
Hybrid and Predictive Admission
Strategies to Improve the Performance
of an Overloaded Web Server

Ludmila Cherkasova, Peter Phaal
Computer Systems Laboratory
HP Laboratories Palo Alto
HPL-98-125(R.1)
May, 1999

E-mail: [cherkasova,phaal]@hpl.hp.com

web servers,
overloaded conditions,
admission control
strategy, performance
analysis, optimization,
SBAC

In this paper, we use a session-based workload to measure a
web server's performance. We define a session as a sequence
of client requests. An overloaded web server can experience a
severe loss of throughput when measured as the number of
completed sessions. Moreover, the overloaded web server
discriminates against longer sessions. This could significantly
impact sales and profitability of commercial web sites
because longer sessions are typically the ones that would
result in purchases.
Session based admission control (SBAC), introduced in
[CP98], prevents a web server from becoming overloaded and
ensures that longer sessions can be completed. If a server is
functioning near its capacity a new session will be rejected (or
redirected to another server if one is available). If there is
enough capacity, the admission control mechanism will admit
a new session and process all future requests related to it.
In this paper, we propose two new admission control
strategies: hybrid and predictive, aiming to optimize the
performance of SBAC mechanism. The hybrid strategy is
based on a self-tunable admission control function, adjusting
itself accordingly to variations in traffic loads. It shows
improved performance results for workloads with medium to
long average session length. The predictive strategy
estimates the number of new sessions it can accept and still
guarantee processing of all future session requests. It
consistently shows the best performance results for different
workloads and different traffic loads.

 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

Contents

1 Introduction 3

2 Workload Model: Requests and Sessions 5

3 Server Model: Functionality and Basic Parameters 7

4 Session Based Admission Control Mechanism: Responsiveness vs Stability 9

5 Hybrid Admission Control Strategy 13

6 Disadvantages of CPU Utilization Based Implementation of SBAC 15

7 Predictive Admission Control Strategy 18

8 Comparison of Admission Control Strategies 22

9 Conclusion 27

10 References 28

2

1 Introduction

As complex business applications are deployed on the web it is becoming very di�cult to

ensure adequate level of services to customers who are becoming increasingly reliant on the

services.

Commercial applications impose a set of additional, service level expectations. Typically, ac-

cess to a web service occurs in the form of a session consisting of many individual requests.

Placing an order through the web site involves further requests relating to selecting a product,

providing shipping information, arranging payment agreement and �nally receiving a con�r-

mation. So, for a customer trying to place an order, or a retailer trying to make a sale, the real

measure of a web server performance is its ability to process the entire sequence of requests

needed to complete a transaction.

In this paper, we continue studying web server behaviour and performance using session-

based workload. Web server performance, measured in completed sessions versus measured

in processed requests, becomes very di�erent for loads that exceed server capacity.

If a load consists of single, unrelated requests then the server throughput is de�ned by its

maximum capacity, i.e. a maximum number of connections the server can support. Any extra

connections will be refused. Thus, once a server has reached its maximum throughput, it will

stay there, at a server maximum capacity.

However, if the server runs a session-based workload then a dropped request could occur

anywhere in the session. That leads to aborted, incomplete sessions. We showed in [CP98]

that an overloaded web server can experience a severe loss of throughput when measured in

completed sessions. As an extreme, a web server which seems to be busily satisfying clients

requests and working at the edge of its capacity could be wasting its resources on failed sessions

and, in fact, not be accomplishing any useful work. Statistical analysis of completed sessions

reveals that an overloaded web server discriminates against the longer sessions. Our analysis

of a retail web site showed that sessions resulting in sales are typically 2-3 times longer than

non-sale sessions. Hence discriminating against the longer sessions could signi�cantly impact

sales and pro�tability of the commercial web sites.

The main goal of a session based admission control, introduced in [CP98], is the prevention

of web server overload. An admission control mechanism will accept a new session only when

a server has the capacity to process all future requests related to the session, i.e. a server can

guarantee the successful session completion. If a server is functioning near its capacity, a new

session will be rejected (or redirected to another server if one is available).

In [CP98], we introduced a simple implementation of session based admission control based

on server CPU utilization. We examined trade o� between two desirable properties for an

admission control mechanism: responsiveness and stability and introduced a family of admis-

3

sion control policies (ac-policies) which cover the space between ac-stable and ac-responsive

policies.

If a server's load during previous time intervals is consistently high, and exceeds its capacity,

then responsiveness is very important: the admission control policy should be switched on as

soon as possible, to control and reject newly arriving tra�c. However, if the server receives an

occasional burst of new tra�c, while still being under a manageable load, then the stability,

which takes into account some load history, is a desirable property. It helps to maximize

server throughput and does not unnecessary reject newly arriving tra�c.

As we can see, these two properties are somewhat contradictory:

� responsiveness leads to a more restrictive admission policy (since there is a chance of

\over reacting" to occasional tra�c bursts while overall a server is not yet overloaded).

It aims to minimize the number of aborted sessions and to achieve higher levels of

service, at a price of slightly lower server session throughput (in particular, when a

server operates in a heavy load area but is not yet overloaded).

� stability takes into account a server's load history. In such a way, that it delays the

�rst reaction of the admission control policy to the overload, while it still looks like an

occasional burst, rather than a consistent overload. If a total server load is still around

the server capacity then such a strategy allows better server session throughput to be

achieved. However, if the overload is consistent then a less restrictive rejection policy

inevitably leads to a higher rate of aborted sessions, and as result to poorer session

completion characteristics.

