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Abstract 

 
In this paper we present a method for performing light-dependent texture mapping that can be 
implemented in current texture mapping hardware with low additional cost.  Our method gives the 
impression of  finely modeled surface detail that is properly illuminated as lighting moves relative to 
the object.  As an image-based technique, it requires no complex geometric models as input, only a 
set of  photographs or renderings of  an object under varying light conditions.  Light-dependent 
variations are captured by per-texel polynomial functions designed to be efficiently evaluated via 
slightly modified multi-texturing hardware. 

1. Introduction 

Traditional texture mapping is used to give the impression of  geometric detail in a model using an 
image.  For example, a photograph of  a brick wall may be used as a texture map on a planar surface 
to avoid modeling the complex surface detail of  the brick.  However, if  the lighting in the synthetic 
environment where the texture map is used is different from the lighting the texture map was 
captured under the resulting rendering will appear incorrect and unrealistic.  In addition, if  an image 
is used as a texture map on an object with a different shape than the input image then the lighting 
effects captured in the texture may not match the lighting in the synthetic geometric environment. If  
the texture is blended with the calculated lighting of  a geometric surface then the resulting rendering 
will look very flat and smooth to the viewer  (see Figure 1). 
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Figure 1: Texture map modulated with Phong illuminated cylinder and plane.  Yellow arrow indicates 

light source direction. 
 

Bump mapping [Blinn 78] is one proposed solution to this problem.  Bump mapping is a technique 
that perturbs the surface normals of  the underlying geometry according to a bump map.  
Introducing variations in the surface normals causes the lighting method to render the surface as 
though it had local surface variations instead of  just a smooth surface.  As a result, as the light is 
moved around the object highlights appear due to the bump map and the surface appears to be 
rough or grooved or similarly modified as desired. 

In general, bump maps are either hand modeled, or more typically calculated procedurally.  Creating 
a bump map to be used with real world textures from photographs is generally difficult.  Methods 
have been developed that attempt to automatically generate bump maps from a set of  input images 
under known light directions [Rushmeier 97].  These methods have difficulty with generating bump 
maps for objects with large surface variations that cause self-shadowing and intra-object 
interreflections.  In addition, current bump map rendering techniques do not render shadows due to 
surface variation or brightened regions due to interreflections.  

Our technique in contrast is an image-based technique that requires no modeling of  complex 
geometry or bump maps.  The input data required is a set of  images of  the desired object to be used 
as a texture, each one under illumination from a different known direction, all captured from the 
same view point.  The input light directions need not be uniformly spaced in the hemispherical set 
of  possible light directions. 

Interpolating the input images to create textures from arbitrary light directions would be very costly 
both in memory and bandwidth.  For each texture element (texel) in our texture map we would have 
to store a color sample for all input light positions.  Instead of  storing a large set of  color samples at 
each texel, we use a simple second order polynomial at each texel to approximate the change in color 
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of  the texel as a function of  light direction.  Our method currently uses a polynomial to 
approximate the brightness (non-linear luminance) of  each texel, keeping the chromaticity constant. 

The result of  our method is a texture map that properly reproduces the effects of  variations in the 
illuminant direction relative to the object, whether due to the surface orientation of  the texture 
mapped object, or to changing the location of  the source.  Renderings using our method are very 
realistic, and require little or no user input once the input images are acquired. 

2. Data Acquisition and Direct Rendering 

The input to our system consists of  a large number (40 in our experiments) of  images of  the object 
to be used as a texture map, each image taken with the light at a different direction relative to the 
object.  Each light direction is a sample from the set of  all possible light directions, the hemisphere 
above the sample object surface3.  In order to simplify our data acquisition, we created a once 
subdivided icosahedral dome, and positioned the light at the center of  each triangular face of  the 
dome (Figure 2).  The camera was in a fixed position at the top of  the dome.  The data we capture is 
equivalent to a set of  samples of  a bidirectional texture function (BTF) [Dana 97], except we only 
have samples for one view direction.  Therefore, our texture maps assume the object exhibits no 
view-dependent effects.  

 

Figure 2: Black lines indicate the edges of  the subdivided icosahedron.  Red lines indicated light 
direction relative to sample and the center of  the dome. 

