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In this paper, we introduce a new, session-based workload for
measuring a web server performance. We define a session as a
sequence of client's individual requests.  We then measure server
throughput as a number of successfully completed sessions.  Using a
simulation model, we show that an overloaded web server can
experience a severe loss of throughput  measured as a number of
completed sessions comparing against the server throughput
measured in requests per second. Moreover, statistical analysis of
completed sessions reveals that the overloaded web server
discriminates against longer sessions.  For e-commerce retail sites,
longer sessions are typically the ones that would result in purchases,
so they are precisely the ones for which the companies want to
guarantee the completion.
We introduce a session based admission control (SBAC) to prevent a
web server from becoming overloaded and to ensure that longer
sessions can be completed.  If a server is functioning near its
capacity a new session will be rejected (or redirected to another
server if one is available).  If there is enough capacity, the admission
control mechanism will admit a new session and process all future
requests related to it.  We introduce a simple  implementation of
session based admission control based on server CPU utilization and
analyze its properties and performance characteristics.
We show that a web server augmented with the admission control
mechanism is able to provide a fair guarantee of completion, for any
accepted session, independent of a session length.  This provides a
predictable and controllable platform for web applications, and is a
critical requirement for any e-business.
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1 Introduction

As the Internet matures, companies are implementing mission critical Internet applications.

These applications provide dynamic content, integrate with databases and o�er secure com-

mercial transactions.

Customers are becoming increasingly reliant on these complex business applications for ser-

vices such as banking, product purchases and stock trading. These new services make greater

demands on web servers at a time when tra�c is increasing rapidly, making it di�cult to

ensure adequate level of service.

Evaluation of web server performance generally focuses on achievable throughput and la-

tency for request-based type of workload as a function of tra�c load. SpecWeb96 bench-

mark [SpecWeb96] is an industry standard for measuring Web Servers performance. It is

based on generating HTTP requests to retrieve di�erent length �les accordingly to a par-

ticular distribution. The server performance (throughput) is characterized as a maximum

achievable number of connection per second while maintaining the required �le mix.

However, commercial applications impose a set of additional, service level expectations. Typ-

ically, access to a web service occurs in the form of a session consisting of many individual

requests. Placing an order through the web site involves further requests relating to selecting

a product, providing shipping information, arranging payment agreement and �nally receiving

a con�rmation. So, for a customer trying to place an order, or a retailer trying to make a

sale, the real measure of a web server performance is its ability to process the entire sequence

of requests needed to complete a transaction.

In fact, a session is present even in the case when a client requests only a single web page.

For example, accessing a company home page involves requesting the HTML page, and then

making further requests for all the images embedded in this document. Thus even simplest

client action may require a web server to provide up to 6-12 separate �les.

In this paper, we introduce a new model of workload based on sessions. We discuss and extract

the essential server and client parameters necessary to build a simpli�ed simulation model.

Session-based workload gives a new interesting angle to revisit and re-valuate the de�nition

of web server performance. It naturally proposes to measure a server throughput as a number

of successfully completed sessions.

Let us consider the situation when a server is processing a load that exceeds its capacity.

If a load consists of single, unrelated requests then the server throughput is de�ned by its

maximum capacity, i.e. a maximum number of connections the server can support. Any extra

connections will be refused and extra load-requests will be dropped. Thus, once a server has

reached its maximum throughput, it will stay there, at a server maximum capacity.
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However, if the server runs a session-based workload then a dropped request could occur

anywhere in the session. That leads to aborted, incomplete sessions. Using a simulation

model, we show that an overloaded web server can experience a severe loss of throughput when

measured in completed sessions while still maintaining its throughput measured in requests

per second. As an extreme, a web server which seems to be busily satisfying clients requests

and working at the edge of its capacity could have wasted its resources on failed sessions

and, in fact, not accomplishing any useful work. Statistical analysis of completed sessions

reveals that an overloaded web server discriminates against the longer sessions. Our analysis

of a retail web site showed that sessions resulting in sales are typically 2-3 times longer than

non-sale sessions. Hence discriminating against the longer sessions could signi�cantly impact

sales and pro�tability of the commercial web sites.

