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Abstract

Organizations building highly complex business and technical systems need to architect
families of systems and implement these with large-scale component reuse. Without carefully
architecting the systems, components, organizations and processes for reuse, object reuse will
not succeed. Experience with software reuse practice and adoption experience at HP and
Ericsson led us to a systematic approach to component-based software engineering, based on
object-oriented business and system modeling. This article explains how higher-level UML
constructs support architected reuse, and describes a systematic process, leading from the
business processes of an enterprise, through the system architecture for a family of
applications that support these business processes, to the design and use of highly reusable
component systems.
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1. Software reuse is strategic

To meet competitive pressures and provide increased value to their customers, many
organizations are radically reengineering their business processes. Part of this change is the
timely and cost-effective creation of new mission-critical software systems. Dramatically
improved software development is a key part of their strategy. Systematic software reuse
promises tremendous improvements in time to market, quality and cost.

Simply pursuing "silver bullets," such as CASE, 00, RAD or Java, will not solve the
software problem. While many managers adopt 00 methods and technology to achieve reuse,
experience shows that highly successful reuse programs address a variety of business,
organization, process, architecture, cultural and technology issues. And those that do not, fail!

We need a systematic approach to obtaining significant software reuse, meeting business
objectives, and overcoming the major organizational impediments to reuse. This article
describes our experience at HP and an approach we developed jointly with Rational Software
Corporation, described in more detail in the book Software Reuse: Architecture, Process and
Organization for Business Success[l]. We use a comprehensive and systematic approach to
orchestrate the large-scale investment and change needed to establish an effective reuse
program. Large-scale reuse, a layered architecture, and a managed organizational change
roadmap are of tremendous help in effectively dealing with mission critical business issues
such as initiatives to rapidly decrease time to market.



2. Business need motivates reuse

Our direct experience and research at HP and Ericsson, and lessons learned from practical
experience at other companies such as AT&T and Netron, shows that a reuse-oriented
architecture, process and organization are key to effective reuse. Long-term success and
management commitment to a systematic, architected, component-based software reuse
program must be aligned with, and driven by, a compelling business reason, such as the critical
need to decrease time to market to meet competitive market forces. Effective reuse programs
depend strategically on a clear management and organization goal to develop a long term,
flexible product line or product portfolio. With appropriate management commitment,
evidenced by a strategic statement from the CEO to improve the speed with which new
products are developed, change can begin. Energy and resource can be directed to establishing
an appropriate reuse-oriented process. People can invest time in creating a software
development organization specifically structured to support reuse. Managers and supervisors
can then mount programs to address the well-known social and cultural impediments to reuse.

As an example of the issues typically confronting today's corporations developing software
intensive products for rapidly moving Web-enabled markets, the following is a summary of the
problems facing several organizations at HP developing families of measurement systems.
Similar issues confront anyone contemplating systematic reuse as a strategic or tactical
response to business pressures:

• Time: Rapid product development and market agility are critical to the development of
Web-enabled distributed measurement products. HP management has identified these
factors as critical to success. How should this play out in terms of changed processes,
new architectures, business measures and organizational structures?

• Process: Process changes and improvements will be needed to move from a feature
driven to a schedule-driven organization. What sort of standard processes and process
maturity levels (such as SEI CMM level 2 or 3) should be selected? How do we get
these into widespread use in the most expeditious way?

• Organization: A variety of cultural and organizational issues impede effective ways of
working with architected platforms and components. Who owns standards, architectures,
and platforms? What stops people from sharing? What encourages NIH? How do we
systematically address these issues? What organizational, management and metrics
changes are needed to encourage the change?

• Coordination: Coordination between new and ongoing technical and process
improvement initiatives. What are the connections between new technologies and
strategies for development for the Web, improving process predictability, improving
quality and decreasing cycle time? What are the priorities? What should we do first?
What architectural implications and other standards need to multiple initiatives? Who
owns the architecture?