Obviously, a hybrid admission control strategy is a desirable goal. In this paper, we design

such a hybrid strategy and analyze its performance. We show that proposed hybrid strategy

successfully combines most attractive features of both ac-responsive and ac-stable policies.

It shows improved performance results for workloads with medium to long average session

length.

We analyzed why workloads with short average session lengths are most di�cult to manage.

We design a new, predictive admission control strategy which estimates the number of new

sessions a server can accept and still guarantee processing of all future session requests. This

strategy consistently shows the best performance results for di�erent workloads and di�erent

tra�c patterns. For workloads with short average session length, predictive strategy is the

only strategy which provides both: highest server throughput in completed sessions and no

(or, practically no) aborted sessions.

Proposed hybrid and predictive admission policies allows the design of a powerful admis-

sion control mechanism which tunes and adjusts itself for better performance across di�erent

workload types and di�erent tra�c loads.

4

The remainder of the paper presents our results in more detail. Section 2 introduce a new

model of workload based on sessions. Section 3 outlines the structure and basic features of

the web server model. Both sections discuss and extract the essential server and client pa-

rameters necessary to build a simpli�ed simulation model. Section 4 introduces session based

admission control and explains its main properties as well as related performance bene�ts. It

de�nes a family of ac-policies ranging from ac-stable to ac-responsive. Section 5 introduces a

new admission control strategy, called hybrid, Section 6 discuss disadvantages of server CPU

utilization based implementation of SBAC. Section 7 introduces a new, predictive admission

control strategy. Section 8 provides the performance comparison of di�erent admission control

strategies.

In order to introduce two new admission control strategies, we have to repeat some of the

de�nitions and results related to session based admission control shown in [CP98]. Those

who read this paper could directly go to Sections 5, 6, 7, 8.

2 Workload Model: Requests and Sessions

WebStone [WebStone] and SpecWeb96 [SpecWeb96] are the industry standard benchmarks

for measuring web server performance. Using a �nite number of clients to generate HTTP

requests they retrieve di�erent length �les according to a particular �le size distribution.

For example, SpecWeb96 �le mix is de�ned by the �les (requests) distribution from the fol-

lowing four classes:

� 0 Class: 100bytes - 900bytes (35%)

� 1 Class: 1Kbytes - 9Kbytes (50%)

� 2 Class: 10Kbytes - 90Kbytes (14%)

� 3 Class: 100Kbytes - 900Kbytes (1%)

The web server performance is measured as a maximum achievable number of connection per

second supported by a server when retrieving �les in the required �le mix.

Commercial applications exhibit very di�erent behavior: a typical access to a web service

consists of a sequence of steps (a sequence of individual requests). A transaction is successful

only when the whole sequence of requests is completed. The real measure of server perfor-

mance is the server's ability to process the entire sequence of requests needed to complete a

transaction.

We introduce a notion of a session as a unit of session workload. Session is a sequence of

clients individual requests.

5

In our simulation, the session structure is de�ned by the following parameters:

� client (sender) address;

� original session length;

� current session length;

� time stamp when the session was initiated.

For a new session, the original and current session lengths coincide. For a session in progress,

the current session length reects the number of requests left to complete.

We de�ne a request as a structure speci�ed by the following parameters:

� the session that originated the request;

� requested �le size;

� time stamp when the request was issued.

Throughout this paper, we consider a �le mix as de�ned by a SpecWeb96. So, the individual

requests retrieve the �les de�ned by a SpecWeb96 distribution.

The client issues the next request only when it receives a reply for the previous request. The

client issues its next request with some time delay, called think time. Think time is a part of

the client de�nition rather than a session structure. The client waits for a reply for a certain

time, called timeout. After a timeout, the client may decide to repeat its request { this is

termed a retry. A limit is placed on retries { if this limit is reached and the reply is not

received in time, both the request and the whole session is aborted.

Thus, a client model is de�ned by the following parameters:

� client address;

� think time between the requests of the same session;

� timeout - a time interval where the client waits for a server reply before reissuing the

request;

� the number of retries before the session is aborted.

A session is successfully completed when all its requests are successfully completed. We will

evaluate web server performance in terms of successfully completed sessions.

6

 WEB

 SERVER

LISTEN QUEUE

 1024

NEW SESSIONS

 GENERATOR

CLIENT_1

CLIENT_2

CLIENT_N

Figure 1: Basic Structure of Simulation Model.

For the rest of the paper, we assume the session lengths to be exponentially distributed with

a given mean. In order to analyze the server behavior depending on a session length, we have

performed experiments for session lengths with a mean of 5, 15 and 50.

3 Server Model: Functionality and Basic Parameters

To understand the di�erence in web server behavior while it runs request-based or session-

based workloads we built a simulation model using C++Sim [Schwetman95]. Basic structure

of the model is outlined in Figure 1.

It consists of the following components:

� a session workload generator;

� N clients;

� a web server.

A session workload generator produces a new session request accordingly to speci�ed input

model parameters:

� session load and

7

� sessions length distribution.

