementation uses

an oversimplifying approach based on text strings. Our

plans for future work includes leverage from previous

solutions such as the handling of types in CORBA to

resolve this issue in QRR.

4. Example: A Qos-Based Trader

This section illustrates how QRR can be used to con-

struct higher-level QoS components. We show how to

build a QoS-based trader, and explain its utility in the

context of the currency trading example from the in-

troduction section (do not confuse a QoS-based trader

with the currency trading service in the currency trad-

ing system).

The purpose of this section is not to discuss or ad-

vocate the merits of QoS-based trading, but to show

concretely the expressive power and 
exibility of QRR.

The constructs of QRR make it relatively straightfor-

ward to implement QoS-aware components that would

otherwise be complicated to build. One of the main ad-

vantages of using QRR is the precisely de�ned notion

of speci�cation conformance and a library function to

check conformance at runtime.

4.1 QoS-Based Trading

A conventional trader [15] in distributed systems fa-

cilitates the binding between clients and services. Ser-

vices register with the trader, and clients query the

trader to �nd a service that satis�es certain criteria.

We show an example interface to a very simple conven-

tional trader in Figure 16.

Services register themselves by calling the offer

method on the trader. A service passes a description

of its properties, the properties that can be used for

service selection, and a reference to itself. The trader

returns an o�er identi�er to the service. The service can

use this identi�er to later withdraw its o�er by invoking

the withdraw method. Clients call the methods find

and findAll to obtain obtain service references. The

find method returns a single service reference. The

found service satis�es the criteria passed in as param-

eter to the find call. The findAll method returns a

list of service references. It returns all the services that

match the criteria passed in as parameter.

In general, the trader matches criteria passed in by

clients against properties passed in by services. A very

simple trader could represent properties and criteria as

text strings, in which case the trader becomes a simple

name service. Conventional trader services typically use

name-value pairs for server selection. The server passes

in one such attribute list, and clients pass in an at-

tribute list that is matched against server attribute lists.

Typically, matching is based on name-value equality,

with the provision that the client's attribute list must

be equal to a sub-list of the server's attribute list.

The main idea behind QoS-based trading is to use

QoS speci�cations as service properties and client cri-

teria, and to use speci�cation conformance to per-

form the criteria-to-properties matching. We show that

with QRR it is relatively straightforward to implement

a QoS-based trader. An alternative implementation

strategy would be to use a conventional trader and rep-

resent QoS speci�cations as name-value pairs. However,

we would then be limited by the expressive power of

name value pairs; it is not clear how to elegantly repre-

sent the concepts of QML and QRR in terms of name-

value pairs. More seriously, with a conventional trader

we would use equality for server selection. It is essential

that we can select a service even if the client's require-

ments are not equal to the service's properties: we want

to select a service as long as the service's properties sat-

is�es, or conforms to, the client's requirements. Notice

that even if we decided to represent QoS speci�cations

as name-value pairs, we would still need to replace the

matching procedure in the trader to perform matching

based on conformance rather than equality. It would be

complicated to implement this modi�ed matching func-

tion because we cannot de�ne a general conformance

relation on name-value pairs. We would have to restrict

the conformance checking to only apply to name-value

pairs that in fact represent QoS speci�cations.

We want to use the QoS-based trader to establish

QoS agreements between clients and services in dis-

tributed object systems. A QoS agreement is a con-

tract between a client and a service. In our discussion

so far, we have talked about client requirements and

service properties. This is a somewhat simpli�ed pic-

ture. The service properties may depend on the way

in which the client uses the service. For example, the

throughput that the service can provide may depend

on how frequently the client calls the service. So, for

performance, a QoS contract may involve requirements

and properties for both clients and services.

interface Trader f
OfferId offer(in ServiceProperties sp,

in Object obj) raises (invalidOffer);

Match find(in Criteria cr) raises(noMatch);

MatchSeq findAll(in Criteria cr) raises(noMatch);

void withdraw(in OfferId o) raises(noMatch);

g;

FIG. 16. The interface of a simple conventional trader

10 April|1998



Thus in general, the ServiceProperties argument

to the offer method in a QoS-based trader will in-

volve service properties and requirements. The service

can provide the properties if the client satis�es the re-

quirements. Figure 17 gives a possible structure for

ServiceProperties using QRR. We describe the ser-

vice requirements and properties using pro�les. Fig-

ure 17 also shows the structure of client criteria. These

also have a two pro�les: one representing client require-

ments and one representing client properties.

