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1 Introduction

Companding is a very simple and well-known technique for non-uniform scalar quantization
using a high resolution uniform quantizer (A/D converter) [1], [9], [11], [10], [6]. The idea is to
apply a memoryless non-linearity (compressor) before the uniform quantizer and the inverse
non-linearlity (expander) after, so as to obtain an overall e�ect of non-uniform quantization
in a simple manner.

Theoretically, it is known [5], [6] that for a given input probability density function (PDF)
p(x), the best nonlinearity (in the sense of minimum square error distortion for a given
number of quantization levels) before the quantization c(x) is, in the high resolution limit,
proportional to

R x
0 p

1=3(u)du for x > 0, with an antisymmetric extension for x < 0. The
constant of proportionality is chosen so as to maintain the dynamic range.

If the PDF is unknown, a common practice is to use a logarithmic compressor c(x) because
it leads robust quantization in the sense that the sensitivity of the SNR to the input PDF is
drammatically reduced. Indeed, logarithmic companders have been widely used with great
success. Moreover, they have been standardized in audio PCM conversion both in the U.S.
(�-law) and in Europe (A-law).

When entropy coding is allowed, namely, the optimum tradeo� between distortion and output
entropy is saught, it turns out that the best compander is linear in the high resolution
limit. In other words, companding becomes altogether superuous as uniform quantization
is asymptotically the best scalar quantization. Optimal entropy coding, however, requires
knowledge of the statistics at the quantizer output, and in case of mismatch between the
entropy coder and the those statistics, it is no longer true that linear companding is best.

A natural extension of the scalar compander-quantizer is the multi-dimensional one (see,
e.g., [3], [4] and more recent studies [7], [8]). It turns out that for memoryless sources and
additive distortion measures, there is no interaction between the di�erent dimensions, and
hence optimal multi-dimensional companding simply breaks to separate scalar compandings
in each dimension.

With this background on companding and its great usefulness in audio compression, it ap-
pears somewhat surprising that there is almost no reported work on the use of companders
in image and video compression. An exception is a recent work of Bakshi and Fuhrmann [2]
who used the JPEG compression standard preceded by a �-law compressor and followed by
a �-law expander and tested its improvement from a psychovisual point of view.

Instead of applying the compander non-linearity in the pixel domain of the raw input image,
and the inverse non-linearity on the decoded image, as suggested in [2], in this work, we take
an alternative approach, which seems to us more natural: We apply the the non-linearities
directly in the domain in which the uniform scalar quantization of JPEG takes place, namely,
the DCT domain (see �g. 1). From the theoretical point of view, this con�guration is
appealing, because if the DCT indeed removes correlation (and hence in the Gaussian case,
also statistical dependency), then as explained above, the best multidimensional companding
is given by separate scalar compandings of each DCT component. Strictly speaking, however,
there is a practical di�culty with this approach because it is no longer standard compliant.
Nonetheless, it is easy to see that such a scheme can be implemented by a standard JPEG
algorithm if we allow suitable preprocessing on the input image and postprocessing on the
output image. The preprocessing would include DCT operation on 8 � 8 blocks, followed
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by scalar companding of each coe�cient, followed in turn by IDCT. The postprocessing will
then consist of the inverse operations in reverse order (see �g. 2).

From the theoretical point of view, the main emphasis in this work is to investigate optimal
companding functions which take into account the particular method of entropy coding used
in JPEG. This analysis will give us some guidelines about properties of good companding
functions, which will turn out to be quite di�erent from those tradionally used in audio
digitization like �-law and A-law. Experimental results show considerable improvment over
the ordinary JPEG algorithm in the high resolution regime.

