
Direct Conversions Between DV
Format DCT and Ordinary DCT

Neri Merhav
HP Laboratories Israel*
HPL-98-140
August, 1998

digital recording,
DVC format,
8-8 DCT,
2-4-8 DCT

A fast algorithm is developed for direct conversions
between the 2-4-8 DCT mode associated with the
digital video cassette (DVC) standard and the ordinary
8-8 DCT associated with other formats of compressed
video. The algorithm avoids explicit transformations to
and from the original pixel domain and thus saves a
considerable amount of computations.

*Hewlett-Packard Laboratories Israel, Technion City, Haifa 32000, Israel
 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

1 Introduction

DV (formerly DVC) is a new digital recording format being backed by the main manufactur-
ers such as Sony, Philips, Thomson, Hitachi, and Matsushita (Panasonic). It was the �rst
digital recording format in the reach of consumer markets. Its main advantage is that it lends
itself easily to video editing operations. DV uses a 5:1 DCT-based compression scheme at a
�xed rate of 25Mbps and the signal-to-noise ratio (SNR) is typically around 54dB. Depend-
ing on whether the di�erence between two �elds is small or large, the encoder adaptively
decides whether to compress picture �elds separately (small di�erence) or combine two �elds
into a single compression block (large di�erence) [1, p. 27]. Therefore, in a certain sense, DV
coding can be thought of as a standard that lies in the midway between Motion JPEG and
MPEG.

Unfortunately, however, the DV format is not related to any other compressed/uncompressed
video format. As a �rst step towards the goal of building an interface between DV and other
compressed video formats, such as MPEG-I, MPEG-II, H.261, H.263, etc. (for applications
like transcoding), we develop and propose, in this document, a fast algorithm that converts
the 2-4-8 DCT of the DV format (which is used for largely di�erent �elds) to the ordinary
8-8 DCT which is used by all the above-mentioned video compression standards.

Since the proposed algorithm operates directly in the DCT domain, without explicit trans-
formation to and from the pixel domain, it saves a great deal of the computations without
additional memory requirements.

2 Background and Problem Formulation

The DV standard contains two DCT modes, called 8-8 DCT mode and 2-4-8 DCT mode
to improve the picture quality after the bit rate reduction. The 8-8 DCT mode should be
selected when the di�erence between two �elds is small, whereas the 2-4-8 DCT mode should
be selected when the di�erence between two �elds is large. The two DCT modes are de�ned
as follows.

8-8 DCT: The 8-8 DCT is the ordinary, type-II two-dimensional DCT [2] that transforms a
block fx(n;m)g7n;m=0 in the spatial domain into a matrix of frequency components fX(k; l)g7k;l=0
according to the following equation

X88(k; l) = c(k)c(l)
7X

n=0

7X
m=0

x(n;m) cos(
2n+ 1

16
� k�) cos(

2m + 1

16
� l�) (1)

where c(0) = 1=(2
p
2) and c(i) = 1=2 for i > 0. The inverse transform is given by

x(n;m) =
7X

k=0

7X
l=0

c(k)c(l)X88(k; l) cos(
2n+ 1

16
� k�) cos(

2m+ 1

16
� l�): (2)

In a matrix form, let x = fx(n;m)g7n;m=0 and X88 = fX88(k; l)g
7
k;l=0. De�ne the 8-point

DCT operator matrix C8 = fc8(k; n)g
7
k;n=0, where

c8(k; n) = c(k) cos(
2n+ 1

16
� k�): (3)

1

Then,
X88 = C8xC

t
8 (4)

where the superscript t denotes matrix transposition. Similarly, let the superscript �t denote
transposition of the inverse. Then,

x = C�18 X88C
�t
8 = Ct

8XC8 (5)

where the second equality follows from the orthonormality of C8.

2-4-8 DCT: The 2-4-8 DCT combines two �elds in one block in the following way. Let us
assume that the spatial domain 8 � 8 block x = fx(n;m)g7n;m=0 consists of two interlaced
�elds, where the odd rows (starting to count from zero) are from the �rst �eld and the even
rows are from the second �eld. Then, the 2-4-8 DCT is de�ned as follows. For k = 0; 1; 2; 3
and l = 0; 1; :::; 7 de�ne

X248(k; l) = c(k)c(l)
3X

n=0

7X
m=0

[x(2n;m) + x(2n+ 1; m)] cos(
2n+ 1

8
� k�) cos(

2m+ 1

16
� l�) (6)

and

X248(k+4; l) = c(k)c(l)
3X

n=0

7X
m=0

[x(2n;m)�x(2n+1; m)] cos(
2n+ 1

8
�k�) cos(

2m+ 1

16
�l�): (7)