A session request (i.e �rst request of a session) is sent to a web server and is stored in the

server listen queue. We limit the size of the listen queue to 1024 entries which is a typical

default value. In this way, we are able to use an open model for sessions generation. Each

consequent request from a session is issued and handled by a speci�ed client. Client behavior

is de�ned by a closed (feed back) loop model: the client issues the next session request only

when it receives a reply from the previous request.

Two reasons could cause a request, and a session it belongs to, to be aborted:

� if a listen queue is full then the connection to a server is refused, and both the request

and the whole session is aborted.

� after issuing the request, the client waits for a server reply for a certain time. After

timeout, the client resends the request. There is limited number of retries. If the reply

still has not been received in time, both the request and a whole session is aborted.

REMARK: When the client receives \connection refused" message due to a full listen queue,

he/she can try to resend the request again. In case of overloaded server, it only can worsen the

situation. We decided to simplify the model by aborting the request and the whole session,

when a listen queue is full, without an additional client retry.

In previous paper [CP98], we have analized and justi�ed the choice of model parameters to

narrow the simulation space. Without loss of generality for the rest of the paper, we assume

a model with the following client parameters:

� a think time between the requests of the same session is exponentially distributed with

a mean of 5 seconds;

� a timeout - the time client waits for a reply before resending the request - is set to 1

second;

� a number of retries to resend the request after timeout is 1.

We also assume that a server capacity is 1000 connections per second for SpecWeb96 (cur-

rent typical web servers running SpecWeb96 achieve 1000 - 4000 connections per second per

processor). This assumption does not inuence the results validity. In those rare cases, when

assumed server speed can inuence the results of the study, we will have special remarks and

discussion related to the matter.

8

4 Session Based Admission Control Mechanism: Responsive-

ness vs Stability

The main goal of an admission control mechanism is to prevent a web server from becoming

overloaded. We introduce a simple admission control mechanism based on the server CPU

utilization.

The basic idea of a session based admission controller is as follows: the server utilization is

measured during prede�ned time intervals (say, each second). Using this measured utilization

(for the last interval) and some data characterizing server utilization in the resent past, it

computes an \observed" utilization. If the observed utilization gets above a speci�ed threshold

then for the next time interval (i.e. the next second), the admission controller will reject all

the new sessions and will only serve the requests from already admitted sessions. Once the

observed utilization drops below the given threshold, the server (controller) changes its policy

for the next time interval and begins to admit and process new sessions again.

Formally, the admission control mechanism is de�ned by the following parameters:

� Uac { an ac-threshold which establishes the critical server utilization level to switch on

the admission control policy;

� T1; T2; :::; Ti; ::: { a sequence of time intervals used for making a decision whether to

admit (or to reject) new sessions during the next time interval. This sequence is de�ned

by the ac-interval length;

� fac { an ac-function used to evaluate the observed utilization.

We will distinguish two di�erent values for server utilization:

� Umeasured
i { a measured server utilization during Ti { the i-th ac-interval;

� Uobserved
i+1 { an observed utilization computed using a given ac-function fac after ac-

interval Ti and before a new ac-interval Ti+1 begins, i.e. U
observed
i+1 = fac(i+ 1).

In this paper, we will consider ac-function fac(i+ 1) de�ning Uobserved
i+1 in the following way:

� fac(1) = Uac;

� fac(i+ 1) = (1� k) � fac(i) + k � Umeasured
i ; where k is a damping coe�cient between 0

and 1, and it is called ac-weight coe�cient.

9

A web server with an admission control mechanism re-evaluates its admission strategy on

speci�ed by the time intervals T1; T2; :::; Ti; ::: boundaries. Web server behavior for the next

time interval Ti+1 is de�ned in the following way:

� If Uobserved
i+1 > Uac then any new session arrived during Ti+1 will be rejected, and web

server will process only requests belonging to already accepted sessions.

� If Uobserved
i+1 � Uac then web server during Ti+1 is functioning in a usual mode: processing

requests from both new and already accepted sessions.

Session based admission control combines several functions:

� it measures and observes the server utilization;

� it rejects new sessions when the server becomes critically loaded;

� it sends an explicit message of rejection to the client of a rejected session.

We believe that sending a clear message of rejection to a client is very important. It will

stop clients from unnecessary retries which could only worsen the situation and increase the

load on the server. If the server promises to serve these clients, say in �ve minutes, it might

be enough to resolve the current overload and provide a high level of service without loosing

customers. In our simulation model, we assume that processing a session rejection is equivalent

to processing an average size �le, that is similar to issue an explicit rejection message.

There are two desirable properties for an admission control mechanism: responsiveness and

stability.

If a server's load during previous time intervals is consistently high, and exceeds its capacity,

then \fast reaction", responsiveness is very important: the admission control policy should

be switched on as soon as possible, to control and reject newly arriving tra�c.

However, if the server receives an occasional burst of new tra�c, while still being under a

manageable load, then the \slow reaction", stable admission control policy, which takes into

account some load history, is a desirable property. It helps to maximize server throughput

and does not unnecessary reject newly arriving tra�c.

As we can see, these two properties are somewhat contradictory:

� responsiveness leads to a more restrictive admission policy. It aims to minimize a number

of aborted sessions and to achieve higher levels of service at a price of slightly lower server

session throughput (in particular, when a server operates in a heavy load area but is

not yet overloaded).