2 High Resolution Analysis

Consider the following model. A block of n independent random variables X = (X1; :::; Xn),
distributed according to a joint probability density function (PDF) p(X) =

Qn
i=1 pi(Xi), is

fed into an encoder that works as follows. First, each component Xi, 1 � i � n, under-
goes a memoryless nonlinearity (compressor) ci(�), whose output Yi = ci(Xi) is uniformly

�nely quantized with quantization step size �i, to a codeword Ŷi. The block of codewords
Ŷ = (Ŷ1; :::; ŶN) is then losslessly encoded to its entropy H(Ŷ ). At the decoder side, an

entropy decoder reconstructs Ŷ , whose components Ŷi undergo the corresponding inverse
nonlinearities X̂i = ei(Ŷi) = c�1i (Ŷi) to yield the reconstructed source X̂ = (X̂1; :::; X̂N).

A few basic assumptions will be the following.

1. The marginal PDF's pi are all symmetric about the origin.

2. The dynamic range of the input is [�A;A], A < 1, for all i and the compressor
functions all preserve this range, i.e., they map [�A;A] onto itself.

3. The compression functions ci(�) are antisymmetric, di�erentiable, and monotonically
increasing, with ci(0) = 0 and ci(A) = A.

4. For every i, 1 � i � n, the range [�A;A] is evenly divided into Ni quantization levels,
each of size �i = 2A=Ni.

5. The number Ni will be assumed odd, so that the quantization would be symmetric
about the origin with a codeword at zero.

6. The quantization bins are so small that the PDF pi is nearly constant therein (high
resolution approximation).

This probabilistic model is an idealization that may serve as a theoretical ground for im-
age and video compression standards, like JPEG, MPEG, H.261, H.263, etc. The input
block X designated a block of DCT coe�cients whose length N is given by the transform
size (8 � 8 = 64 in the case of JPEG). Assuming that the DCT decorrelates the data (be-
ing a good approximation to the KLT), then in the Gaussian case, it also creates statistical
independence. The marginal densities of the di�erent coe�cients pi(�), however, might be dif-
ferent (lower order coe�cients normally have larger variances). In the standard compression
algorithms, the DCT coe�cients are uniformly quantized separately and then entropy-coded
using run-length coding. Here we add the additional ingredient of companding.
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Since the entropy encoder is based on run-length coding that takes advantage of the fact
that many of the quantized coe�cients Ŷi are zero, we will treat separately the encodings of
zeroes and non-zero values of these coe�cients. Let Zi denote the indicator function of the
event that Ŷi = 0. Let Z = (Z1; :::; Zn).

First observe that since Z is a deterministic function of Ŷ , the entropy of Ŷ can be written
as follows.

H(Ŷ ) = H(Ŷ ; Z)

= H(Z) +H(Ŷ jZ)
= H(Z) +

nX
i=1

H(ŶijZi) (1)

where the last line follows from independence. Now,

H(ŶijZi) = PrfZi = 0gH(ŶijZi = 0) + PrfZi = 1gH(ŶijZi = 1)

= PrfZi = 0gH(ŶijZi = 0) (2)

where the last line follows from the fact that H(ŶijZi = 1) = 0 because if Zi = 1, then Ŷi = 0
by de�nition. Combining eqs. (1) and (2), we get

H(Ŷ ) = H(Z) +
nX
i=1

PrfZi = 0gH(ŶijZi = 0): (3)

The �rst term on the r.h.s. of the last equation represents the part of run-length coding,
whereas the second term is interpreted as entropy coding of the non-zero coe�cients.

The idea now is that it might pay o� to make the probabilities PrfZi = 1g relatively large
so as to decrease both the �rst and the second term, and hence to decrease the overall
output entropy H(Ŷ ). There is, however, a tradeo� between this entropy and the distortion
associated with high probability of Zi = 1.