• Technology: Common architectures, reusable components and leveragable platforms
are key elements to achieving decreased cycle time. What notations, standards and
technologies should be used? How should they be introduced? How do standard tools
and platforms apply?



3. Success factors for systematic reuse

While this article can not address all of these questions, our work offers a framework for
approaching these kind of issues. Architecture, reuse, standards, process, organization and
business issues are closely related, and must be addressed together within a common model.

A successful, large-scale reuse effort must be:

1. Business-driven
• The organization must have a visible, articulated and compelling need for

dramatic improvements in cycle time, cost, productivity and/or agility.
• The organization must be producing software (applications, embedded systems

or key subsystems) that form an obvious product-line, application family or
coherent "domain."

.• These two factors provide a context for organizational commitment in which
some form of reuse can be justified economically, technically and strategically.
Component-based development becomes of strategic importance. Management
will pay attention.

2. Architected
• Applications, systems and components must be purposefully designed and

structured to ensure that they fit together, and that they will cover the needs of
the family or domain.

• A well defined, layered, modular structure, and various design and
implementation standards are needed. Object-oriented modeling and
implementation are extremely useful vehicles.

• Ad hoc reuse of existing software, or use of common frameworks, do not ensure
the coherence of a set of compatible, reusable, maintainable parts. A system
architecture for reuse must be defined and maintained as an organizational asset.

3. Process-oriented
• Distinct software development and maintenance processes for architecture,

components and applications must be defined and followed.
• These processes must explicitly incorporate reuse. They systematically identify

and express commonality and variability, and include standards for designing,
packaging, managing and using components for reuse.

• Processes will evolve as the situation changes and experience and adoption
grows. This will need careful management to standardize a set of reusable
process elements that can be flexibly combined and customized.

4. Organized
• Long-term management leadership and commitment will ensure that the

organization is structured, trained and staffed to follow the processes and
conform to standards.

• The organization will have several distinct subgroups responsible for creating,
reusing and supporting reusable components. These teams must be trained and
willing to follow the specific processes.

• The organization must be ready for the requisite level of change, and be willing
to "stay the course."



• People must have well defined reuse-oriented jobs, with appropriate training,
skills and rewards for effective reuse performance.

4. Engineering the solution systematically

As we came to understand the magnitude of the changes needed to install pervasive
organizational reuse, it became clear that we should adopt a Business Process Reengineering
(BPR) approach to restructuring a software engineering organization for large-scale reuse[2].
A standard architectural design notation and a compendium of common, reusable architectures
and designs provide a base for more reusable components and frameworks. Used consistently
within a reuse-oriented process, architected components and frameworks enable high levels of
reuse. And high levels of reuse can lead to dramatic reductions in product development time.
As we looked at how an 00 software modeling method should be used for the architecture, we
also looked for compatible ways to model processes and organizations. This motivated us to
build upon a powerful, well-known 00 method that could deal not only with the modeling of
architecture and components, but also with software process and organization design.

This led to a collaboration with Ivar Jacobson of Rational Software Corporation with the
goal of integrating reuse process and pragmatics into an 00 development method[3]. We have
worked together since 1994 to develop a coherent approach to structuring architecture, process
and organization for effective object-oriented and component-oriented reuse[2,3,4]. We have
integrated techniques of systematic software reuse into Jacobson's Object-Oriented Software
Engineering process (00SE)[5], building on the new Unified Modeling Language (UML) for
object-oriented systems[6]. Since the goal of reuse is pervasive, we call our systematic
approach to practical, large-scale reuse the "Reuse-driven Software Engineering Business"
(RSEB). An RSEB is a software development organization specifically structured to employ
systematic reuse-based software engineering and management techniques as a key business
strategy.

We based our collaborative work on Jacobson's use-case-driven architecture and process
modeling frameworks - Object-Oriented System Engineering (00SE)[5] and Object-Oriented
Business Engineering, described in "The Object Advantage"[7]. By so doing, we have
integrated the key aspects of successful reuse programs into a coherent model. Our approach
relates all processes (activities and supporting infrastructure) and products (architecture and
components) to the business goals of a reuse-driven software engineering business.