Quality of service is a way of describing the end to end performance requirements and con-

ditions that a particular application imposes to be successfully executed. For a web server

running a commercial application the following web quality of service requirement is crucial:

� a fair chance of completion for any accepted session, independent of session length.

We introduce session based admission control as a way to provide a web quality of service

guaranties for a server running a session-based workload.

The main goal of a session based admission control is the prevention of web server from

overload. An admission control mechanism will accept a new session only when a server has

the capacity to process all future requests related to the session, i.e. a server can guarantee

the successful session completion. If a server is functioning near its capacity, a new session

will be rejected (or redirected to another server if one is available).

We introduce a simple implementation of session based admission control based on server

CPU utilization.

Deferring a client at the very beginning of their transaction (session) rather than in a middle -

is another desirable web quality of service property for an overloaded server. It will minimize

an amount of wasted server work.

We believe that sending a clear message of rejection to a client is very important. It will stop

clients from unnecessary retries which could only worsen the situation and increase the load

on the server. However, issuing an explicit rejection message imposes an additional load on a

web server. We derive a worst case bound to estimate a rejection overhead as a function of

the applied load and an average session length. For the most load values and workloads of

interest { the overhead is less than 5-10% of total server work.

We examine trade o� between two desirable properties for an admission control mechanism:

responsiveness and stability and introduce a family of admission control policies which cover
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the space between stable and responsive policies. To compare di�erent admission control

policies, we design special metrics, taking into account both: policy performance and policy

ability to guarantee a speci�ed web-quality of service. We conclude with a few recipes to tune

the admission control mechanism for better performance.

We show that a web server augmented with session based admission control is able to provide

a fair guarantee of completion, for any accepted session, independent of a session length.

This provides a predictable and controllable platform for web applications, and is a critical

requirement for any e-business.

On May 11, 1998, Hewlett-Packard, as a part of its \How to succeed in E-Business" [HP-98]

press event, announced the intrduction of the HP Service Control product [HPSD-98]. This

product deploys the session based admission control mechanism, described in this paper, in

order to ensure the high levels of service required to successfully complete commerce transac-

tions on the web.

2 Workload Model: Requests versus Sessions

WebStone [WebStone] and SpecWeb96 [SpecWeb96] are the industry standard benchmarks

for measuring web server performance. Using a �nite number of clients to generate HTTP

requests they retrieve di�erent length �les according to a particular �le size distribution.

For example, SpecWeb96 �le mix is de�ned by the �les (requests) distribution from the fol-

lowing four classes:

� 0 Class: 100bytes - 900bytes (35%)

� 1 Class: 1Kbytes - 9Kbytes (50%)

� 2 Class: 10Kbytes - 90Kbytes (14%)

� 3 Class: 100Kbytes - 900Kbytes (1%)

The web server performance is measured as a maximum achievable number of connection per

second supported by a server when retrieving �les in the required �le mix. Current typical

web servers running SpecWeb96 achieve 1000 - 4000 connections per second per processor.

Commercial applications exhibit very di�erent behavior: a typical access to a web service

consists of a sequence of steps (a sequence of individual requests). A transaction is successful

only when the whole sequence of requests is completed. The real measure of server perfor-

mance is the server's ability to process the entire sequence of requests needed to complete a

transaction.
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We introduce a notion of a session as a unit of session workload. Session is a sequence of

clients individual requests.

In our simulation, the session structure is de�ned by the following parameters:

� client (sender) address;

� original session length;

� current session length;

� time stamp when the session was initiated.

For a new session, the original and current session lengths coincide. For a session in progress,

the current session length reects the number of requests left to complete.

We de�ne a request as a structure speci�ed by the following parameters:

� the session that originated the request;

� requested �le size;

� time stamp when the request was issued.

Throughout this paper, we consider a �le mix as de�ned by a SpecWeb96. So, the individual

requests retrieve the �les de�ned by a SpecWeb96 distribution.

The client issues the next request only when it receives a reply for the previous request. The

client issues its next request with some time delay, called think time. Think time is a part of

the client de�nition rather than a session structure. The client waits for a reply for a certain

time, called timeout. After a timeout, the client may decide to repeat its request { this is

termed a retry. A limit is placed on retries { if this limit is reached and the reply is not

received in time, both the request and the whole session is aborted.