Let c0i(�) denote the derivative of ci(�), and let �i(x) = �i=c
0
i(x) = 2A=[Nic

0
i(x)] designate

the approximate width of the inverse image of a companded quantization bin at the vicinity
of a point x 2 [�A;A] in the input domain (before the compressor). This means that the
compressor followed by a high resolution uniform quantizer induces a nonuniform quantizer
whose quantization bin around x is about �i(x) (see �g. 3). For shorthand notation, let us

denote ai
�
= �i(0). Now, observe that

qi
�
= PrfZi = 1g =

Z ai

�ai

pi(x)dx (4)

and denote �qi = 1� qi = PrfZi = 0g. Then,
H(ŶijZi = 0) � �

Z
dxpi(xjZi = 0) log[pi(xjZi = 0)�i(x)]

= �
Z
jxj�ai

dx
pi(x)

�qi
log

"
pi(x)�i(x)

�qi

#

= �
Z
jxj�ai

dx
pi(x)

�qi
log pi(x)�

Z
jxj�ai

dx
pi(x)

�qi
log �i(x) + log �qi: (5)
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Thus,

PrfZi = 0gH(ŶijZi = 0) = �
Z
jxj�ai

dxpi(x) log pi(x)�Z
jxj�ai

dxpi(x) log �i(x) + �qi log �qi; (6)

and so,

H(Ŷi) = H(Zi) + PrfZi = 0gH(ŶijZi = 0)

= �qi log qi �
Z
jxj�ai

dxpi(x) log pi(x)�
Z
jxj�ai

dxpi(x) log �i(x): (7)

On substituting �i(x) = 2A=[Nic
0
i(x)], we get

H(Ŷi) = �qi log qi �
Z
jxj�ai

dxpi(x) log pi(x)� �qi log
2A

Ni

+
Z
jxj�ai

dxpi(x) log c
0
i(x): (8)

As for the MSE distortion, since pi is assumed nearly uniform within each quantization bin
(cf. Assumption 6), then it contributes about a2i =12. Thus, the total MSE distortion Di

contributed by the ith component is

Di =
Z ai

�ai

x2pi(x)dx +
1

12

Z
jxj�ai

�2i (x)pi(x)dx

=
Z ai

�ai

x2pi(x)dx +
A2

3N2
i

Z
jxj�ai

pi(x)

[c0i(x)]
2
dx (9)

Now observe that the �rst three terms in the expression for H(Ŷi) (eq. (8)) as well as the
�rst term in the expression for Di (eq. (9)), depend on the choice of ci(�) only via ai, which
asymptotically depends only on c0i(0). On the other hand, the remaining terms in eqs. (8) and
(9) depend on the detailed behavior of c0i(�) outside the interval [�ai; ai]. Thus for a given
value of c0i(0), we can use the same method as in [6, pp. 153-154] to obtain optimal tradeo�
between

R
jxj�ai

dxpi(x)=[c
0
i(x)]

2 and
R
jxj�ai

dxpi(x) log c
0
i(x), and reach the same conclusion

that c0i(x) should be a constant outside the interval [�ai; ai]. Since inside this interval the
quantizer output is zero by de�nition, the exact de�nition of ci(x) within this interval is
immaterial as long as its absolute value is less than �i (which guarantees the quantizer
output to be zero). For example, ci(x) can be assumed linear in this interval, e.g.,

ci(x) =

8<
:

i
ai
x jxj � aih
A�i
A�ai

(jxj � ai) + i
i
sgn(x) jxj > ai

(10)

where i is an arbitrary positive real smaller than �i. Observe, however, that the choice
of i does not a�ect the quantization performance whenever jxj � ai because every x in
this range is quantized to zero independenly of i. For jxj > ai, the choice of i a�ects,
most importantly, the slope of ci(�). Higher slope and hence better quantization resolution
is obtained for small i. The limiting situation is, of course, when i = 0, which leads to

ci(x) =

(
0 jxj � aih

A
A�ai

(jxj � ai)
i
sgn(x) jxj > ai

(11)
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This function is noninvertible in the range [�ai; ai], but considering the fact that expander
operates on the quantized version of ci(xi), and the quantized value in this range is zero
anyhow, the natural expander would then be

ei(y) =

(
0 y = 0h
A�ai
A
jyj+ ai

i
sgn(y) y 6= 0

(12)

In summary, under our assumptions on the source that generates the data, Assumptions 1{6
above, and the assumption on entropy coding, we have obtained a family of simple compan-
ders, henceforth referred to as piecewise linear companders, that are parametrized by the
parameter ai. This patrameter is subjected to optimal tuning, just like in �-law and A-law.
The characteristics of piecewise linear companders are, of course, very di�erent from those
of �-law and A-law, however, they are intuitively appealing in view of the entropy coding
that is being carried out. The choice of ai controls the tradeo� between the e�ciency of the
run-length coding and the distortion within the range [�ai; ai]. One would like the quan-
tizer to zero out small coe�cients at the bene�t of improved quantization for the signi�cant
coe�cients.