10

Weight=0.1_Stable

Weight=0.3

Weight=0.5

Weight=0.7

Weight=1_Responsive

Throughput in Completed Sessions (%)

Load (%)
74.00

75.00

76.00

77.00

78.00

79.00

80.00

81.00

82.00

83.00

84.00

85.00

86.00

87.00

88.00

89.00

90.00

91.00

100.00 150.00 200.00 250.00 300.00

Figure 2: Throughput in Completed Sessions for Family of AC-Functions: from AC-Stable to AC-

Responsive, Workload with Average Session Length of 15.

� stability takes into account a server's load history. In such a way, that it delays a �rst

reaction of an admission control policy to the overload. If a total server load is still

around the server capacity then such a strategy allows better server session throughput

to be achieved. However, a less restrictive rejection policy inevitably leads to a higher

rate of aborted sessions, and as result to poorer session completion characteristics.

The value of coe�cient k in de�nition of fac introduces a family of admission control policies

which cover the space between ac-stable and ac-responsive policies. If k = 1 then the admission

control policy is based entirely on a value of measured server utilization during the last ac-

interval. Let us call this strategy ac-responsive. If k = 0:1 then the admission control policy

decision is strongly inuenced by a server load prehistory, while the impact of a measured

server utilization during the last ac-interval is limited. Let us call this strategy ac-stable.

Figure 2 shows the server throughput while running workload with average session length of

15, depending on ac-weight k used in ac-function fac de�nition.

11

Weight=0.1_Stable

Weight=0.3

Weight=0.5

Weight=0.7

Weight=1.0_Responsive

% of Aborted Sessions

Load (%)
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

100.00 150.00 200.00 250.00 300.00

Figure 3: Number of Aborted Sessions for Family of AC-Functions: from AC-Stable to AC-Responsive,

Workload with Average Session Length of 15.

As expected, the server throughput is higher under \more stable" ac-functions for a load

below 170%. The situation changes for higher load in favor of \more responsive functions".

The rates of aborted sessions are worse for \more stable functions" in higher load area as

shown in Figure 3.

This shows again that ac-stable admission control functions achieve better throughput in the

load range of 85%-120% at a price of higher number of aborted sessions under higher loads.

While ac-responsive admission control functions lead to more restrictive admission policies and

achieve better levels of service, especially at high loads but at the price of slightly lower server

session throughput (in particular, when a server operates at loads in the range 85%-120%).

Obviously, a hybrid admission control strategy is a desirable goal.

12

5 Hybrid Admission Control Strategy

Once a web server is augmented with an admission control mechanism, the following question

arrises: how to measure the \goodness" and e�ciency of this mechanism in practice?

The following two values help to reect an admission control \goodness":

� �rst of all, the percentage of aborted requests, which server can determine based on

the client side closed connections. Aborted requests indicate that the level of service is

unsatisfactory. Typically, aborted requests lead to aborted sessions, and could serve as

a good warning sign of degrading server performance;

� second, a percentage of \connection refused" messages sent by a server, in the case of

full listen queue. Refused connections are the dangerous warning sign of an overloaded

server and its inevitable poor session performance.

If both of these values are zero then it reects that an admission control mechanism uses

an adequate ac-function fac to cope with current workload and tra�c rate. Occurrences of

aborted requests or refused connections reect that ac-function fac has to be more responsive.

From the other side, if percentage of aborted requests and refused connections is zero, it could

be also the case, that ac-function fac is too restrictive and hence, server is rejecting some of

the sessions which it can handle otherwise.

We use these observations to design a self-tunable admission control strategy, called hybrid.

The idea is very natural: once some aborted requests or refused connections are observed, the

admission strategy is adjusted to be ac-responsive, which is the most restrictive admission

policy. After that, this strategy is kept unchanged for a time long enough to observe an

\average session life". If during this time interval there are no aborted requests or refused

connections then strategy is adjusted to be \slightly less responsive". In such a way, the

admission strategy trying to migrate closer to ac-stable strategy until occurrences of aborted

requests or refused connections signal the necessity to switch to ac-responsive strategy. There

is some similarity between this idea and the method, the internet protocol TCP-IP uses, to

adjust itself in presence of congestion.

In the following, more formal strategy description, we heavily use denotations and terminology

introduced in Section 4.

Let Ab(i) denote a number of aborted requests and refused connections accumulated during

the time interval Ti.

Let ac-cycle de�ne a number of time intervals, we will observe fac for aborted requests and

13

refused connections before we adjust ac-function to be less responsive. In the simulation

model, it is de�ned by a ThinkT ime � SesLength that is an approximation of an average

session \life". This time interval aims to reect a cycle (from the sessions admission to their

completion) of SBAC working with a new, adjusted ac-function, and it is estimated to be long

enough to evaluate \goodness" of this function. We will discuss later, in the Section 7, how

to approximate ac-cycle in practice.

Hybrid strategy adjusts its admission function fac in the following two situations:

� Let Ab(i) > 0 during the time interval Ti. Then for the next time interval Ti+1 the

ac-weight k in ac-function fac is adjusted to 1 (i.e. k = 1), changing fac to become the

ac-responsive function with most restrictive admission policy.

� Let since the last time admission function was adjusted, and for the whole duration of

the ac-cycle, the number of the aborted requests and refused connections stay equal to

zero:

i+1+ac cycleX

j=i+1

Ab(j) = 0:

Then for the next time interval Tn+1 (where n = i + 1 + ac cycle) the ac-weight k in

ac-function fac is decreased by 0.1 (i.e.k = k� 0:1), changing fac to become slightly less

\responsive" ac-function with less restrictive admission policy.

