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A representation of the field GF(2n) for various
values of n is described, where the field elements
are palindromic polynomials, and the field
operations are polynomial addition and
multiplication in the ring of polynomials modulo
x2n+1–1.  This representation can be shown to be
equivalent to a field representation  of Type-II
optimal normal bases.  As such, the suggested
palindromic representation inherits the advantages
of two commonly-used representations of finite
fields, namely, the standard (polynomial)
representation and the optimal normal basis
representation.  Modular polynomial multiplication
is well suited for software implementations,
whereas the optimal normal basis representation
admits efficient hardware implementations.  Also,
the new representation allows for efficient
implementation of field inversion in both hardware
and software.
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1 Introduction

In this note, we consider representations of extension �elds GF (2n) that lend them-
selves to e�cient arithmetic implementation over the binary �eld GF (2). Familiarity
with basic concepts of �nite �eld theory is assumed; these facts can be recalled, for
instance, from [1].

The �nite �eld GF (2n) is a vector space of dimension n over binary �eld GF (2). As
such, it can be represented using any basis of n linearly independent elements of GF (2n)
over GF (2). Therefore, elements of GF (2n) are represented by binary vectors of length
n. Field addition is realized in all bases by a bit-wise exclusive OR (XOR) operation,
whereas the structure of �eld multiplication is determined by the choice of basis for the
representation.

Two families of bases are commonly used to represent the �eld GF (2n):

Standard (polynomial) representation:

The basis elements have the form 1; !; !2; : : : ; !n�1, where ! is a root in GF (2n) of
an irreducible polynomial P (x) of degree n over GF (2). In an equivalent interpre-
tation of this representation, the elements of GF (2n) are polynomials of degree at
most n�1 over GF (2), and arithmetic is carried out modulo an irreducible polyno-
mial P (x) of degree n over GF (2).

Optimal normal basis (ONB) representation:

The basis elements have the form �; �2; : : : ; �2
n�1

for a certain element � 2 GF (2n).
This de�nes a normal basis. In addition, if for all 0 � i1 6= i2 � n�1 there exist
j1; j2 such that, �2

i1+2i2 = �2
j1 +�2

j2 , the basis is called optimal. The element � is
called the generator of the basis. Optimal normal bases exist for an in�nite subset
of values of n de�ned below.

The standard representation lends itself to e�cient software implementations of the
�eld arithmetic. In particular, multiplication can be made very e�cient if the polynomial
P (x) is sparse, and inversion can be realized using the extended Euclidean algorithm. On
the other hand, the ONB representation allows for e�cient hardware implementations of
�eld multiplication (see [2, Ch. 5]). Inversion, however, remains a di�cult operation in
this case.

Large �nite �elds are the basis of many modern cryptographic algorithms, e.g., in el-
liptic curve cryptography. In these applications, the �eld arithmetic is the computational
bottleneck, and e�cient implementations are essential. On the other hand, as the use of
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cryptography becomes widespread, hardware and software implementations are required
to inter-operate and use common representations.

It is known [2, Ch. 5] that ONB's exist in GF (2n) only in the following cases:

Type-I ONB: n+1 is a prime p and and 2 is primitive modulo p (namely, the multi-
plicative order of 2 modulo p is n).

Type-II ONB: 2n+1 is a prime p and either

(i) 2 is primitive modulo p, or |

(ii) p � 3 (mod 4) (i.e., �1 is a quadratic nonresidue modulo p) and the multi-
plicative order of 2 modulo p is n (namely, 2 generates the quadratic residues
modulo p).

Type-I ONB's are generated by elements � 2 GF (2n) of order p = n+1. Ob-
serve that the minimal polynomial of � is f(x) = xn + xn�1 + � � �+ x + 1 and the sets
f�; �2; �2

2

; : : : ; �2
n�1

g and f�; �2; �3; : : : ; �ng are identical. Thus, after suitable per-
mutation, we can operate on elements in ONB representation as polynomials modulo
f(x), or even simpler, modulo the very sparse polynomial (x+1)f(x) = xn+1 + 1. The
latter will give results expressed in terms of 1; �; �2; : : : ; �n, which are brought back to
the desired basis set by using, when needed, the equality 1 = � + �2 + � � �+ �n. So, in
addition to being attractive for hardware applications, the Type I ONB representation
inherits the advantages of the polynomial representation.

The �eld representation that we suggest in this note demonstrates how such an
advantage can be obtained also for values of n for which a Type-II ONB exist. In our
representation, the �eld elements will be a subset of the polynomials of degree at most 2n
over GF (2), and the arithmetic will be carried out modulo the (very sparse) polynomial
x2n+1 � 1. On the other hand, our representation can be shown to be equivalent, up to
a simple bit permutation and replication operation, to the Type-II ONB representation.

2 Palindromic representation of �nite �elds

We hereafter assume that 2n+1 is a prime p and either condition (i) or (ii) of the
Type-II ONB holds. For such values of n, let  be a pth root of unity in GF (22n). It is
known that � =  + �1 generates a Type-II ONB [2, Section 5.2].

Let � denote the vector space of all polynomials over GF (2) of the form a(x) =P
2n
i=1 aix

i, where ai = ap�i for i = 1; 2; : : : ; n. We call such polynomials palindromic poly-
nomials. In our palindromic representation of GF (2n), each �eld element is represented
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as a palindromic polynomial. Addition is de�ned as the ordinary polynomial addition
of elements in �, and the product of two palindromic polynomials a(x); b(x) 2 � is the
unique polynomial c(x) 2 � such that

c(x) � a(x) � b(x) (mod xp � 1) : (1)

Equation (1) suggests that multiplication can be implemented for the palindromic rep-
resentation using standard modular polynomial multiplication.

When we substitute x =  in a(x), we obtain

a() =
2nX

i=1

ai
i =

nX

i=1

ai(
i + �i) :

It follows from conditions (i) and (ii) above that for every i 2 f1; 2; : : : ; ng, exactly one
element in the pair fi; p�ig can be written as 2j modulo p, for some 0 � j � n�1.
Hence, we can write

a() =
n�1X

j=0

a2j (
2j + �2

j

) =
n�1X

j=0

a2j ( + �1)2
j

=
n�1X

j=0

a2j�
2j ; (2)

where all indexes are taken modulo p. It follows from (2) that, up to permutation, the
elements a1; a2; : : : ; an are the coe�cients in the normal basis representation of a() that
corresponds to the generator �. This simple relationship between the coe�cients of a(x)
and the normal basis representation of a() implies that, in a hardware implementation,
an e�cient optimal normal basis representation multiplier can be used for the palindromic
representation, provided the coe�cients are permuted accordingly (this has no hardware
cost, other than \re-wiring"). In software, we would use the polynomial interpretation
induced by (1), and bene�t from the e�cient algorithms available in that case.

As for inversion, the palindromic representation allows for the use of the extended
Euclidean algorithm to �nd the inverse of the palindromic polynomial a(x) modulo xp�1,
from which the inverse in ONB representation is easily derived. The Euclidean algorithm
admits e�cient implementations in both hardware and software.

3 References

[1] R. Lidl and H. Niederreiter, Finite Fields, in Encyclopedia of Mathematics
and its Applications, G.-C. Rota, editor, Addison-Wesley, 1983.

[2] A.J. Menezes (Ed.), I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone,
T. Yaghoobian, Applications of Finite Fields, Kluwer, Boston, 1993.

3