We can render texture maps directly from the input data using a technique analogous to view-
dependent texture mapping [Debevec 96].  If  we chose the color of  a texel with a particular input 

                                                 
3 We assume the object receives no light when the illuminant is behind the object. 
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light direction based solely on the nearest input sample the rendering would exhibit discontinuities 
between pixels and flicker with changing light directions because the nearest sample direction would 
vary abruptly as light direction changed.  Instead we triangulate the space of  input light directions, 
and choose a texel’s color based on the weighted average of  the three sample points at the vertices 
of  the triangle the light vector intersects.  We perform a Delaunay triangulation to generate a 
triangular mesh based on our input sample directions.  If  we determined the weights for each of  the 
three input samples based on Euclidean distance we would still experience discontinuities as the 
sample light direction crossed triangle boundaries.  To resolve this problem we used Barycentric 
coordinates to determine the weighting. Figure 3 illustrates an example rendering directly from the 
input data using this technique. 

 

Figure 3: Direct light-dependent texture mapping of  a crumpled newspaper texture 

3. Fitting and Color conversion 

Instead of  storing a large number of  sample color values, one for each input light direction for every 
texel, our goal is to approximate the change in color with a polynomial that is a function of  the light 
direction.  We model the color Y (assuming one color channel for now) by the polynomial: 

FEvDvvCvBvAvY yxyxyx +++++= 22  

Where vx and vy are the projections of  the vector to the light in the local texture coordinate space, 
and A-F are six fitted coefficients.  Figure 4 shows how vx and vy are calculated from the normal N 
and texture axes s and t, based on the vector to the light L.  Parameterizing light direction by the 
projection of  the vector into the texture space has the advantage of  having no discontinuities as L 
varies over the hemisphere.  A more traditional parameterization by angle and elevation has a 
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discontinuity between 0 and 360 degrees.  One disadvantage of  this projection based method is that 
a special check must be included to differentiate between light directions in the upper and lower 
hemispheres. 

 

Figure 4: Calculation of  vx and vy by projecting L into local texture space. 

The polynomial coefficients, A through F, are calculated independently for every texel.  Instead of  
storing color values at every texel in our texture map, we are storing 6 polynomial coefficients.  As a 
result every texel holds a polynomial that approximates the appearance of  the texel as a function of  
the light direction.  The coefficients are calculated based on a least squares fit of  all the input 
samples.  We currently use a simple normal equations method [Press 92].  Figure 5 shows a 
comparison of  rendering directly from the input images in the top half  and from fitted polynomials 
(one per color channel) in the bottom half.  The only visibly noticeable difference is slight 
smoothing of  lighting detail in the polynomial based image. 

 

Figure 5: Top half: Light dependent texture mapping directly from input images.  Bottom half: Light 
dependent texture mapping using three polynomials per texel. 



 6

The result of  the fitting operation is six floating-point coefficients.  We would like to store these as 8 
bit integers for evaluation speed, and so that all the polynomial coefficients may be stored in two 24-
bit images.  This is a non-trivial problem since there are typically several orders of  magnitude 
difference between the high and low order coefficients.  In addition, different textures may have very 
different coefficient ranges.  To eliminate this problem we store three shift values (high, medium, 
and low order coefficient shifts) for each texture.  These shift values specify how many bits the 
coefficients have been shifted before they where stored in the coefficient files, and correspondingly 
how many bits to shift by in the polynomial evaluation to undo the shift.  For example, a high order 
coefficient may have a value of  0.0128.  We examine the ranges of  all high order coefficients and 
determine that a left shift of  13 bits places them all in the range 0 to 256.  0.0128 is multiplied by 213, 
and stored as 105.  After polynomial evaluation we right shift the result by 13 bits to calculate the 
proper result.  In order to allow for negative coefficients, we also add a scalar, typically 127, to each 
coefficient before storage, and subtract it when reading in the coefficients.    These operations are 
very simple and can be implemented as integer shifts and adds in hardware. 

The polynomial we used is specifically designed to be integrated into multi-texture capable graphics 
hardware.  The six coefficients are all eight bit values so that the polynomial can be evaluated by 
using multi-texturing to combine two 24 bit textures.  The only hardware changes that are needed 
are eight bit multipliers to multiply the coefficients by the appropriate vx and vy values, and eight bit 
adders to combine the output multi-texture channels into the output color Y. 