Our systematic approach has the following elements:

1. 00 model-driven component and application development
• We use the Unified Modeling Notation (UML 1.0), to model components and

system.
• We build upon a UML-based OOSE architectural style and method. OOSE

defines the constructs, models and steps which are needed to transform
requirements into models and ultimately software. (OOSE is the base method
for the Rational Objectory process)

• We have added UML-based extensions to model layered architectures, reusable
components, component interfaces, variability and frameworks.

• We use incremental, iterative software development processes, which allows us
to build up the architecture, reusable components and applications in stages.



2. 00 Business Engineering to model reuse process and organization
• We use 00 models, called business models, to precisely define the details of the

software processes, and how they interact.
• We use these models to also define the roles of various workers in the software

organization, and how they can be effectively grouped and managed.
• Finally, these models can be used to define the workflow (or process scripts)

that guide these workers.

3. 00 Business Engineering as transition framework
• This provides a standard set of steps and questions that identify the scope of the

transition, and determine the best organization structure to match the needs,
level of commitment and existing situation.

• A specific organization change roadmap is designed, involving an assessment of
scope, readiness for change and incorporates a variety of change management
pragmatics, such as reuse pilots and staged changes.

5. Integrating architecture, process and organization in the RSEB

The RSEB is run as a software engineering business. This means that the software
engineering goals are key to accomplishing the organization's business goals, and that as a
consequence, the software organization itself is operated as a business, with well-defined
customer and financial objectives. In many organizations, a dominant and compelling business
goal is to reduce product development times, yet retain market agility within and across
product families. Examples of these families are applications and systems which are built to
meet different customer and country needs by combining and customizing reusable
components: measurement systems built from common instrument components, and Telecom
switches (such as Ericsson' AXE) which are configured to a variety of situations.

If deemed technically feasible, a strategic decision must be made to establish one or more
reuse-driven business units within these organizations. As a reuse-driven software
organization, such business units produce multiple, related applications, centered and
optimized around the production and reuse of components. These applications commonly form
a product-line or product family. As a business, this organization must understand its
customers, and serve their needs, while at the same time effectively achieving its profit and
expense objectives. Business tradeoffs must be managed using well defined economic, product
and process measures.

Figure I summarizes the key elements of the RSEB, using an informal 00 business
engineering notation. The ellipses are business use cases, representing software engineering
processes, while the rectangles are systems, represented by sets of UML models. The stick
figures are actors, representing people or organizations with which the RSEB interacts.

Each system in Figure I is expressed as a set of 00 models using OOSE and UML notation.
Reusable components are public elements drawn from the various models, designed and
packaged for reuse, including use cases, patterns, analysis types and design and implementation
classes (code). Components are not used alone, but in groups called Component Systems.
Component systems are constructed by the Component System Engineering process. In additon
to the public reusable components, component systems include the various supporting models
and code to implement the components. Applications are constructed by the Application
System Engineering process as a set of connected models and software, called an Application
System.
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Figure 1. The elements of the Reuse Business. The ellipses represent processes, the
rectangles represent systems, and the stick figures represent the environment within which the
Reuse Business functions.

Most important to shaping the applications, and ensuring high levels of reuse is the
architecture of the reusable components and applications built from these components.
Applications and components interact with each other in a layered, modular architecture. We
visualize the Layered System architecture as illustrated in Figure 2. This layered system is
developed by an Application Family Engineering process. The RSEB systematically engineers
a layer of related application systems, at the top. Behind the front row of applications are
related variants of the applications. The application-specific software is engineered in the
Application System Engineering process by extensively reusing component systems, which we
imagine as existing on several lower layers. Below the application layer are components
reusable only for the specific business or application domain area, such as banking systems or
microwave instruments. This layer includes components usable in more than a single
application. The third layer of cross-business middleware components includes common
software and interfaces to other established entities, such as graphical user interfaces, ORB's,
etc. The lowest layer of system software components includes interfaces to hardware, such as
an operating system interfacing to the computer (or to its built-in instruction set).

