
Instruction Assignment for Clustered
VLIW DSP Compilers: A New Approach

Giuseppe Desoli
HP Laboratories Cambridge
HPL-98-13
February, 1998

E-mail: desoli@hpl.hp.com

VLIW, clustering,
assignment, ILP,
DSP

This report proposes a new heuristic/model driven approach to assign
nodes of a computational DAG to clusters for a VLIW machine with a
partitioned register file. Our approach exploits a heuristically found
initial clustering to speed up the convergence of a deterministic descent
algorithm. The initial configuration is determined through a longest
path driven strategy that collects a number of paths or sub-dags
starting from the DAG's leaves. The initial node assignment problem is
then simplified to the assignment of these partial components to one of
the k clusters.
We approach the component assignment problem in two different ways
depending upon some heuristically detected DAG symmetries. The
descent algorithm starts from the initial configuration and modifies the
assignment for each partial component by minimizing a cost function
being an estimate of the schedule length for all nodes in the DAG on a
given machine. The estimate is carried out by a simplified list
scheduler taking quantitatively into account things like register
pressure, resources allocation, etc. We compared our approach with a
common heuristic known as BUG (Bottom Up Greedy) on a set of
scientific and multimedia-like computational kernels. Experimental
results show a reduction from 5 to 50% in the static schedule length
depending from the DAG's complexity, symmetry and intrinsic
parallelism and from architectural parameters like number of clusters,
registers banks size, etc. Best results were obtained for large DAGs
(hundreds of nodes) where the assignment of nodes to clusters is
determinant to reduce the inter-cluster copies and the resource
conflicts; another important factor is sometimes the reduction in
register spills to/from memory due to the load balancing between
clusters. These results and the low computational complexity of this
approach show how the proposed method can be a viable solution for
node assignment in a VLIW compiler for clustered machines.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

3

Introduction
Code generation for embedded processors and DSPs has become an important research topic be-
cause of the increased presence of such devices on the market. Compiler technology is mature
for general-purpose processors while many open issues remain for code generation for DSP. The
complex features of DSPs’ and especially ILP, have introduced new problems and expanded the
classical compilers’ code generation phase with some new functions. Normally some of the more
important are instruction selection, register allocation and scheduling for ILP. The recent litera-
ture has proposed algorithms to tackle the complexity of some of the mentioned problems for
DSPs: Leupers and Marwedel [1] recently proposed an instruction selection scheme for DSPs
with complex instructions in the presence of ILP, and many other scheduling algorithms are pre-
sented in [2].

In this paper we deal with a new scheduling phase introduced by the need of partitioning a com-
putational DAG onto k interconnected clusters for clustered DSPs. We focus our study on the
partitioning of large computational DAGs like those commonly generated by optimizing com-
piler for scientific applications and especially multimedia and digital signal processing.

Recently, several VLIW DSPs and media processors appeared on the market or have been an-
nounced (Texas Instruments’ TMS320C6xxx, Philips’ Tri-Media, Chromatic’s MPACT Mitsubi-
shi’s V30 [3]) requiring a solution to this problem. This new class of DSPs architectures, while
simplifying hardware to a great extent, poses new problems for compiler writers in order to ef-
fectively exploit their full potential.

In this paper, we are specifically interested in finding an effective sub-optimal algorithm suitable
to be implemented in a VLIW DSP compiler. The main goal is to exploit the available ILP (In-
struction Level Parallelism) through the static scheduling of operations, as opposed to a super-
scalar where dedicated hardware exists that can carry out this task at run-time on an instruction
window.

Often, to meet hardware costs and clock targets it is mandatory to partition a VLIW register file
into many smaller ones, and it is also common for VLIW DSPs to have internal memory subdi-
vided into different memory banks. Each register file or memory bank is connected directly only
to a certain number of ALUs and/or computational units to reduce the number of ports, thus al-
lowing smaller register files and smaller propagation delays ultimately leading to higher clock
speeds. When the connectivity is not complete, then the association of operations to computa-
tional units becomes an important issue.