3 Other Companders

It is virtually needless to say that the assumptions we made in the previous section are
largely an idealization of the real situation. In practice, the DCT does not really break
the dependency between the coe�cients, but more importantly, it is also clear that the
assumption regarding optimal entropy coding is not really met. Nonetheless, the above
derivation su�ces to serve as a guideline for our choice of several alternative companders
to be examined in addition the piecewise linear compander. In view of the simple intuition
behind the behavior of this compander and Assumptions 2 and 3 above, we will examine a
few additional companding functions with the following properties:

1. c0i(0) = 0.

2. c0i(x) is approximately constant for relatively large jxj.
3. ci(0) = 0; ci(A) = A.

4. c0i(x) � 0 for all x 2 [�A;A].
5. ci(�) is invertible (preferrably by a function with a closed-form expression).

Properties 1,2, and 4 suggest that for positive x,

c0i(x) = Ki[1� �i(x)]

where Ki is a positive constant (chosen so as to satisfy Assumption 3) and �i(x) is a mono-
tonically decreasing function with �i(0) = 1 and �i(x) � 0 for large x. Note that for the
piecewise linear compander, we have

�i(x) =

(
0 x � �i
1 x > �i

(13)
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Two additional examples of such functions are

�i(x) =
�

ai

x+ ai

��
; (14)

and
�i(x) = e�aix (15)

where ai and � are positive reals (companding parameters). The corresponding companders
would then be

ci(x) =

8<
:

Kisgn(x)
h
jxj+ ai ln

ai
jxj+ai

i
� = 1

Kisgn(x)
h
jxj � a

�
i

1��
((jxj+ ai)

1�� � a
1��
i )

i
� 6= 1

(16)

and

ci(x) = Kisgn(x)

"
jxj � 1� e�aijxj

ai

#
; (17)

respectively, where again, Ki is always chosen such that ci(A) = A. The �rst compander
above has an inverse (expander) with a closed form expression for � = 1=2 and � = 2.
Speci�cally, for � = 1=2, the above general expression can be simpli�ed to

ci(x) = Kisgn(x)
�q

jxj+ ai �p
ai

�2
(18)

whose inverse is

ei(y) = sgn(y)

2
64
0
@
s
jyj
Ki

+
p
ai

1
A
2

� ai

3
75 ; (19)

and for � = 2, we have

ci(x) = Kisgn(x)

 
jxj+ a2i

jxj+ ai
� ai

!
(20)

whose inverse is

ei(y) = sgn(y)
jyj+

q
jyj2 + 4aiKijyj
2Ki

: (21)

In the next section, we will examine the performance of the piecewise linear companders as
well as companders (18) and (20) on real images.

Finally, a general remark is in order. We mentioned earlier that the assumption on perfect
entropy coding may not be realistic. For example, a more realistic assumption would be that
the number of bits required for coding the quantized version of ci(x), is roughly a constant
plus log ci(x). (This results from applying universal codes for the integers on dci(x)=�ie, and
it also reects the behavior of the Hu�man coding tables of JPEG). Thus, optimal tradefo�
between rate and distortion, in the high resolution limit outside [��i; �i], can be formalized
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as a Largrange minimization problem: Find a monotone function ci(�) from [0; A] onto itself
(with an antisymmetric extension to [�A; 0]) that minimizes

Z A

�i

pi(x)