Two steps, described above, repeat depending on situation. If for the next ac-cycle the

number of aborted requests and refused connections is zero, then ac-weight k in ac-function

fac is decreased further by 0.1 (k = k � 0:1), and it continues to adjust in similar way,

until it becomes ac-stable policy. Otherwise, if for some time interval Tj during the ac-cycle

Ab(j) > 0 then, as it was described before, ac-weight k is adjusted to 1 again, changing fac

back to ac-responsive function.

In such a way, fac adjusts itself between ac-stable and ac-responsive policies accordingly to

tra�c rate requirements.

REMARK1. This idea of adjusting the policy parameters in reaction to aborted requests and

refused connections can be taken further: to adjust an admission policy threshold Uac to a

correct level.

REMARK2. In our simulation model, aborted requests indicate that the level of service is

unsatisfactory. In real life, certain percent of aborted, \no-reason-why" requests is always

present. Hybrid strategy should be de�ned to react when a percentage of aborted requests

above \no-reason-why" one.

14

SesLength=5

SesLength=15

SesLength=50

Throughput in Completed Sessions (%)

Load (%)
40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

100.00 150.00 200.00 250.00 300.00

Figure 4: Throughput in Completed Sessions for Server with Admission Control.

6 Disadvantages of CPU Utilization Based Implementation of

SBAC

In [CP98], we analyzed simulation results for a server augmented with SBAC, using ac-

responsive strategy and ac-threshold Uac = 95%, for the average session lengths of 5, 15 and

50. We have varied a load from 80% to 300%.

Figure 4 shows server throughput in completed sessions.

One of the goals of the admission control mechanism is to minimize the number of aborted

sessions (ideally, reducing them to 0) by explicit session rejection. Figure 5 shows the per-

15

SesLength=5

SesLength=15

SesLength=50

% of Aborted Sessions

Load (%)
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

100.00 150.00 200.00 250.00 300.00

Figure 5: Percentage of Aborted Sessions from Admitted for Processing by Server with Admission

Control.

centage of aborted sessions, i.e. those which server has admitted for processing and failed to

complete. The percentage of aborted sessions characterize a level of service server is able to

provide. The results for sessions with a mean of 15 and 50 are perfect across the whole load

space. They meet the desired level of service requirement: zero aborted sessions from those

accepted for service.

For a workload with mean of 5, the results are getting worse at load greater than 200%. At

300%, up to 55% of admitted for processing sessions are aborted. And it is happening even

when we are using ac-responsive strategy, which provides us with most restrictive admission

policy. The reason is that the shorter the average session length { the higher the number

of sessions generated by the clients and accepted by the server during the ac-interval (i.e.

1 second). For example, if a web server is in \accept mode" then for a load of 300%, during

one second it accepts around 600 new sessions, in addition to the sessions which are already

in progress.

16

SesLength=5

SesLength=15

SesLength=50

% of Aborted Sessions

Load (%)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00 150.00 200.00 250.00 300.00

Figure 6: Percentage of Aborted Sessions from Admitted for Processing for Server with Admission

Control, AC-Interval = 5sec, Workload with Average Session Length of 5.

The main reason for aborted sessions under this scenario is that the listen queue overows. One

way to �x the problem is to reduce the ac-interval. The percentage of aborted sessions, for a

server with an admission control mechanism using an ac-interval of 0.5 seconds, drops to 7.5%.

It is much better but still might be not acceptable for some of the applications. Moreover, it

is not always possible to reduce ac-interval to desirable value. For some operating systems,

cpu utilization is updated on a base of 5 seconds interval. However, as it is shown in [CP98],

the results for SBAC based on ac-interval of 5 seconds are unsatisfactory for a whole family

of workloads with an average session length less than 50. Figure 6 shows the percentage of

aborted sessions from those admitted for processing for an admission control mechanism with

an ac-interval of 5 seconds.

A more general reason why a CPU utilization based implementation of SBAC can break under

17

certain rates and not work properly, is the following. The decision, whether to admit or reject

new sessions, is made at the boundaries of ac-intervals. And this decision can not be changed

until the next ac-interval. However, in presence of a very high load, the number of accepted

new sessions may be much greater than a server capacity, and it inevitably leads to aborted

sessions and poor session completion characteristics.

The only way to avoid the situation, described above, is:

� to estimate the number of sessions a server is able to process, and

� to admit during the time interval no more sessions, than the estimated number pre-

scribes.

7 Predictive Admission Control Strategy

In order to correctly estimate the number of sessions a server is able to process per time

interval, we also need to evaluate the session rejection overhead. For workloads with short

and medium average session length, the rejection overhead can be signi�cant for high tra�c

loads. But even when it is 5% to 10% only, this overhead should be taken into account, since

a small inaccuracy tends to accumulate over longer period of time.

This section derives a worst case bound to estimate the rejection overhead as a function of

the applied load and average session length.

We use the following denotations:

� Sr - a server capacity in requests, i.e. number of connections (requests) per second a

server can sustain.

� Ss - a server capacity in sessions, i.e. number of sessions per second a server can

complete.

� SesLength - an average session length.

� Load - an applied load in sessions (Load = 2 means a load of 200% of server capacity).

� x - a number of rejected sessions per second.