The inverse transform is given by

x(2n;m) =
1

2

3X
k=0

7X
l=0

c(k)c(l)[X248(k; l) +X248(k + 4; l)]�

cos(
2n+ 1

8
� k�) cos(

2m + 1

16
� l�) (8)

and

x(2n+ 1; m) =
1

2

3X
k=0

7X
l=0

c(k)c(l)[X248(k; l)�X248(k + 4; l)]�

cos(
2n+ 1

8
� k�) cos(

2m+ 1

16
� l�); (9)

where n = 0; 1; 2; 3 and m = 0; 1; :::; 7. In a matrix form, let

F =

0
BBBBBBBBBBBBB@

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 �1 0 0 0 0 0 0
0 0 1 �1 0 0 0 0
0 0 0 0 1 �1 0 0
0 0 0 0 0 0 1 �1

1
CCCCCCCCCCCCCA

(10)

2

and

C24 =

C4 0
0 C4

!
(11)

where C4 = fc4(k; n)g
3
k;n=0 is the 4-point DCT operator matrix whose entries are given by

c4(k; n) = c(k) cos(
2n+ 1

8
� k�); k; n = 0; 1; 2; 3: (12)

We can now rewrite eqs. (8) and (9) as

X248 = C24FxC
t
8 (13)

and
x = F�1C�124 X248C8; (14)

respectively, where X248 = fX248(k; l)g
7
k;l=0.

Our goal is to devise fast algorithms that convert from X248 to X88 and vice versa. Our
algorithms will be based on sparse matrix factorizations of C4 and C8. The best known
factorization of C8 to sparse matrices corresponds to the Winograd 8-point DCT which was
derived from the 16-point Winograd FFT [3] (see also [4]). According to this factorization,
C8 is represented as a product:

C8 = DPB1B2MA1A2A3 (15)

where D is a diagonal matrix given by

D = diagf0:3536; 0:2549; 0:2706; 0:3007; 0:3536; 0:4500; 0:6533; 1:2814g; (16)

P is a permutation matrix given by

P =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

1
CCCCCCCCCCCCCA

(17)

and the remaining matrices are de�ned as follows:

B1 =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 �1 0
0 0 0 0 �1 0 0 1

1
CCCCCCCCCCCCCA

(18)

3

B2 =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 �1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 �1 0 1

1
CCCCCCCCCCCCCA

(19)

M =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0:7071 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 �0:9239 0 �0:3827 0
0 0 0 0 0 0:7071 0 0
0 0 0 0 �0:3827 0 0:9239 0
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCA

(20)

A1 =

0
BBBBBBBBBBBBB@

1 1 0 0 0 0 0 0
1 �1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCA

(21)

A2 =

0
BBBBBBBBBBBBB@

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 �1 0 0 0 0 0
1 0 0 �1 0 0 0 0
0 0 0 0 �1 �1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCA

(22)

A3 =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 �1 0 0 0
0 0 1 0 0 �1 0 0
0 1 0 0 0 0 �1 0
1 0 0 0 0 0 0 �1

1
CCCCCCCCCCCCCA

(23)

4

In the next section, we will present a parallel sparse matrix factorization of C4 that corre-
sponds to the 8-point Winograd FFT. We will then show how to use these factorizations to
derive a fast conversion algorithm from 8-8 DCT to 2-4-8 DCT and vice versa.

3 A 4-Point Winograd DCT

Let us concentrate on 1D transforms, where it should be understood that 2D transforms are
obtained in a row-column separable fashhion.

The 4-point Winograd DCT will be based on the 8-point Winograd FFT, which works as
follows (see also [5, p. 163]). Given an input vector x = (x0; x1; :::; x7), the 8-point DFT
X = (X0; X1; :::; X7), is computed in the following way:

1. Compute t = (t1; t2; :::; t8) according to

t1 = x0 + x4 t2 = x2 + x6 t3 = x1 + x5 t4 = x1 � x5
t5 = x3 + x7 t6 = x3 � x7 t7 = t1 + t2 t8 = t3 + t5

2. De�ne u = �=4, i =
p
�1 and compute m = (m0; m1; :::; m7) according to

m0 = t7 + t8 m1 = t7 � t8
m2 = t1 � t2 m3 = x0 � x4
m4 = (t4 � t6) cos(u) m5 = i(t3 � t5)
m6 = i(x2 � x6) m7 = i(t4 + t6) sin(u)

3. Compute s = (s1; :::; s4) according to

s1 = m3 +m4 s2 = m3 �m4

s3 = m6 +m7 s4 = m6 �m7

4. Finally, compute the output DFT according to

X0 = m0 X1 = s1 + s3 X2 = m2 +m5 X3 = s2 � s4
X4 = m1 X5 = s2 + s4 X6 = m2 �m5 X7 = s1 � s3

It is well-known (see, e.g., [4]) that an N -point DCT can be obtained from the real part of
a (2N)-point DFT if the input vector is de�ned by the symmetric extension

(x0; x1; :::; xN�1; xN�1; xN�2; :::; x0):

A nice property of the Winograd FFT is that there is complete separation between the real
part and the imaginary part. Since the DCT is a real transform, the imaginary part can be
therefore ignored altogether.