In a static scheduling paradigm, it is the compiler task to allocate operations to different ALUs in
different clusters. In some cases, without special hardware, it may be the compiler’s task also to
directly insert copy operations when operands are needed from a register file on a different clus-
ter.

From the compiler’s point of view then we can identify two different cases:

• The hardware provides a transparent support to execute copies between register files.

• The hardware provides a non-transparent support to execute copies between register files.

4

In the first case the copy operation will be handled automatically by the DSP control hardware
when a computational unit needs the content of a register that is not directly connected to it. It is
often not possible to implement a zero delay copy, so the copy (or the copies if more than one is
supported) will stall the entire machine until completed. These stalls will cause hidden cycles,
that are completely ‘lost’ because they will not appear in the static schedule.

The second case requires the compiler to issue a copy operation (or more than one depending
upon the connectivity) whenever a register on a different register file is needed. This copy will
be scheduled just like any other operation, and will not stall the entire machine but rather delay

only the operations that depend on it.

The latter case is - to some extent - harder to im-
plement from the compiler’s point of view as it
changes the structure of the DAG depending
upon the nodes assignment. However, it gives
more control on the static schedule and poten-
tially enables to reduce the number of stalls when
compared to the first case.

Independently from the above classification, the
appropriate assignment of operation to computa-
tional units may greatly reduce the number of
copies required to move around values and in the
end to reduce the number of cycle needed for
complex DAGs.

Figure 1 shows the DAG for a simple 3 taps FIR
filter (whose code is presented in the appendix).
The thicker edges in the picture are used to con-
nect the nodes on the critical path (assuming un-
limited resources). Let us assume a hypothetical
clustered machine where each cluster has no ILP
and is only able to perform one operation per
cycle. Then, for this trivial example, it is clear
that to achieve the shortest schedule length
(without splitting nodes) we cannot introduce
any inter-cluster copy between nodes on the
critical path. From the picture we can also see
that only two nodes can be issued on different
clusters with the necessary copies, without po-
tentially impacting the schedule length (nodes:
x0 * h0 and x = x + 2).

Ideally an optimal code generator for this kind of architectures should carry out instruction se-
lection, partitioning (instructions assignment to computational units), register allocation and
scheduling (assignment of a cycle for each operation) simultaneously. Given that clustering and
scheduling are both well known NP-complete problems and considering the engineering prob-

Figure 1: DAG for a 3 taps fir filter, the critical path
assumes no resource limits and 3 cycles latency for a mem-
ory load, 2 cycle for a multiply and one cycle for ALU
operations, red edges are not real input but constraints.

h1 x1 x0 h0 x

*

**

LD

h2

x1

 +

 2

x0

 x

 +

 +

>>

 15

ST

 y

 +

 y

 2

5

lems involved, often they are separated and carried out independently by using heuristic and/or
stochastic optimization approaches.

In this report, we focus on minimizing the impact of inter-cluster copies by pre-assigning opera-
tions to clusters. The problem is similar to the assignment problem for computational DAGs in
multiprocessors system but with some important differences. It can also be seen as a k-way par-
titioning problem for a DAG where the cost function represents the final schedule length for the
DAG including communication delays.

We first give a quick overview of previous similar work, then we describe our approach and we
compare it experimentally against a common heuristic and to the case where only one fully con-
nected register file exists.

We implemented our clustering algorithm within the framework of the MULTIFLOW trace
compiler [4]. This compiler uses techniques like loop unrolling, function inlining, if-conversion,
speculative execution, predication and a global scheduling technique known as trace scheduling
[5]. All of them result in an increased size of the scheduling regions that for some applications
can easily reach thousands of nodes. For such big DAGs it is extremely important to use an ap-
proach that is fast and that scale in complexity almost linearly with the number of nodes to be
assigned. Finally we discuss the results and give some ideas for future directions.

Previous work
Communication costs are a well-known cause for performance degradation in multiprocessor
systems [2], and being an NP-complete problem many joint scheduling/assignment algorithms
have been proposed that try to solve the problem sub-optimally. Most of the existing studies ap-
proached the problem of scheduling a computational DAG of tasks on a multiprocessor system.