Application systems are not free to reuse any UML element within a component system, but
only those made publicly available through carefully defined and documented facades.
Components and component systems are specializable in various ways, and explicitly indicate
where they can be specialized through a UML extension called Variation Points. Figure 3
shows an application system (Payment) importing components from a component system
(Account Management) via the fa~ade (Transfers). Figure 3 also shows several variation
points (black dot) and several attached variants.



Figure 2. The basic layered system architecture consists of three layers of components
that go into the application systems at the top of the diagram.

Figure 3. An application system importing objects from a component system, via the
fafade. Some components have variation points; some ofthese come with supplied variants

Business use-cases are used to model the interaction of an actor (person or external
organization) with the business organization[7]. These business use-case models help identify



core processes within the organization. When these models are mapped onto business object
models, they display business workers as objects, and the entity objects they manipulate. They
can be used to define the responsibilities of the workers, the workflows they enact, and the
information systems and tools they use.

6. Incremental transition

The systematic transition of an existing software organization into an RSEB is based on an
00 Business Engineering framework[7]. We execute Business Process Reengineering (BPR)
incrementally, using explicit business models expressed in UML notation. Business use cases
model the interaction of an actor (person or external organization) with the subject
organization. These business use case and object models help identify core organizational
processes. These models are further refined to produce a robust business object model
showing workers, and entity objects. We then map these onto responsibilities, workflows and
information systems and tools. Factoring and subsystems model appropriate organizational
structure.

The 00 Business Engineering approach has several stages that prepare, define and execute a
transition:

• Directive: Management issues a directive to reengineer, articulates scope and
commitment, and empowers a reengineering team.

• Envision: The reengineering team envisions the new organization, and establishes
what sort of RSEB it might be.

• Reverse Engineer: The team uses reverse engineering to determine essential
aspects of the existing organization and its processes.

• Forward Engineering: Forward engineering is employed to develop a detailed
model by customizing and extending a generic RSEB process and organizational
model.

• Install: Finally, several teams work together to install the new processes and
organization

Each of these steps includes specific organizational change management guidelines, such as
the use of champions and pilots, metrics, and some reuse pragmatics, such' as the use of
incremental, pilot driven reuse adoption, and distinct reuse-maturity stages[2,3]. To develop
the appropriate roadmap, it is important to assess both the clarity and urgency of the business
and domain drivers, as well as the organization and process maturity. Standard assessment and
maturity model templates are provided.

7. Conclusion and Next Steps

The RSEB approach provides a systematic framework for the definition and transition to a
reuse-driven organization. Clear business goals and management commitment are key to
making the process and organization changes needed for architected reuse. UML as a common
modeling language for 00 system and business modeling, provides a widely accepted software
"blueprinting language" for architects and engineers to describe complex systems and precisely
define their reusable components. Large-scale reuse and an organization change roadmap are
critical for systematically improving software and meeting business needs.

We are now developing a more comprehensive approach to integrating explicit traditional
domain engineering methods into the RSEB[8]. Starting from a business model, today's RSEB
includes a use-case driven analysis of commonality and variability for an application family,
carried out in Application Family Engineering and Component Systems Engineering.



Variability is expressed in terms of variation points and variants. Others kinds of features that
characterize alternative applications are mentioned, but not modeled explicitly. Our new work
integrates elements of the well-known FODA[9] method, adding an explicitfeature model and
new domain analysis steps, based on exemplers. Some features directly represent use cases,
while others deal with performance alternatives or implementation alternatives. Some features
are mandatory, while others are optional or correspond to variation points. This should make
RSEB approach applicable to an even broader class of problems, in which partially incomplete
knowledge of the application family (the "domain") can be handled systematically. We are also
exploring the use of tools that more flexibly represent components, patterns, and features, with
explicit, traceable linkages between the various models.
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