� y - a number of completed sessions per second.

First of all, there is a simple relation between Sr, Ss and SesLength:

Ss =
Sr

SesLength
(1)

18

Since Ss is a server capacity in sessions and Load is an applied load in sessions, Load � Ss is

a total number of issued sessions per second. Obviously, the sum of completed and rejected

sessions per second is a number of sessions in total, a server has received per second:

x+ y = Load � Ss (2)

There are two types of sessions: completed and rejected ones. Each completed session im-

plies that a client consequently makes, on average, the number of requests de�ned by the

SesLength. Each rejected session is equivalent to processing a single request - a worst case

estimate of the cost of sending an explicit rejection message to the client. Thus a number of

requests per second handled by a server is de�ned in the following way:

y � SesLength+ x = Sr (3)

Replacing Ss in (2) with a formula (1), and expressing y from (2), we have the following

equation:

y =
Load � Sr

SesLength
� x (4)

Replacing y with (4) in equation (3) we can express x:

x =
Sr � (Load� 1)

SesLength� 1
(5)

Since x is a number of rejected sessions (rejection messages) per second, and Sr de�nes a total

number of requests per second processed by a server, then a percentage of rejection messages

from the total number of requests is de�ned as follows:

100% � x

Sr

Let us call this percentage the RejectionPercentage. Here is the �nal equation:

RejectionPercentage = 100% �
(Load� 1)

SesLength� 1
(6)

The rejection overhead depends on average session length and the load received by the server.

Figure 7 illustrates the rejection overhead as a percentage of rejection messages to a total

number of requests per second.

The rejection cost varies depending on the average session length and applied load: the higher

the load and the shorter the session length { the higher the rejection overhead. However, for

most of the load values and workloads of interest { the overhead is less than 10%.

19

1.
00

1.
10

1.
20

1.
30

1.
40

1.
50

1.
60

1.
70

1.
80

1.
90

2.
00

2.
10

2.
20

2.
30

2.
40

2.
50

256

128

64

32

16

8

4

2

Load

Session
Length

Rejection Percentage

0-10 10-20 20-30 30-40 40-50

50-60 60-70 70-80 80-90 90-100

Figure 7: Rejection Cost as a Percentage of Rejection Messages to a Total Number of Requests per

Second.

REMARK: Formula (6) holds for the Load and SesLength values, satisfying the following

condition: Load � 1 � SesLength � 1. For the other values, formula (6) is meaningless and

reects the situation that the applied load is so high that the server's capacity is not enough

to send all the rejection messages.

For example, let us consider a server with a capacity of 1000 requests per second: Sr = 1000,

and let an average session length be 5: SesLength = 5. Then a server capacity in sessions is

200: Ss = 200 accordingly to (1). Load of 500% will produce 1000 sessions per second which

is a maximum request rate server can sustain. Thus all the server capacity will be consumed

sending the rejection messages. The same value is produced by the formula (6) computing

100% of rejection cost.

Once we have estimated rejection overhead, it is easy to predict the number of sessions a

server is capable to process per time interval. It is derived by replacing x with (5) in equation

(4):

y =
Sr � (SesLength� Load)

SesLength� (SesLength� 1)
(7)

20

Predictive admission control strategy works in the following way. For each ac-interval Ti it

predicts the number of sessions a server is able to process, and the web server accepts this

quota, and reject any new session above those quota.

Formula (7) depends on three parameters: Sr -request rate per second a server can process,

Load - new sessions arrival rate, and SesLength - an average session length.

How these parameters can be obtained in practice?

Request rate per second Sr a server can process (for this particular workload) is easily mea-

sured parameter.

A running counter of accepted sessions Cs (Cs increments for each accepted session by one)

and a running counter of requests Cr related to the accepted sessions (Cr increments for each

processed request belonging to an accepted session), allows an approximation of the average

session length to be computed SesLength = Cr

Cs

.

Once, the average session length is evaluated, the Ss - a server capacity in sessions, can be

computed using (1).

And after that, by counting the number of new sessions arrivals, Load can be evaluated.

An approximation of ac-cycle, discussed in Section 5, can be done by measuring inter request

time (it is, essentially, a sum of the request response time and a client think time) multiplied

by the average session length.

REMARK. Clearly, the e�ciency of predictive strategy depends on an accuracy of our predic-

tion. The strategy works much better when one keeps track of possible inaccuracy occurred,

for example, as a result of rounding up fractions. More serious source of inaccuracy can occur

because of mispredicting the Load, since our prediction is based on the previous interval. For

example, the Load during the previous ac-interval was 200%, and we estimated using (7) how

many sessions can be accepted during the following time interval. However, later analysis

of the Load during this time interval, shows that it was 300%. It leads to some mismatch,

easily computed using formula (7): we accepted slightly more sessions than is allowed, since

we assumed slightly smaller rejection overhead (or situation can be vice versa). In order to

eliminate further accumulation of such inaccuracy, next ac-interval quota has to be adjusted

(increased or decreased) by the computed sessions amount.

In our simulation model, we implemented predictive strategy which adjust possible inaccuracy

as well as evaluates an amount of unused quota for the last few ac-intervals to allow its usage

in near future.