"
log ci(x) +

�

[c0i(x)]
2

#
dx

with boundary conditions ci(0) = 0 and ci(A) = A. We are not aware of the existence of a
closed-form expression to the solution of this problem. However, the discretized version of
this problem

X
k

pi(k�)

"
log ci(k�) +

�0

[ci((k + 1)�)� ci(k�)]2

#
; � > 0;

can be solved by dynamic programing. Nonetheless, by inspection of this Lagrange function,
it is intuitively appealing that for small values of x (and hence also of log ci(x)), the derivative
c0i(x) should be small at the bene�t that for large values of x, it would be large in order to
minimize the entire cost while keeping the boundary conditions. Again, this supports the
above mentioned guidelines for the choice of good companders.

4 Experimental Results

We have examined the piecewise linear compander, the compander given in eq. (18), and the
one given in eq. (20), all with ai = a for all i, i.e., the companders of all coe�cients have the
same paramter value, commonly denoted by a. We examined several natural black-and-white
images: \Boats", \Gold", \Lena", `Hotel", \Barbara", and \Zelda." In all our experiments,
the compander of eq. (18) turned out to give the best results, and so, we will present results
for this compander only.

Our experiments were conducted as follows: For each image, we compared the high resolution
rate-distortion tradeo� that is obtained in two di�erent ways. The �rst is by using the
ordinary JPEG algorithm with the default quantization table for luminance scaled by the
Q-factor, for several values of Q. The second method was to hold Q = 0, and to scan a range
of values for the paramter a of the compander.

The results are summarized in Tables 1{6. Each table is organiized as follows: the left-hand
part displays PSNR results (in dB) vs. compression ratio (CR) for ordinary JPEG as a
function of the Q-factor, whereas the right-hand part does the same for companded JPEG
as a function of the paramter a. Also, for the sake of convenience of comparing the results,
each table caption indicates pairs of entries in the table corresponding to approximately the
same PSNR. For these pairs of entries it is therefore fair to compare the compression ratios.
As can be seen, the compander o�ers a considerably better rate-distortion tradeo� in the
high resolution limit: For the same PSNR, it gives a better CR by 10{25%. The advantage of
companding over ordinary JPEG decreases as we move to working points of more aggressive
quantization. Nonetheless, the range where companding is advantageous is fairly wide.
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Q PSNR CR a PSNR CR
0 55.35 1.69 0 55.35 1.69
5 44.81 2.77 5 45.05 3.41
10 42.11 4.31 10 43.44 4.21
15 40.63 5.60 20 42.17 5.04
20 39.56 6.66 30 41.38 5.71
30 38.00 8.65 40 40.68 6.23
40 36.89 10.30 50 40.04 6.68
50 35.93 11.91 80 39.37 7.45
60 35.30 13.12 100 38.86 7.89
70 34.74 14.40 120 36.24 8.32
80 34.24 15.65 150 37.93 8.83

Table 1: PSNR[dB] vs. CR for the image \Boats." Entries corresponding to approximately the
same PSNR: Q = 5 vs. a = 5, Q = 10 vs. a = 20, Q = 15 vs. a = 40, Q = 20 vs. a = 80, Q = 30
vs. a = 150.

Q PSNR CR a PSNR CR
0 55.29 1.49 0 55.29 1.49
5 43.47 2.32 5 44.80 2.62
10 39.83 3.56 10 42.59 3.14
15 38.19 4.64 20 40.81 3.75
20 37.18 5.55 30 39.78 4.32
30 35.86 7.24 40 38.88 4.82
40 34.98 8.70 50 38.11 5.31
50 34.25 10.17 80 37.34 6.07
60 33.77 11.29 100 36.76 6.59
70 33.32 12.61 120 36.24 7.11
80 32.92 13.88 150 35.78 7.71