However almost all existing algorithms cannot be easily adopted to solve the problem of alloca-
tion of operations to clusters for a VLIW with a partitioned register file. The major limitations
come from the assumption made on the structure of the DAG, or by assuming no communication
delay [6][7], or by requirements on the number of processors, being either limited or infinite
[8][9]. Some techniques require the nodes of the DAG to have certain properties, such as an exe-
cution time that decreases with the number of processors applied to them [10]. Interesting work
has been done in [10] for the scheduling of DAGs for asynchronous multiprocessor execution.
However the results cannot be applied to a clustered VLIW were all the clusters work in
lockstep.

 Much has been done on the multi-way partitioning problem where a graph has to be subdivided
into k sub-sets by minimizing a given cost function. Frequently used cost functions try to balance
the number of nodes in a cluster versus the number of edges (cuts) between clusters. Linear time
algorithms have been proposed for a given cost function [12], and many sub-optimal ones for
more complex costs. However, these approaches have only a limited applicability when the cost
to be minimized is the scheduling length of a DAG given limited resources and many other com-
plex interactions with a VLIW machine like register allocations, register spilling etc. Moreover,
classical costs used do not have any relationship at all with the overall schedule length, except
when the DAG has particular symmetries, like a number of separated components being a multi-

6

ple of the number of clusters. For these reasons we discarded the k-way partitioning approach for
all cases but the highly symmetric ones, where we apply a similar strategy in the selection of the
starting configuration.

The MULTIFLOW compiler uses a heuristic called BUG (Bottom Up Greedy) described in [13].
BUG recursively propagates from exit nodes of the DAG to the entry nodes and estimates the
best functional units to be assigned to a node. When it reaches the entries, it works its way back
to the exits, while selecting final assignments for the nodes along the way. To reach the final as-
signment for a node, BUG estimates the cycle in which a functional unit can compute the opera-
tion and picks up the one producing the smallest delay for the output, including the theoretically
minimum delay to copy operands to another cluster if that is the case.

BUG makes some simplifying assumptions: functional units are the only limiting resources in
the machine, and conflicts due to scarce register-bank ports or buses are ignored. The rationale
behind these assumptions is that, if the bandwidth of the register banks is not adequate for the
number of computational units that can access those banks, then the machine is probably im-
properly designed. Such an assumption in general holds even for clustered architectures but there
are some holes left in this strategy.

À First of all, BUG ignores the additional resource costs involved in explicitly scheduling the
copies in machines that require them. This capability can be easily added to BUG but still the
resulting strategy will have a weakness in the global cost impact of inserting copies between
two nodes instead of some others ones.

À In addition, BUG ignores the problem of register pressure (and consequently of register
spilling) in the presence of which the topology of the DAG can change significantly. This is
especially dangerous when register allocation is done by the scheduler afterwards.

À Finally, the local cost is driven only by the delay of scheduling a node on a given computa-
tional unit and the impact on the global schedule is only taken into account by giving prece-
dence to nodes on the critical paths.

Given these weaknesses, BUG still produces quite reasonable results with a reasonably low
computational complexity. In the rest of the paper, we will show how we can achieve a signifi-
cant improvement in the presence of very high parallelism and regularity, such as in scientific
computational kernels.

Algorithm description
The basic data structure we use is the DAG that describes the compilation regions (basic blocks
or traces) in terms of indivisible units of execution expressed by atomic nodes, and their depend-
encies represented by the edges between them. In this model a set of v nodes V={n1,n2,....,nv} are
connected by a set of e directed edges, each of which is denoted by (ni,nj), where node ni pro-
duces an input for (or simply constrains) node nj. A node without incoming edges is an entry
node (or a root) of the DAG, and a node without output(s) is an exit node (or a leaf) of the DAG.
The weight of a node, denoted by w(ni) represents its execution time (or pipeline latency) in cy-
cles.