With the conformsTo function on pro�les introduced

in Section 3.1, we can now implement the matching

procedure in the QoS-based trader. We illustrate the

conformance-based matching procedure in Figure 18.

The procedure iterates through the registered services

and for each service checks whether that service satis-

�es the criteria passed in as arguments. The function

conformsTo takes two pro�les and determines whether

the �rst pro�le conforms to the second pro�le. To �nd a

matching service, the find method checks whether the

server properties conform to the client requirements,

and it checks whether the client properties conform to

the server requirements.

struct ServiceProperties f
profile properties;

profile requirements;

g;

struct Criteria f
profile properties;

profile requirements;

g

FIG. 17. The structure of ServiceProperties and

Criteria

// C++ Implementation sketch of the find method

// in a QoS-based trader

Match QoS-Trader::find(const Criteria &cr)

throw(noMatch)

ServiceIterator it = ...;

for(it.init(); ! it.done(); it.advance())

serviceProperties sp =

it.currentServiceProperties();

if(conformsTo(sp.properties,cr.requirements) &&

conformsTo(sp.requirements,cr.properties))f
return it.currentServiceMatch();

g

throw noMatch();

;

FIG. 18. Matching based on conformance

4.2 Using a QoS-Based Trader

Here, we use a QoS-based trader to implement the

currency trading system from the introduction section.

Currency trading is a complex process that requires sig-

ni�cant information and analysis [13]. Although we

appreciate the complexity of systems supporting such

trades, we have to simplify the problem for the purpose

of this paper.

As a reminder, our simple currency trading system

consists of three logical components: a front-end that

serves as a user interface, a rate service that provides in-

formation about current exchange rates, and a currency

trading service to execute currency trades. We will fo-

cus only on the rate service that provides exchange rate

information. The structure of this simple currency trad-

ing systems was shown in Figure 2.

Assume that we want to build a currency trading sys-

tem that uses a rate service available on the Internet.

Di�erent service providers may implement di�erent rate

services with the same basic functionality, but with dif-

ferent QoS properties. For example, one rate service

may provide frequent exchange rate updates and thus

higher precision. Another rate service may provide less

frequent update, which implies that the information will

not be as accurate. Di�erent services may provide in-

formation for di�erent currencies. Moreover, one rate

service may be highly available and expensive to use,

whereas another rate service may be more unreliable

but cheaper to use. The point is that one size does not

�t all: di�erent clients have di�erent requirements or

expectations about the QoS delivered by a rate service,

and di�erent clients are willing to pay for high levels of

QoS, whereas other clients are not.

The QoS-based trader provides a mechanism for per-

forming server selection in this kind of environment.

The various rate services register themselves with the

QoS-based trader and provide QoS speci�cations that

re
ect their particular notion of QoS. Clients then con-

sult the QoS-based trader when they want to connect to

a rate service. In doing so, clients communicate their

QoS expectations to the QoS-based trader to select a

suitable service.

Figure 19 shows the structure of the currency trading

system with a QoS-based trader. We could of course se-

lect between multiple currency trading services as well,

but we want to simplify the example and focus on rate

services. The issues involved in selecting a currency

trading service are similar.

In the following we show how to use the concepts

of QML and QRR to create QoS speci�cations for a

couple of rate services and for a front-end. Due to space

constraints, we provide a somewhat simpli�ed version

of the various QoS speci�cations.

First, we need a number of contract types to repre-

sent the various QoS categories under consideration in

April|1998 11



the QoS agreement between the front-end and a rate
service. Figure 20 outlines these contract types. The
�rst type, called DataQuality captures the notion of
data quality: accuracy and content. The currencies

dimension re
ects the currencies that a particular ser-
vice can provide information on. The updateFrequenct
re
ects how often this rate information is updated at
the server and thus gives an indication of the precision.
The Reliability contract type captures the reliability
of the rate service. In our previous work, we identi�ed a
number of dimensions to characterize reliability for dis-
tributed object systems [10]. Here, we only use a very
simple characterization. We use two dimensions: avail-
ability is the probability that the server is up when try-
ing to contact it and reference validity states whether
the object reference to the server remains valid after
the server has crashed and come back up. Finally, the
ClientPriceBound contract type captures how much
the front-end is willing to pay for the rate service. Spec-
i�cations of this type can characterize an upper bound,
or the exact price, for the service cost as seen by the