Table 2: PSNR[dB] vs. CR for the image \Gold." Entries corresponding to approximately the same
PSNR: Q = 10 vs. a = 30, Q = 15 vs. a = 50, Q = 20 vs. a = 80, Q = 30 vs. a = 150.
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Q PSNR CR a PSNR CR
0 55.22 1.48 0 55.22 1.48
5 43.11 2.30 5 44.50 2.61
10 39.46 3.56 10 42.15 3.14
15 37.99 4.71 20 40.37 3.74
20 37.09 5.70 30 39.35 4.35
30 35.92 7.56 40 38.51 4.96
40 35.10 9.27 50 37.82 5.57
50 34.42 10.97 80 37.16 6.45
60 33.97 12.25 100 36.69 7.07
70 33.56 13.67 120 36.28 7.64
80 33.18 15.00 150 35.92 8.25

Table 3: PSNR[dB] vs. CR for the image \Lena." Entries corresponding to approximately the same
PSNR: Q = 10 vs. a = 30, Q = 15 vs. a = 50, Q = 20 vs. a = 80, Q = 30 vs. a = 150.

Q PSNR CR a PSNR CR
0 55.25 1.50 0 55.25 1.50
5 43.41 2.33 5 44.73 2.63
10 40.03 3.62 10 42.63 3.11
15 38.51 4.74 20 41.02 3.67
20 37.52 5.66 30 40.10 4.22
30 36.20 7.39 40 39.32 4.72
40 35.30 8.83 50 38.67 5.17
50 34.54 10.16 80 37.99 5.84
60 33.97 12.25 100 37.49 6.26
70 33.50 12.26 120 37.04 6.62
80 33.05 13.30 150 36.61 7.05

Table 4: PSNR[dB] vs. CR for the image \Hotel." Entries corresponding to approximately the
same PSNR: Q = 10 vs. a = 30, Q = 15 vs. a = 50, Q = 20 vs. a = 100.
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Q PSNR CR a PSNR CR
0 55.24 1.48 0 55.24 1.48
5 44.24 2.31 5 44.98 2.58
10 40.83 3.43 10 43.11 3.03
15 38.99 4.32 20 41.64 3.54
20 37.68 5.05 30 40.75 3.97
30 35.79 6.43 40 39.97 4.28
40 34.46 7.60 50 39.28 4.55
50 33.36 8.73 80 38.53 5.04
60 32.75 9.59 100 37.96 5.32
70 31.86 10.50 120 37.42 5.57
80 31.22 11.43 150 36.96 5.88

Table 5: PSNR[dB] vs. CR for the image \Barbara." Entries corresponding to approximately the
same PSNR: Q = 10 vs. a = 30, Q = 15 vs. a = 80, Q = 20 vs. a = 120.

Q PSNR CR a PSNR CR
0 55.24 1.79 0 55.24 1.79
5 44.15 2.94 5 44.34 3.84
10 41.80 4.87 10 42.48 4.82
15 40.86 6.66 20 41.19 6.11
20 40.23 8.14 30 40.49 7.62
30 39.32 11.02 40 39.94 9.14
40 38.63 13.53 50 39.51 10.50
50 37.99 15.97 80 39.09 12.06
60 37.57 17.82 100 38.78 13.08
70 37.14 19.75 120 38.50 13.93
80 36.73 21.62 150 37.34 15.60

Table 6: PSNR[dB] vs. CR for the image \Zelda." Entries corresponding to approximately the
same PSNR: Q = 5 vs. a = 5, Q = 15 vs. a = 30.

11



INPUT

CODING

ENTROPY

ENTROPY

DECODING

QUANTIZERCOMPRESSOR

DEQUANTIZEREXPANDER

DCT

IDCT
IMAGE

OUTPUT

IMAGE

Figure 1: DCT domain companded JPEG codec.

IDCT

DCT COMPRESSOR

EXPANDER

IDCT

DCT

CODEC
JPEG

INPUT

IMAGE

OUTPUT

PRE-PROCESSING

POST-PROCESSING

IMAGE

Figure 2: Standard compliant implementation.

12



un
if

or
m

 q
ua

nt
iz

at
io

n 
bi

ns

x

c(x)

δ i (x)

∆ i
∆ i

non-uniform quantization bins

Figure 3: Compander and quantization levels.

13