7

When an input for a node is needed from a node requiring a non zero delay to transfer the result,
then there are two choices to model it; one assigns to the edge between them a non zero cost
d(ni,ni) being the number of cycles required to transfer the value, while the second splices a new
node in between being a copy operation node. The second representation is more general and is
more useful in the case where copies must be scheduled explicitly by the compiler when com-
piler transparent copies are not available.

Even when the hardware provides such transparent inter-cluster copies, it may be better to model
them explicitly in order to prevent as much as possible machine-wide stalls in case of conflicts.

We then describe the DAG D=(V,E) as the union of the set of nodes and their connecting di-
rected edges. Given K the fixed number of architecturally visible clusters (each one having at

least one register file), our
problem (clustering) is to
find k sets of nodes
C={S1,S2,...,Sk) where each
node ni must be contained
in one and only one set, in
such a way as to minimize
L(D,C,A), L being the
schedule length of the
DAG D, given the node
assignment C, subject to
the resource constraints
imposed by the architec-
ture A. In principle, L de-

pends on the scheduling algorithm used to assign a cycle for every node in D, in practice how-
ever we minimize L with respect to a highly simplified list instruction scheduler for A, taking
into account only quantitatifiable register pressure, register spills etc. To speed up the conver-
gence process and to reduce the problem dimensionality, we pre-clusterize together nodes ac-
cording to their respective ‘criticality’ in the original DAG, producing a set of partial compo-
nents by using the following procedures:

procedure PARTIAL_COMPONENTS(D, φth)

F={l1,l2,...lf} ∈ D and (li,nj) ∉E ∀ i in [1,f], j in [1,v] /* the set of f exit nodes or leaves of the DAG */

Φ={∅} /* list of partial components initially empty */

FOR EACH(li ∈ F)

φ={∅} /* start a new component */

LONGEST_PATH_GROWTH(Φ,φ,φth ,li)

ENDFOR

RETURN

*

+

w(ni)ni

nj

copy

*

+

w(ni)

d(ni,ni)

ni

nj

w(nij)≡ d(ni,ni)nij

Figure 2 Assuming node ni and nj are issued in different clusters, then this
two representations are equivalent but the right one allows the compiler to

model copies explicitly, and if required to schedule the necessary resources.

8

procedure LONGEST_PATH_GROWTH(Φ,φ,φth,li)

IF (li ∈ φi ∀ φi ∈Φ) THEN RETURN /* li has been assigned already */

IF (SIZE(φ) > φth) THEN

Φ = Φ ∪ {φ} /* add φ to the set of partial components Φ */

φ = {∅} /* start a new component */

ENDIF

φ = φ ∪ { li }

P = { p1,p2,...,pn) such that (pj, li) ∈ E /* all predecessor of node li */

/* order the predecessors by their decreasing DEPTH as defined by the

ORDER_DEPTH(P) topological order in a depth first search over the DAG D taking w(ni) into

account for every node. */

FOR EACH(pj ∈ P)

LONGEST_PATH_GROWTH(Φ,φ,li) /* follow the longest path */

ENDFOR

RETURN

Where D is the original DAG, and Φ is the set of partial components.

After this, we grow partial components starting from the DAG’s leaves and following the longest
path backward towards the DAG’s roots until we hit a threshold φth for the maximum number of
nodes in a partial component. When LONGEST_PATH_GROWTH reaches an entry point or root
of the DAG or a node already visited, the recursion restarts along one of the pending paths origi-
nating from one of predecessor nodes in the stack of recursive calls. In this way, we add paths to
the partial components in a “critical path first” fashion. The rationale behind this is to allow us to
insert copies if needed preferably off the most critical paths in the DAG.

9

Figure 3 shows this concept for
a simple DAG being the same fir
filter of Figure 1 but unrolled
twice. By setting φth=∞ we get 4
partial components, two of them
being the main ones representing
the two unrolled iterations of the
original loop. In general for infi-
nite value of the threshold φth,
two different situations may
arise.

If the DAG is fully connected,
then the process will produce
only one component consuming
the entire DAG. However if the
DAG is made of several
separated DAGs, then the proc-
ess produces a number of com-
ponents each one containing an
unconnected part of the DAG.