If  fitting where performed in a straightforward manner directly on the original input images then 
three independent polynomials would have to be calculated per texel, one for each color channel.  
Evaluating three different polynomials per texel would be computationally expensive, and would not 
be possible to integrate easily into current multitexturing hardware.  Our method must require only 
one polynomial evaluation per texel to be practical.  One possible solution would be to convert the 
RGB input images into color-indexed images, and then fit one polynomial to the indices.  This 
would require additional look-up table hardware to convert back into RGB color after the 
polynomial evaluation.  The primary difficulty with a color-indexed method is constructing a small 
color table (256 entries) that spans the color space of  the input images satisfactorily, and results in 
accurate color transitions with small changes in the index.  As the light direction changes the output 
index from the polynomial evaluation will change correspondingly.  The color values generated from 
the look-up must not change wildly as the index changes.  For example, on most surfaces the output 
hue must not fluctuate if  the light elevation increases slightly.   Constructing a single look-up table 
that covers the needed regions of  the color space, and varies smoothly enough so as not to cause 
visible artifacts may be difficult or impossible for different textures.  This technique may still be 
worth investigating however, as color tables exist in current hardware and are very efficient. 

The solution we chose was to convert the input images into a color space that separates the 
luminance from the chromaticity, and fitting only the luminance.  Chromaticity is assumed to stay 
almost constant as light direction changes, and is stored separately.  The luminance changes as a 
function of  light direction are fitted with a single polynomial per texel.  Rendering requires 
evaluating the polynomial, then performing a 3x3 matrix multiply to convert back into RGB color 
space. This would require additional color matrix hardware to transform the texture map output.  
This capability does exist in some current graphics hardware [OpenGL 97].  If  implementing the 
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color matrix in hardware is too costly, it may be possible to approximate the color space conversion 
using a sufficiently large color look-up table.  Our current software implementation uses a 3x3 
floating point matrix multiply.  Slight color variation from the input images may occur due to storing 
a constant chromaticity per texel, but the variations were not very noticeable or disturbing in our 
experiments.  Figure 6 shows an example image where the top half  is rendered using three 
polynomials per texel, while the bottom half  is a single luminance polynomial per texel. 

 

Figure 6: Top half: Light dependent texture mapping using three polynomials per texel.  Bottom 
half: Light dependent texture mapping using a luminance polynomial per texel. 

For our experiments, we used the YCBCR color space, fitting only the Y component.  YCBCR is 
frequently used with digital images, and is used in the JPEG and MPEG compression schemes.  It 
can also be converted to and from non-linear RGB using 3x3 matrixes, so it suits our needs well. 
YCBCR is however a non-linear color space, so it may not be a good choice for implementation in 
graphics hardware that does gamma correction after texture mapping.  We used a non-linear color 
space because our input RGB images that were captured from a digital camera were non-linear.  In 
addition the rendering library we used, an OpenGL like library called Mesa, did not do gamma 
correction. 

The color space that is used in practice need not be fixed.  It might be useful to examine the input 
images and determine a color conversion that gives one variant component, and two components 
that change very little as a function of  light direction.  The appropriate matrix to convert back to 
RGB would then need to be stored along with the polynomial coefficients.  Calculating a suitable 
color space may be needed if  luminance is not the dominant axis of  color change, such as if  the 
illuminant color is far from white. 

To be useful in current rendering applications and to eliminate artifacts our method must support 
mip-mapping.  For small changes in light direction our polynomial is effectively linear.  As a result 
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we can mip-map the A-F polynomial coefficients, similarly to how the color values in traditional 
texture maps are mip-mapped.  Without mip-mapping the texel polynomials would be point sampled 
in u,v space, resulting in disturbing aliasing artifacts. 

4. Related Work and Extensions 

Our method as we’ve described it could also be used as a view-dependent texture mapping 
technique.  In view-dependent texture mapping, instead of  having a polynomial that is a function of  
light direction it would be a function of  the viewer’s direction.  This would allow the texture to 
reproduce view-dependent effects such as specular highlights, and possibly roughly capture depth 
and occlusion effects similar to a Light field [Levoy 96].  The input required is a set of  input images 
taken from known view directions relative to the object.  Lighting would need to be kept constant 
for all input images, which is a non-trivial task. 

View-dependent texture mapping would not work flawlessly with our polynomial approximations 
however.  If  the texture object is very non-planar then a texel may fall on very different parts of  the 
object as the view direction changes.  A simple low order polynomial is unlikely to be able to capture 
the high frequency changes that may result.  For example, if  the object was a piece of  fur, as the 
camera moves around the color of  each texel may vary radically as different hairs fall under the pixel.   

5. Conclusions 

We have presented a method that requires only images to generate high quality photorealistic 
renderings of  a textured surface.  Our method captures light dependent effects, whether they are 
due to changes in the illuminant direction, or surface orientation of  the texture mapped object.  It 
can render changes in brightness due to shadows and indirect lighting that cannot be reproduced 
with existing bump mapping hardware, or Phong illuminated geometric objects.  Our technique 
could be integrated into current graphics hardware with minor additional hardware requirements. 
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