In our case, N = 4. If we use the above algorithm, taking advantage of the facts that (i)
xi = x7�i, i = 0; 1; 2; 3, and (ii) the imaginary part can be ignored, we end up with a further
simpli�ed algorithm for computing the 4-point DCT.

5

The resulting Winograd DCT algorithm corresponds to the following factorization of C4:

C4 = D1GHL (24)

where

D1 = diag

(
c(i)

2 cos(�i=8)
; i = 0; 1; 2; 3

)
(25)

G =

0
BBB@

1 0 0 0
0 0 1 1
0 1 0 0
0 0 1 �1

1
CCCA (26)

H =

0
BBB@

2 2 0 0
1 �1 0 0
0 0 0 �1
0 0 0:7071 0:7071

1
CCCA (27)

and

L =

0
BBB@

1 0 0 1
0 1 1 0
0 1 �1 0
�1 0 0 1

1
CCCA : (28)

For later use, we will also de�ne

D2 =

D1 0
0 D1

!
; (29)

G2 =

G 0
0 G

!
; (30)

H2 =

H 0
0 H

!
; (31)

and

L2 =

L 0
0 L

!
: (32)

Clearly, since C4 = D1GHL, we also have C24 = D2G2H2L2.

4 Derivation of the Algorithm

We are now ready to develop the conversion algorithm. First, observe that according to eqs.
(13), (14), and the subsequent derivations, we have

X88 = C8xC
t
8

= C8(F
�1C�124 X248C8)C

t
8

= C8F
�1C�124 X248

= DPB1B2MA1A2A3F
�1L�12 H�1

2 G�12 D�1
2 X248: (33)

6

Precomputation of

R
�
=MA1A2A3F

�1L�12 H�1
2 (34)

results in a fairly sparse matrix given by

R =

0
BBBBBBBBBBBBB@

0:5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2a
0 a 0 0 0 0 0 0
0 0:5 0 0 0 0 0 a

0 0 �b b 0 0 0 0
0 0 0 0:5 0 �a=2 0 0
0 0 c c 0 0 0 0
0 0 0:5 0 0:125 0:25 0 0

1
CCCCCCCCCCCCCA
; (35)

where a = 0:7071, b = 1:3066, and c = 0:5412. The proposed conversion algorithm calculates
X88 from X248 according to

X88 = DPB1B2RG
�1
2 D�1

2 X248: (36)

where

G�12 =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0:5 0 0:5 0 0 0 0
0 0:5 0 �0:5 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0:5 0 0:5
0 0 0 0 0 0:5 0 �0:5

1
CCCCCCCCCCCCCA
: (37)

This means that the input 2-4-8 DCT is �rst premultiplied by D�1
2 , then the result is pre-

multiplied by G�12 , and so on.

Assuming that the multiplication by D�1
2 can be absorbed in the dequantization of the 2-

4-8 DCT coe�cients (as well as compensation for the weight factors [1, p. 28, subsection
7.5.2]), and that multiplication by D can be absrobed in the re-quantization of the 8-8 DCT
coe�cients, the only phase, in this algorithm, that contains nontrivial multiplications is the
pre-multiplication by the matrix R. This is because multiplications by powers of two are
implementable by simple shifts.

Given a column vector u = (u1; :::; u8)
t, the vector v = (v1; :::; v8)

t de�ned as v = Ru can be
e�ciently computed by the following steps:

v1 = u1=2
w = (2a)u8
v2 = 2u7 � w

v3 = au2
v4 = (u2 + w)=2

7

v5 = b(u4 � u3)
v6 = (u4 � au6)=2
v7 = c(u3 + u4)
v8 = (u3 + (u6 + u5=2)=2)=2

Thus, pre-multiplication by R can implemented by 5 multiplications, 3 shift&adds, 4 ad-
ditions, and 4 shifts. Since the matrix P is computationally costless, B1 and B2 require 4
additions per vector each one, and G�12 is associated with 4 additions and 4 shifts per vector,
the total complexity associated with this algorithm is 5 multiplications, 3 shift&adds, 16
additions, and 8 shifts per each column vector. For the sake of comparison, the direct ap-
proach (of explicitely undoing the column 2-4-8 DCT and doing the 8-8 DCT instead) would
require 7 multiplications, and 55 additions/shift&adds. This means that if, for example,
each multiplication takes 3 cycles on the average, then about 50% of the computations have
been saved. If, on the other hand, the processor performs multiplication in one cycle, the
saving factor is even higher. For a complete DCT block, all the above numbers should be
multiplied by 8.