Here, we use the concept of
separation in a loose sense, as
we only explore the DAG fol-
lowing edges backward. A typi-
cal case of this arises from loop
unrolling, especially in the ab-
sence of loop carried dependen-
cies across iterations.

It is not uncommon for the ma-
chine clusters to be homogene-
ous and for the main separated

components of the DAG (like those generated by loop unrolling) to be isomorphic. In such cases
we experimentally found that allocating each partial component to a given cluster by minimizing
the number of inter-cluster copies generally leads to good solutions if some conditions are
satisfied. In addition, this greatly improves the convergence process of the iterative phase.

The set Φ of n partial components is then used to perform a simple mapping n -> k to produce a
k-way clustering. In the case of fully connected DAGs, the mapping simply scans the set Φ (re-
ordered by decreasing size of its elements) for all partial components assigning them to the least
utilized cluster based on the previous assignments.

Figure 3: DAG for a 3 taps FIR filter unrolled twice. We can see four
partial components (different colors), two of which correspond to the two
unrolled loop iterations. This DAG is unconnected according to our loose
definition of connection when following edges backward starting from
the leaves.

10

procedure ASSIGN_PARTIAL_COMPONENTS(Φ,C)

S1=S2=...=Sk ={∅} ∀ Sj∈C

FOR EACH(φj ∈ Φ)

find Smin such that Size(Smin) = min{ Size(S1),Size(S2),...,Size(Sk) }

Smin = Smin ∪ {φj}

ENDFOR

RETURN

This simple mapping effectively achieves a load balancing between clusters, but it isn’t guaran-
teed to produce a good initial assignment for DAGs made by separated sub-DAGs, since it does
not take into account inter-cluster copies in the mapping process.

To obviate this problem, we can modify the mapping for the “separated” DAGs by assigning
each component to a cluster by minimizing a cost function that takes copies into account. To do
this we start by computing a matrix MΦ where each entry mij represents the number of directed
edges between partial components φi and φj.

Starting from an empty assignment, allocating two partial components on the same cluster corre-
sponds to replacing the corresponding rows and columns in the matrix MΦ by their respective
sums for all elements but with the (ith,jth) being zeroed. In fact, it is intuitive to think of this as
merging together two partial components to produce a new component requiring a number of
copies with the remaining components being the sum of the original ones. While the copies
needed between the components now on the same cluster are no longer necessary.

Given a closed form cost function, this problem can be formulated and solved as an integer vari-
ables linear programming problem with constraints. However, to simplify our approach, we pro-
duce a mapping by reducing the connection matrix MΦ and by minimizing a compound cost for
load balancing and number of copies between partial components iteratively.

Although sub-optimal, for the kind of DAGs we mentioned above this strategy produces a good
initial assignment provided we have made an appropriate selection of the threshold φth. Practi-
cally, φth has to be chosen as a compromise between the algorithm’s running time and the num-
ber of partial component to be processed by the iterative phase. We iterate the initialization phase
a few times progressively decreasing φth (thus increasing the number of partial components)
having as a feedback the estimate on the schedule length and saving the best initial state found
during the process.

The entire initialization phase is described in the following pseudo-code:

function INITIAL_ASSIGNMENT(D)

/* determine the class of DAG we are dealing with */

Φ0 = PARTIAL_COMPONENTS(D, ∞) /* φth = ∞ determines the number of

11

 un-connected components */

/* Fk is a constant dependent upon the number of clusters k */

IF (Size(Φ0) > Fk) THEN DAG_is_unconnected = TRUE

ELSE DAG_is_unconnected = FALSE

φth= Initial-φth(Φ0,k)

Lmin = ∞

Φmin = {∅}

Cmin = {∅}

DO

Φ = PARTIAL_COMPONENTS(D, φth)

IF (DAG_is_unconnected) THEN

MΦ = BUILD_CONNECTION_MATRIX(D,Φ)

ASSIGN_PARTIAL_COMPONENTS(Φ,C, MΦ)