Frontend

CurrencyTrading

RateServiceN

RateService1

QoS−based trader

1

1

1

2

3

3

FIG. 19. Structure of the currency trading system with a

QoS-based trader

type DataQuality = contract f
currencies: set f USD, JPY, SEK, FIM , DKK, DEM

ITL, KGS, EEK, KYD, BWP, LUF, FRF,

GBP, QAR, RUR, TOP, MAD, SAR g;
updateFrequency: increasing numeric updates/min;

g;

type Reliability = contract f
availability: increasing numeric;

referenceValidity = increasing

enum f invalid, valid g
with order f invalid < valid g;

...

g

type ClientPriceBound = contract f
costPerInvocation: decresing numeric cent/call;

costPerHour: decreasing numeric cent/hour;

g

FIG. 20. Contract types for the currency trading system

client. An upper bound does not determine the actual
price the service charges, it merely serves as a �rst-

order �ltering criterion when matching up clients and
services. The actual determination of how to charge for
a service may involve more sophisticated negotiation
protocols that we do not consider here. Payment can
be speci�ed both as a per-invocation cost and a per-
session cost, where the per-session cost is determined
from the length of the session.

Given these basic contract types, we can now start
to de�ne the QoS properties of services. To simplify the
example, we only specify service properties and client

requirements. In other words, we do not consider client
properties and server requirements. Moreover, we spec-
ify the contracts as default contracts|contracts that
apply to the rate service object rather than individual
methods in this object.

In Figure 21, we outline the QoS properties for two
di�erent rate services. Notice that both services im-
plement the RateService interface de�ned in Figure 3.
The �rst service is characterized by the service1props
pro�le. This service is a highly available, expensive ser-

vice that supports many currencies with a low update
frequency. The second service is characterized by the
service2props pro�le. The second service does not
provide any reliability guarantees. On the other hand
it is fairly cheap to use. It supports only a few curren-
cies, but the frequency of updates is high. Both services
can only charge based on a per-invocation scheme, they

cannot charge for entire sessions.

service1props for rateService = pro�le f
require DataQuality contract f
currency >= f USD, JPY, SEK, FIM , DKK, DEM

ITL, KGS, EEK, KYD, BWP, LUF, FRF,

GBP, QAR, RUR, TOP, MAD, SAR g;
updateFrequency >= 1;

g;
require Reliability contract f
availability >= 0.99;

referenceValidity == valid;

g;
require Price contract f
costPerInvocation <= 100;

g;
g;

service2props for rateService = pro�le f
require DataQuality contract f
currencies == f SEK, FIM, DKK, MAD, GBP g;
updateFrequency >= 60;

g;
require Price contract f
costPerInvocation <= 50;

g;
g;

FIG. 21. Pro�les for rate services

12 April|1998



We can now create pro�les, using QRR, during

server initialization. One service will create a pro-

�le according to the service1props speci�cation, and

the other service will create a pro�le according to the

service2props speci�cation. We can create the QRR

pro�les by calling the pro�le-creation functions emit-

ted by the QRR compiler. Alternatively, we can bypass

the QRR compiler and create the pro�les by calling the

QRR library functions directly. For simplicity we as-

sume that each service has a single pro�le. In a more

realistic situation, each service may have multiple pro-

�les to handle service di�erentiation and QoS variations

over time.

Both services will register with the QoS-based trader,

and when registering, they will provide their respective

pro�les. In a dynamic environment servers can with-

draw old o�ers that can not be supported any more

and make new o�ers.

We also need to specify the requirements of the front-

end. We give an example of such a speci�cation in

Figure 22. According to the �gure, the front-end has

no reliability requirements, it is willing to pay medium

cost on a per-invocation basis, it requires rates for only

Swedish Crowns, Danish Crowns, and British Pounds,

and it requires relatively high update frequency. This

speci�cation can either re
ect the requirements of the

front-end object as such, or it can represent the require-

ments of a user of the front-end object. In the �rst case,

we can write the pro�le in QML and generate pro�le-

creation functions based on the QML speci�cation|we

know the QoS requirements when we implement the

front-end. In the second case, where the requirements

re
ect user requirements, we do not know the require-

ments until runtime, and we cannot compile pro�le cre-

ation functions into the front-end. In this case, we have

to call the generic pro�le creation functions in QRR

to dynamically create a pro�le that re
ects the user's

requirements.