21

Load

Traffic Load (%)

3ExecTime x 1090.00

95.00

100.00

105.00

110.00

115.00

120.00

125.00

130.00

135.00

140.00

145.00

150.00

155.00

160.00

165.00

170.00

175.00

180.00

185.00

190.00

195.00

200.00

205.00

0.00 5.00 10.00 15.00 20.00

Figure 8: \Usual Day" Workload Tra�c Pattern

8 Comparison of Admission Control Strategies

In this section, we analyze and compare di�erent admission control strategies: ac-stable,

ac-responsive, hybrid and predictive.

New strategies: hybrid and predictive, are designed to complement shortages of ac-stable and

ac-responsive strategies. Since these shortages show up under di�erent load conditions, we

designed two variable tra�c patterns to verify whether new admission strategies adequately

adjust their behaviour depending on tra�c rates.

First tra�c pattern is de�ned by the pattern showed in Figure 8. We call it the \usual day"

tra�c pattern. It has only a few intervals of not very high overload, and the rest of the time,

it is a load close to the server capacity. This type of load might be typical in practice: most

of the time, the load is manageable, only occasiongly exceeding server capacity.

Second workload is de�ned by the pattern shown in Figure 9. We call it the \busy day"

workload. This tra�c pattern spends a half of the time in overload (reaching a peak of 300%

during one of the intervals), and for the other half of the time it has a load close to a server

22

Load

Traffic Load (%)

3ExecTime x 10
90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

170.00

180.00

190.00

200.00

210.00

220.00

230.00

240.00

250.00

260.00

270.00

280.00

290.00

300.00

310.00

0.00 5.00 10.00 15.00 20.00

Figure 9: \Busy Day" Workload Tra�c Pattern

capacity.

We do not include a \bad day" workload (with consistently high overload for all intervals)

since the results are predictable, and we will comment them at the end of the section.

Figures 10, 11, 12 show the results for a \usual day" tra�c pattern: both server throughput

in completed sessions and percentage of aborted sessions for workloads with average session

length of 5, 15, and 50 correspondingly.

As it was expected, for a workload with average session length of 5, even for \usual day"

tra�c load, ac-stable strategy has 13.5% of aborted sessions (from accepted ones), while ac-

responsive strategy has no aborted sessions, but its throughput is 6% less than throughput

of ac-stable strategy. Hybrid strategy has the same as ac-stable strategy throughput (even

slightly better) but only 1.5% of aborted sessions. Thus, the proposed hybrid strategy im-

proves server throughput while supporting high levels of service: very low number of aborted

sessions. The predictive strategy outperforms all of the strategies: it improves server through-

put by 14% comparing with ac-responsive strategy and has no aborted sessions.

23

 Stable Responsive Hybrid Predictive
0

20

40

60

80

100

%

Throughput in Sessions
% of Aborted Sessions

Figure 10: \Usual Day" Workload with Average Session Length of 5.

 Stable Responsive Hybrid Predictive
0

20

40

60

80

100

%

Throughput
% of Aborted Sessions

Figure 11: \Usual Day" Workload with Average Session Length of 15.

24

 Stable
 R

esponsive
 H

ybrid
 Predictive

0 20 40 60 80

100

%

T
hroughput

%
 of A

borted Sessions

F
ig
u
re

1
2
:
\
U
su
a
l
D
a
y
"
W
o
rk
lo
a
d
w
ith

A
v
era

g
e
S
essio

n
L
en
g
th

o
f
5
0
.

S
im

u
la
tio

n
resu

lts
fo
r
w
o
rk
lo
a
d
s
w
ith

av
era

g
e
sessio

n
len

g
th

o
f
1
5
a
n
d
5
0
a
re

sim
ila
r.

T
h
e

ra
tes

o
f
a
b
o
rted

sessio
n
s
a
re

sig
n
i�
ca
n
tly

less
fo
r
a
ll
th
e
stra

teg
ies.

A
ll
o
f
th
e
stra

teg
ies

a
re

a
b
le
to

p
rov

id
e
h
ig
h
lev

els
o
f
serv

ice.
H
ow

ev
er,

th
e
h
y
b
rid

a
n
d
p
red

ictiv
e
stra

teg
ies

su
p
p
o
rt

h
ig
h
er

serv
er

th
ro
u
g
h
p
u
t
in

co
m
p
leted

sessio
n
s.

F
ig
u
res

1
3
,
1
5
,
1
6
sh
ow

th
e
resu

lts
fo
r
a
\
bu
sy

d
a
y
"
tra

�
c
p
a
ttern

a
n
d
w
o
rk
lo
a
d
s
w
ith

av
era

g
e

sessio
n
len

g
th

o
f
5
,
1
5
,
a
n
d
5
0
co
rresp

o
n
d
in
g
ly.

F
o
r
a
\
bu
sy

d
a
y
"
tra

�
c
p
a
ttern

th
e
n
u
m
b
er

o
f
a
b
o
rted

sessio
n
s
is

h
ig
h
er,

esp
ecia

lly
fo
r
a

w
o
rk
lo
a
d
w
ith

av
era

g
e
sessio

n
len

g
th

o
f
5
.
F
o
r
th
is
w
o
rk
lo
a
d
,
a
c-sta

b
le

stra
teg

y
h
a
s
2
7
%

o
f

a
b
o
rted

sessio
n
s.

E
v
en

a
c-resp

o
n
siv

e
stra

teg
y
is
u
n
a
b
le
to

p
rov

id
e
sa
tisfa

cto
ry

lev
el
o
f
serv

ice:

it
h
a
s
1
3
%

o
f
a
b
o
rted

sessio
n
s.