ELSE ASSIGN_PARTIAL_COMPONENTS(Φ,C)

IF (Lmin > L(Φ,C,A)) THEN

Lmin = L(Φ,C,A)

Φmin = Φ

Cmin = C

ENDIF

φth= Next-φth(Φ,φth ,k)

WHILE Stop-φth(Φ,φth ,k, Lmin)

RETURN(Φmin,Cmin)

Initial-φth ,Next-φth and Stop-φth are simple functions used to drive the initialization phase, in our
experiment we set the initial value for φth such that the number of resulting partial component
was a compromise between accuracy and speed. The assignment C={S1,S2,...,Sk) produced by the
initial phase is improved by an iterative descent algorithm that refines C by modifying the initial
choice made for every element in the set Φ of partial components.

We investigated two different strategies:

À The first strategy orders Φ by decreasing size of its component and then tries to keep the
cluster’s loads balanced (assuming homogenous clusters) by swapping two element φi and φj,
when the schedule length L produced by the swap is smaller.

À The second strategy simply evaluates L for any possible assignment of φi ∈ Φ to a cluster and
retains the one that leads to the shortest schedule L.

12

Both algorithms are deterministic and always follow the direction of maximum local descent.
Thus they tend to get trapped into local minima.

As mentioned, the descent is driven by the estimate on the schedule length obtained through a
simplified model of a real scheduler. The model is based on a simple list instruction scheduler,
which uses a ready node queue ordered by the nodes’ respective priorities. The model keeps
track quantitatively of allocated and deallocated registers, of number of copies needed, and of
register spills. The resources allocation for every cycle is modeled based on the architecture A.

The accuracy of the estimate for our implementation is on the average about ±10% of the sched-
ule length generated by the real scheduler in our compiler, while the execution time is more than
10 times faster.

The schedule length L(D,C,A)≡ L(Φ,C,A) as a function of the clusterization C, presents many flat
areas (plateaus). Hence, we need an alternative criterion to drive the descent when the function
gets stuck in a plateau. After some experiments, we decided to use the number of copies as a
secondary criterion to choose a direction in flat areas of the target cost function. It turned out that
such a number is more sensitive to small changes of the configuration in C and it is relatively
easy to compute. Figure 4 shows a convergence process for a convolution computational kernel.

520

540

560

580

600

620

640

660

680

1 5 9 13 17 21 25 29 33 37 41 45

iterations

cy
cl

es

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

co
pi

es
cycles

mincycles

copies

Figure 4 Evolution of the descent for one of the tested multimedia kernels (convolution). The bold line is the lowest
number of cycles found so far. It is evident from the graph that the number of copies is locally related to the mini-

mum but it can’t be used as a global criterion for the descent.

13

The descent phase is described in the following pseudo-code for the two cases:

À The general case (in which the DAG is connected):

procedure OPTIMIZE_ASSIGNMENT (Φ,C,iterations)

 (Lmin , Copiesmin)= L(Φ,C,A)

DO

progress = FALSE;

FOR EACH(φj ∈ Φ) /* for all partial components */

find x such that φj∈ Sx /* find cluster containing φj */

Sx= Sx - {φj}

kmin= x

FOR EACH(Sk ∈ C, k ≠ x) /* for all possible assignment of φj */

Sx= Sx ∪ {φj}

(L,Copies) = L(Φ,C,A)

IF(L < Lmin || (L == Lmin && Copies < Copiesmin) THEN

kmin= k

Lmin=L /* main descent criterion */

Copiesmin = Copies /* secondary criterion */

progress = TRUE;

ENDIF

Sx= Sx - {φj}

ENDFOR

Skmin = Skmin ∪ {φj}

ENDFOR

WHILE(iterations-- && progress == TRUE) /* while max number of iterations done */

RETURN /* or no more progress are made */

À The case in which the DAG is unconnected:

procedure OPTIMIZE_ASSIGNMENT_LOAD_BALANCE (Φ,C,iterations)

 (Lmin , Copiesmin)= L(Φ,C,A)