Once the front-end has created a pro�le that re
ects

its requirements, it can then call find on the QoS-based

trader to obtain a reference to a rate service object that

satis�es those requirements. In our case, the front-end's

requirements will give rise to selection of service number

two. The pro�le service2props conform to the pro-

frontEndReqs for rateService = pro�le f
require DataQuality contract f

currency == f SEK, DKK, GBPg;
updateFrequency >= 10;

g;
require Price contract f

costPerInvocation <= 75;

g;
g

FIG. 22. Front-end pro�le

�le frontendReqs, where as the pro�le service1props

does not.

4.3 Discussion

A QoS-based trader facilitates the server-selection

process in open systems where clients are not built to

work with one particular server. In an open system,

clients must be prepared to select from a range of dif-

ferent services that provide the same functionality at

di�erent levels of QoS. The QRR fabric makes it rela-

tively straightforward to implement a QoS-based trader.

In contrast, it is non-trivial to implement a similar func-

tionality using a conventional trader with name-value

pairs.

The QoS-based trader that we presented here does

not solve the whole issue of establishing QoS agreements

between clients and services. We ignored the issue of

agreement duration. Furthermore, we only touched

on the topic of payment for QoS. In the example, we

described a very simple way to perform a �rst-order

screening based on how much clients are willing to pay.

What clients actually pay may be less than this upper

bound, and will probably be the result of further nego-

tiation between the client and the server given that the

upper bound is satis�ed. Finally, the trader does not

address the issue that services may provide di�erent lev-

els of QoS depending on the dynamic environment. For

example, a service may be able to provide higher lev-

els of QoS in an environment with plentiful resources

and few clients. We believe that these issues can be

addressed as extensions to the simple QoS-based trader

that we described. The issues will not change the ba-

sic functionality of the trader. Many of the issues can

possibly be addressed as separate QoS components that

complement the trader.

5. Related Work

Generally, interface de�nition languages, such as

OMG IDL [14], specify functional properties, but lack

any notion of QoS.

TINA ODL [20] is di�erent in that it allows program-

mers to associate QoS requirements with streams and

operations. A major di�erence between TINA ODL and

our approach is that they syntactically include QoS re-

quirements within interface de�nitions. Thus, in TINA

ODL, one cannot associate di�erent QoS properties

with di�erent implementations of the same functional

interface.

Similarly, Becker and Geihs [1] extend CORBA IDL

with constructs for QoS characterizations. Their ap-

proach su�ers from the same problem as TINA ODL:

they statically bind QoS characterizations to interface

de�nitions. They also allow QoS characteristics to be

April|1998 13



associated only with interfaces, not individual opera-

tions. In addition, they support only limited domains

and do not allow enumerations or sets. Finally, they

allow inheritance between QoS speci�cations, but it is

unclear what constraints they enforce to ensure confor-

mance. QoS speci�cations are exchanged as instantia-

tions of IDL types without any particular structure.

There are a number of languages that support QoS

speci�cation within a single QoS category. The SDL

language [11] has been extended to include speci�cation

of temporal aspects. The RTSynchronizer program-

ming construct allows modular speci�cation of real-time

properties [17]. In [7], a constraint logic formalism is

used to specify real-time constraints. These languages

are all tied to one particular QoS category, namely tim-

ing. In contrast, QML and QRR are general purpose;

QoS categories are user-de�ned types in QML, and can

be used to specify QoS properties within arbitrary cat-

egories.

The speci�cation and implementation of QoS con-

straints have received a great deal of attention within

the domain of multimedia systems. In [18], QoS con-

straints are given as separate speci�cations in the form

of entities called QoS Synchronizers. A QoS Synchro-

nizer is a distinct entity that implements QoS con-

straints for a group of objects. The use of QoS Syn-

chronizers assumes that QoS constraints can be imple-

mented by delaying, reordering, or deleting the mes-

sages sent between objects in the group. In contrast to

QML, QoS Synchronizers not only specify the QoS con-

straints, they also enforce them. The approach in [19]