S
in
ce

h
y
b
rid

stra
teg

y
is
a
sp
ecia

l
co
m
b
in
a
tio

n
o
f
a
c-sta

b
le
a
n
d

a
c-resp

o
n
siv

e
stra

teg
ies,

it
a
lso

h
a
s
1
3
%

o
f
a
b
o
rted

sessio
n
s,
w
ith

,
h
ow

ev
er,

h
ig
h
er

sessio
n
s

th
ro
u
g
h
p
u
t.

T
h
u
s,
n
o
n
e
o
f
th
ese

th
ree

stra
teg

ies
p
rov

id
es

a
n
a
ccep

ta
b
le

lev
el

o
f
serv

ice
fo
r

w
o
rk
lo
a
d
s
w
ith

sh
o
rt

av
era

g
e
sessio

n
len

g
th
.

T
h
e
p
red

ictiv
e
stra

teg
y
p
ro
d
u
ces

th
e
b
est

resu
lts.

It
p
rov

id
es

b
o
th
:
th
e
b
est

ov
era

ll
serv

er

th
ro
u
g
h
p
u
t
(1
4
%

im
p
rov

em
en
t)

w
h
ile

h
av
in
g
n
o
a
b
o
rted

sessio
n
s
(o
r
a
lm

o
st

n
o
a
b
o
rted

ses-

sio
n
s:

0
.2
%
).

S
im

u
la
tio

n
resu

lts
fo
r
w
o
rk
lo
a
d
s
w
ith

a
n
av
era

g
e
sessio

n
len

g
th

o
f
1
5
a
n
d
5
0
a
re

sim
ila
r.

T
h
e
ra
tes

o
f
a
b
o
rted

sessio
n
s
a
re

less
fo
r
a
ll
th
e
stra

teg
ies.

O
n
ly

a
c-sta

b
le

stra
teg

y
fa
ils

to
p
rov

id
e
a
d
eq
u
a
te

lev
el

o
f
serv

ice:
it

still
h
a
s
1
3
%

o
f
a
b
o
rted

sessio
n
s.

H
ow

ev
er,

h
y
b
rid

stra
teg

y
im

p
rov

es
th
e
situ

a
tio

n
:
it
h
a
s
o
n
ly

1
.6
%

o
f
a
b
o
rted

sessio
n
s
a
n
d
a
6
%

im
p
rov

em
en
t

2
5

in throughput.

The predictive strategy, again, provides the best overall results.

 Stable Responsive Hybrid Predictive
0

20

40

60

80

100

%

Throughput

% of Aborted Sessions

Figure 13: \Busy Day" Workload with Average Session Length of 5.

 Stable Responsive Hybrid Predictive
0

20

40

60

80

100

%

Throughput
% of Aborted Sessions

Figure 14: \Busy Day" Workload with Average Session Length of 15.

Figure 15: Rejection Cost as a Percentage of Rejection Messages to a Total Number of Requests per

Second.

For a \bad day" tra�c pattern (with consistently high overload for all intervals) the results

26

 Stable Responsive Hybrid Predictive
0

20

40

60

80

100

%

Throughput
% of Aborted Sessions

Figure 16: \Busy Day" Workload with Average Session Length of 50.

are predictable from [CP98] and show the same tendency, observed for a \busy day" tra�c

pattern. For workloads with short average session length, the only strategy, which works

consistently well, is predictive one. For workloads with medium and long average session

length, both hybrid and predictive provide the best results.

9 Conclusion

In this paper, we propose two new admission control strategies: hybrid and predictive ones,

aiming to optimize the performance of SBAC mechanism and improve the level of service

(number of aborted sessions) provided by SBAC. The hybrid strategy is based on a self-

tunable admission control function adjusting itself according to variations in tra�c loads. We

show that the proposed hybrid strategy successfully combines the most attractive features of

both ac-responsive and ac-stable policies. Compared to ac-responsive and ac-stable strategies,

it shows improved throughput (up to 10%) and high level of service (less than 1% of aborted

sessions) for workloads with medium to long average session length.

The predictive strategy evaluates the number of new sessions that can be accepted while still

guaranteing that all future session requests will be processed. It consistently shows the best

performance result for di�erent workloads and tra�c patterns. It improves server throughput

(up to 15%) while maintaining a high level of service (less than 0.2% of aborted sessions).

The proposed hybrid and predictive admission policies allow the design of a powerful admis-

sion control mechanism which tunes and adjusts itself for better performance across di�erent

workload types and di�erent tra�c loads.

27

10 References

[CP98] Cherkasova, L., Phaal, P. Session Based Admission Control: a Mechanism for Improv-

ing the Performance of an Overloaded Web Server. HP Laboratories Report No. HPL-

98-119, June, 1998. URL: http://www.hpl.hp.com/techreports/98/HPL-98-119.html

[Schwetman95] Schwetman, H. Object-oriented simulation modeling with C++/CSIM. In

Proceedings of 1995 Winter Simulation Conference, Washington, D.C., pp.529-533, 1995.

[SpecWeb96] The Workload for the SPECweb96 Benchmark. URL

http://www.specbench.org/osg/web96/workload.html

[WebStone] WebStone: The Standard Web Server Benchmark. URL

http://www.mindcraft.com/benchmarks/webstone/

28