DO

progress = FALSE;

FOR EACH(φj ∈ Φ) /* for all partial components */

14

find x such that φj∈ Sx /* find cluster containing φj */

find y and i such that φi∈ Sy , x ≠ y, i > j /* find next φi on a different cluster */

Sx= Sx - {φj} /* try to swap φi and φj */

Sy= Sy - {φi}

Sx= Sx ∪ {φi}

Sy= Sy ∪ {φj}

(L,Copies) = L(Φ,C,A)

IF(L < Lmin || (L == Lmin && Copies < Copiesmin) THEN

Lmin=L /* main descent criterium */

Copiesmin = Copies /* secondary criterium */

progress = TRUE;

ELSE

Sx= Sx - {φj} /* swap φi and φj back to the original clusters */

Sy= Sy - {φi}

Sx= Sx ∪ {φi}

Sy= Sy ∪ {φj}

ENDIF

ENDFOR

WHILE (iterations-- && progress == TRUE) /* while max number of iterations done */

RETURN /* or no more progress are made */

Experimental results
Our compiler is retargetable through an architecture machine description, so we generated code
for three equivalent machines in terms of total number of register (128) and computational units
(8 ALUs and 4 multipliers) but with different number of clusters (1,2,4). This allows us to com-
pare the results versus a reference machine composed of only one cluster and one register file
fully connected to the computational unit.

The maximum issue width is the same for all configurations and for all the experiments we set it
to a large enough number so that issue limitations do not affect scheduling. The clustering proce-
dure is switched off for the single cluster machine and in this case the schedule length should be
theoretically the shortest one (in very few cases the non-linearity of the scheduling may negate
this).

For all the machines we run a set of experiment on a number of computational DAGs coming
from the innermost loops of digital signal processing and multimedia-like kernels: color-space
conversion, DCT/IDCT, convolution, FIR filtering, halftoning, etc. with and without the clus-
tering optimization.

15

Figure 5 summarizes the results for all the benchmarks.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

cie
lab

co
nv

7x
7

cu
be

3d

err
dif

f

fri
ng

e

m
ed

ian idc
t

2

2+clust

4

4+clust

Figure 5 The graph shows the speedups relative to the 1 cluster reference machine for the two different machines
with and without clustering optimization.

In all the experiments (but one), the clustering optimization gives better results than the BUG
heuristics, and in some cases provides big improvements (up to 50% reduction in the cycle
count).

In a few cases, the speedups are bigger than 1.0, meaning that the clustered machines are faster
than the reference. This can be explained by the non-linear behavior of the list scheduler and
specifically by its greediness while allocating registers. For a clustered machine, the insertion of
intercluster copies modifies the structure of the DAG, and in some cases may reduce register
spilling.

Finally, it is worth reporting that the increase in compilation time was not excessive in the aver-
age going from 1.5 to 2 times and only in few cases bigger than 2 times the original.

Conclusion and future directions
From our result it is evident that clustered architectures are efficient with respect to single regis-
ter file machine only if ad hoc clustering heuristics are used.

The approach proposed, however, still suffers from some drawbacks. The need for low computa-
tional complexity forced us to develop an initialization phase that essentially exploits the DAG’s
symmetries. This can lead to wrong clustering in those cases where such symmetries are not pre-

16

sent. The proposed technique however, behaves quite well in presence of loop unrolling optimi-
zation, but it is still to be validated in the presence of more complex high-level optimization such
as software pipelining. Also the pre-clustering phase does not take into account the balance be-
tween classes of machine operations for a given component, thus possibly leading to wrong deci-
sion in the presence of highly unbalanced DAGs. For example, in a DAG with a high density of
multiplies (relative to ALU operations), the initialization phase tends to select initial partially
connected components that are probably unbalanced.

The novelty of the proposed approach is the use of a simplified list scheduler to drive a global
descent optimization phase that, for the computational kernels used, outperforms local blind heu-
ristics without feedback.