is to develop speci�cations of multimedia systems based

on the separation of content, view, and quality. The

speci�cations are expressed in Z. The speci�cations are

not executable per se, but they can be used to derive

implementations. In [2], multimedia QoS constraints

are described using a temporal, real-time logic, called

QTL. The use of a temporal logic assumes that QoS

constraints can be expressed in terms of the relative

or absolute timing of events. Campbell [4] proposes

pre-de�ned C-language structs that can be instantiated

as QoS speci�cations for multimedia streams. The ex-

pressiveness of the speci�cations are limited by the C

language, thus there is no support for statistical distri-

butions. Campbell does, however, introduce separate

attributes for capturing statistical guarantees. It should

be noted that Campbell does not claim to address the

general speci�cation problem. In fact, he identi�es

the need for more expressive speci�cation mechanisms

that include statistical characterizations. In contrast to

QML, the multimedia-speci�c approaches only address

QoS within a single domain (multimedia). Moreover,

these approaches tend to assume stream-based commu-

nication rather than method invocation.

Zinky et al. [23, 22] present a general framework,

called QuO, to implement QoS-enabled distributed ob-

ject systems. The notion of a connection between

a client and a server is a fundamental concept in
their framework. A connection is essentially a QoS-
aware communication channel; the expected and mea-

sured QoS behaviors of a connection are characterized
through a number of QoS regions . A region is a predi-
cate over measurable connection quantities, such as la-

tency and throughput. There approach does not seem
to enable dynamic creation, communication, and ma-
nipulation of QoS speci�cations. In particular, it is not
clear how to use their approach to dynamically estab-

lish connections in an open environment based on QoS
needs and provisions.

In [21] Zinky and Bakken discuss the problem of
managing meta-information in systems with adaptable

QoS. The paper discusses various kinds of data that is
needed for adaptive CORBA systems. They do not,
however, present any concrete way in which the infor-

mation can be described and communicated. We believe
that QML and QRR can be used to described several
of the facets|such as kind and mechanism|identi�ed

in the paper.

Linnho�-Popien and Thissen [12] describe methods
for evaluating the distance from the ideal characteristics
of a required service to what the available o�ers provide.

They use computed distances to select the most appro-
priate service. In contrast, QML and QRR focuses on
statistical characterization of QoS and systematic com-

parison by means of conformance. We could extend
our approcah to incorporate a notion of \preference" if
many services satisfy a client's requirements. The area

of utility theory is a promising foundation for such an
extension.

Within the Object Management Group (OMG) there
is an ongoing e�ort to specify what is required to ex-
tend CORBA [14] to support QoS-enabled applications.

The current status of the OMG QoS e�ort is described
in [16], which presents a set of questions on QoS spec-
i�cation and interfaces. We believe that our approach

provides an e�ective answer to some of these questions.
ISO has an ongoing activity aiming at the de�nition
of a reference model for QoS in open distributed sys-

tems. In a recent working paper [8] they outline how
various dimensions such as delay and reliability could
be characterized. They lack, however, any proposal or

recommendations for representations or languages with
which such constraints can be expressed and communi-
cated.

6. Conclusion

We believe that one of the next major advances of
distributed object systems is to make them QoS en-
abled. The �rst step towards QoS enabling is to facili-

tate QoS characterizations of distributed object compo-
nents. We have previously suggested the QML language

14 April|1998



for this purpose [6]. When we have characterizations
we need to allow these to in
uence how distributed ob-
jects are connected and what underlying communica-
tion mechanism and transports they use. Currently,
these decisions are typically made at design time and
hardwired into the system. However, to build 
exible
applications that execute in internet-like environments,
we need to support dynamic connections based on QoS
matching. The dynamic connections can be facilitated
by QoS components, such as traders and negotiators. A
QoS characterizations is of little use if we can not verify
that components of a system actually complies to the
QoS agreements that have been set up among them.
This can be accomplished by monitoring connections
between objects.

Trading, negotiation, monitoring and many other
functions of QoS-enabled distributed systems require a
format for exchanging QoS speci�cations. We have de-
signed and are implementing a language (QML) and
a run-time representation (QRR) that is tailored for
making distributed object systems QoS aware. One of
the main advantages of using QRR instead of ad-hoc
runtime representations is that QRR comes with a pre-
cisely de�ned notion of conformance. Moreover, the
QRR library comes with a generic conformance check-
ing function. Although conformance appears somewhat
manageable for simple constraints over numeric dimen-
sions, it is challenging to de�ne and check conformance
for statistical aspects and set domains with user-de�ned
ordering.

QML and QRR allow middle-ware developers to in-
vent new mechanisms and services for QoS-enabled dis-
tributed systems.