As a �nal remark, it should be pointed out that since both C8 and C24 are orthonormal,
namely, C�18 = Ct

8 and C
�1
24 = Ct

24, there are three more ways to write the equation relating
X248 to X88 (eq. (33)). These are:

X88 = DPB1B2MA1A2A3F
�1Lt

2H
t
2G

t
2D2X248; (38)

X88 = D�1P�tB�t1 B�t2 M�tA�t1 A
�t
2 A�t3 F�1Lt

2H
t
2G

t
2D2X248; (39)

and
X88 = D�1P�tB�t1 B�t2 M�tA�t1 A

�t
2 A�t3 F�1L�12 H�1

2 G�12 D�1
2 X248: (40)

Accordingly, the matrix R would then be rede�ned as

MA1A2A3F
�1Lt

2H
t
2;

or
M�tA�t1 A�t2 A

�t
3 F�1Lt

2H
t
2;

or
M�tA�t1 A�t2 A�t3 F

�1L�12 H�1
2 ;

respectively. However, the �rst representation that we have used (eq. (33)) yields the sparsest
R.

5 The Inverse Conversion

In view of the last comment in the previous section, there are also four ways to write the
inverse transformation from X88 to X248:

X248 = D2G2H2L2FA
�1
3 A�12 A�11 M�1B�12 B�11 P�1D�1

X88; (41)

X248 = D2G2H2L2FA
t
3A

t
2A

t
1M

tBt
2B

t
1P

tDX88; (42)

X248 = D�1
2 G�t2 H�t

2 L�t2 FA
�1
3 A�12 A�11 M�1B�12 B�11 P�1D�1

X88; (43)

8

and
X248 = D�1

2 G�t2 H�t
2 L�t2 FAt

3A
t
2A

t
1M

tBt
2B

t
1P

tDX88; (44)

Correspondingly, we de�ne ~R as either

H2L2FA
�1
3 A�12 A�11 M�1;

or
H2L2FA

t
3A

t
2A

t
1M

t;

or
H�t

2 L�t2 FA�13 A�12 A�11 M�1;

or
H�t

2 L�t2 FAt
3A

t
2A

t
1M

t:

The latter possbility turns out to be best in terms of the computational complexity of the
associated algorithm.

The inverse algorithm then computes X248 from X88 according to

X248 = D�1
2 G�t2

~RBt
2B

t
1P

tDX88 (45)

where

~R =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 0 2a 1 0 0 0 0
0 0 0 0 �2b 0 2c 1
0 0 0 0 2b 1 2c 0
0 0 0 0 0 0 0 0:25
0 0 0 0 0 �a 0 0:5
0 4 0 0 0 0 0 0
0 �4a 0 2a 0 0 0 0

1
CCCCCCCCCCCCCA

(46)

where a, b, and c are as in eq. (35). The computational complexity of this algorithm is
approximately the same as that of the forward algorithm because the computation of v = ~Ru
can be done in 5 multiplications, 5 additions, 2 shift&adds, and 2 shifts, using the following
procedure:

v1 = u1
v2 = (2a)u3 + u4
w1 = (2b)u5
w2 = (2c)u7
v3 = �w1 + w2 + u8
v4 = w1 + w2 + u6
v5 = u8=4
v6 = �au6 + u8=2
v7 = 4u2
v8 = (2a)(u4 � 2u2):

9

6 References

[1] HD Digital VCR Conference, Speci�cations of Consumer-Use Digital VCRs Using
6.3mm Magnetic Tape, Part 2, December 1994.

[2] K. R. Rao, and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applica-
tions, Academic Press 1990.

[3] Y. Arai, T. Agui, and M. Nakajima, \A Fast DCT-SQ Scheme for Images," Trans. of
the IEICE, E 71(11):1095, November 1988.

[4] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard,
Van Nostrand Reinhold, 1993.

[5] H. S. Silverman, \An introduction to programming the Winograd Fourier transform
algorithm," IEEE Trans. Acoustics, Speech, and Signal Processing , vol. ASSP{25, no. 2,
pp. 152{165, April 1977.

10