Constraints posed by compilation time pose limitations upon the use of fully exhaustive searches
of the solution space. As a consequence, we believe that future directions should investigate:

À Different heuristics for pre-selecting initial components according to the specific structure of
a DAG

À Backtracking procedures in the descent phase to break up partial components can be another
promising direction.

À The integration of instruction selection and register allocation with the assignment in order to
be able to optimize not only performance, but also other criteria such as code compaction in
presence of complex instructions.

References
[1] R. Leupers, P. Marwedel, “Instruction selection for embedded DSPs with complex instruc-

tions”, Proceedings EURO-DAC ’96. European Design Automation Conference with
EURO-VHDL ’96 Geneva, Switzerland 16-20 Sept. 1996, pp. 200-205

[2] Ahmad, I.,Yu-Kwong Kwok,Min-You Wu “Analysis, evaluation, and comparison of algo-
rithms for scheduling task graphs on parallel processors”, Proceedings. Second International
Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN '96), IEEE Com-
put. Soc. Press, 12-14 June 1996 pp. 207-213

[3] M. Kagan, “The P55C Microarchitecture: The First Implementation of MMX Technology”,
Hot-Chips 8, Stanford, CA, Aug. 1996, pp. 5.2

[4] P.G. Lowney, S.M. Freudenberger, T. J. Karzes, W. E. Lichtenstein, R. P. Nix, J. S.
O’Donnell, J. C. Ruttenberg. The Multiflow Trace Scheduling Compiler. The Journal of
Supercomputing 7, 1&2 , May 1993, 51-142.

[5] B.R. Rau, J.A. Fisher. Instruction-Level Parallelism. The Journal of Supercomputing 7,
1&2 , May 1993, 9-50.

[6] J.J. Hwang, Y.C. Chow, F.D. Angers and C.Y. Lee. “Scheduling Precedence Graphs in sys-
tems with Interprocessors Communication Times”, SIAM J. Computing, Vol. 18, pp 244-
269, 1989

17

[7] K.B. Irani and K.W. Chen, Minimization of Interprocessor Communication for Computa-
tion. IEEE Trans. Comput., Vol. c-31, pp 1067-1075, 1982

[8] H. Jung, L. Kirousis and P. Spirakis. Lower bounds and Efficient Algorithms for Multiproc-
essor Scheduling of DAGs with communications delays. ACM Proc. Symposium on Theory
of Computing (STOC), pp 254-264, 1989

[9] P. Markenscoff and Y.Y. Li. An Optimal Algorithm for Scheduling the Nodes of a Compu-
tational Tree to the Processors of a Parallel System. Proc. Of the 1991 ACM Computer Sci-
ence Conference, pp 256-297, 1991

[10] G.N. Srinivasa Prasanna, , B.R. Musicus, Generalized multiprocessor scheduling for di-
rected acyclic graphs. Proceedings Supercomputing ’94 IEEE Comput. Soc. Press 14-18
Nov. 1994 pp. 237-246

[11] B.A. Malloy, E.L. Lloyd, M.L.Soffa, Scheduling DAG’s for asynchronous multiprocessor
execution. IEEE Trans. Parallel Distrib. Syst. Vol 5 no 5 May 1994 pp. 498-508

[12] S.T. Barnard, H.D. Simon, “A fast ,ultilevel implementation of recursive spectral bisection
for partitioning unstructured problems”. NASA AMES Research Center, Tech. Rep. RNR-
92-033, Nov. 1992.

[13] J.R. Ellis, “Bulldog: A Compiler for VLIW Architectures”, Doctoral Dissertation, MIT
Press Cambridge MA 1985.

18

Appendix

void fir(const short x[], const short h[], short y[], int len)

{

 int j, sum;

 short x0, x1, x2, h0, h1, h2;

 h0 = h[0];

 h1 = h[1];

 h2 = h[2];

 x0 = x[0];

 x1 = x[1];

for (j = 1; j < len-1; j++)

 {

 x2 = x[j+1];

 sum = x0 * h0 + x1 * h1 + x2 * h2;

 y[j] = sum >> 15;

 x0 = x1;

 x1 = x2;

 }

}