OMG has standardized|among other things|
CORBA IDL and IIOP to facilitate interoperability of
heterogeneous distributed objects. Analogously, we be-
lieve that open systems can only meet QoS requirements
if they can specify and communicate their QoS charac-
teristics and requirements. QML and QRR could be
viewed as a �rst attempt to come up with a common
speci�cation language and inter-change format for QoS
enabled distributed object systems.

References

1. Christian R. Becker and Kurt Gheis. Maqs|management

for adaptive qos-enabled services. In Proceedings of IEEE

Workshop on Middleware for Distributed Real-Time Systems

and Services, December 1997.

2. G. Blair, L. Blair, and J. B. Stefani. A speci�cation architec-

ture for multimedia systems in open distributed processing.

Computer Networks and ISDN Systems, 29, 1997. Special

Issue on Speci�cation Architecture.

3. G. Booch, I. Jacobson, and J. Rumbaugh. Uni�ed Model-

ing Language. Rational Software Corporation, January 1997.

version 1.0.

4. Andrew T. Campbell. A Quality of Service Architecture.

PhD thesis, January 1996.

5. Svend Fr�lund and Jari Koistinen. Qml: A language for

quality of service speci�cation. Technical Report HPL-98-10,

Hewlett-Packard Laboratories, February 1998.

6. Svend Fr�lund and Jari Koistinen. Quality of service speci-

�cation in distributed object systems design. In Proceedings

of the USENIX Conference on Object-Oriented Technologies,

April 1998.

7. Gopal Gupta and Enrico Pontelli. A constraint-based ap-

proach for speci�cation and veri�cation of real-time systems.

In Proceedings of Real-Time Systems Symposium. IEEE, De-

cember 1997.

8. ISO. Working draft for open distributed processing|reference

model|quality of service. Result from the SC21/WG7 Meet-

ing, July 1997.

9. E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained

mobility in the emerald system. ACM Transactions on Com-

puter Systems, 6(1), February 1988.

10. Jari Koistinen. Dimensions for reliability contracts in dis-

tributed object systems. Technical Report HPL-97-119,

Hewlett-Packard Laboratories, October 1997.

11. S. Leue. Specifying real-time requirements for sdl

speci�cations|a temporal logic-based approach. In Proceed-

ings of the Fifteenth IFIP WG6 (Protocol Speci�cation, Test-

ing, and Veri�cation XV), June 1995.

12. C. Linnho�-Popien and D. Thissen. Integrating qos restric-

tions into the process of service selection. In Proceedings of

the Fifth IFIP International Workshop on Quality of Service,

May 1997.

13. C. Luca. Trading in the Global Currency Markets. Prentice-

Hall, 1995.

14. Object Management Group. The Common Object Request

Broker: architecture and speci�cation, revision 2.0 edition,

July 1995.

15. Object Management Group. CORBA Services | Trader Ser-

vice, formal/97-07-26 edition, July 1997.

16. Object Management Group. Quality of Service: OMG Green

paper, draft revision 0.4a edition, June 1997.

17. S. Ren and G. Agha. Rtsynchronizer: Language support for

real-time speci�cations in distributed systems. In ACM SIG-

PLAN Workshop on Languages, Compilers, and Tools for

Real-Time Systems. ACM, June 1995.

18. S. Ren, N. Venkatasubramanian, and G. Agha. Formalizing

multimedia qos constraints using actors. In Proceedings of the

Second IFIP International Conference on Formal Methods

for Open, Object-Based Distributed Systems, 1997.

19. R. Staehli, J. Walpole, and D. Maier. Quality of service spec-

i�cation for multimedia presentations. Multimedia Systems,

3(5/6), November 1995.

20. Telecommunications Information Networking Consortium.

TINA Object De�nition Language, June 1995.

21. J. A. Zinky and D. E. Bakken. Managing systematic meta-

data for creating qos-adaptive corba applications. In Proceed-

ings of the Fifth IFIP International Workshop on Quality of

Service, May 1997. Short paper.

22. J. A. Zinky, D. E. Bakken, and R. D. Schantz. Overview of

quality of service for distributed objects. In Proceedings of

the Fifth IEEE conference on Dual Use, May 1995.

23. J. A. Zinky, D. E. Bakken, and R. D. Schantz. Architectural

support for quality of service for corba objects. Theory and

Practice of Object Systems, 3(1), 1997.

April|1998 15