Thus, a client model is de�ned by the following parameters:

� client address;

� think time between the requests of the same session;

� timeout - a time interval where the client waits for a server reply before reissuing the

request;

� the number of retries before the session is aborted.
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Figure 1: Basic Structure of Simulation Model.

A session is successfully completed when all its requests are successfully completed.

We will evaluate web server performance in terms of successfully completed sessions.

3 Server Model: Functionality and Basic Parameters

To understand the di�erence in web server behavior while it runs request-based or session-

based workloads we built a simulation model using C++Sim [Schwetman95]. Basic structure

of the model is outlined in Figure 1.

It consists of the following components:

� a session workload generator;

� N clients;

� a web server.

A session workload generator produces a new session request accordingly to speci�ed input

model parameters:

� session load and
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� sessions length distribution.

A session request (i.e �rst request of a session) is sent to a web server and is stored in the

server listen queue. We limit the size of the listen queue to 1024 entries which is a typical

default value.

In this way, we are able to use an open model for sessions generation. Each consequent request

from a session is issued and handled by a speci�ed client. Client behavior is de�ned by a closed

(feed back) loop model: the client issues the next session request only when it receives a reply

from the previous request.

Two reasons could cause a request, and a session it belongs to, to be aborted:

� if a listen queue is full then the connection to a server is refused, and both the request

and the whole session is aborted.

� after issuing the request, the client waits for a server reply for a certain time. After

timeout, the client resends the request. There is limited number of retries. If the reply

still has not been received in time, both the request and a whole session is aborted.

REMARK: When the client receives \connection refused" message due to a full listen queue,

he/she can try to resend the request again. In case of overloaded server, it only can worsen the

situation. We decided to simplify the model by aborting the request and the whole session,

when a listen queue is full, without an additional client retry.

In this paper, we assume that a server capacity is 1000 connections per second for SpecWeb96.

This assumption does not inuence the results validity. In those rare cases, when assumed

server speed can inuence the results of the study, we will have special remarks and discussion

related to the matter.

4 Overloaded Web Server: Behavior and Characteristics

4.1 Simpli�ed Model: Fixed Length Sessions. Analysis of Client Parame-

ters: Think Time, Timeout, Number of Retries

Let us start with a simpli�ed session model: we will assume that all the sessions have the

same length.

Using this simpli�ed model we will investigate the importance of the server and client parame-

ters, such as think time, timeout, and the number of retries, in order to narrow the simulation

space.
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Figure 2: Varying Think Time for Overloaded Server with Fixed Session Length=5.

First, we assume that client does not timeout, i.e. it does not retry to resend the request. It

is equivalent to an assumption that the client timeout is in�nite. In this case, there is only

one reason for a request, and a session it belongs to, to be aborted:

� a request arrived to a server, and a server listen queue is full.

Let us see whether the think time parameter in a client model impacts the server performance

and simulation results. A particular think time during a simulation is de�ned by exponential

distribution with a given mean think time.

Figures 2, 3 show the server throughput in completed sessions, for running a workload with

a �xed session length: 5 and 50 correspondingly. Mean think times of 1 second, 5 seconds

and 10 seconds do not a�ect the server throughput for short sessions at all (see Figure 2 for

session length = 5).
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Figure 3: Varying Think Time for an Overloaded Server with Fixed Session Length=50.

Longer think times only slightly decreases server throughput for longer sessions (see Figure 3

for session length = 50). In general, the impact of think time is insigni�cant and independent

of session length. Hence we can narrow a simulation space by assuming a client with a �xed

mean think time.

For the rest of the paper we consider a client with a mean think time of 5 seconds.

Figure 4 shows a server throughput in completed sessions for a workload with a �xed session

length: 1, 5 , 15 and 50 and a simpli�ed client model: mean think time = 5 seconds, no retry.

We introduce a session length of one as a special case when all the requests are independent.

This represents, in fact, a server running a regular SpecWeb96 benchmark as a workload.

Figure 4 clearly illustrates the di�erence in performance for an overloaded server running
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Figure 4: Throughput in Completed Sessions for an Overloaded Server with a Fixed Session Length

and No Retry.

a \single request workload" and a server running a session-based workload. In case of a

single request workload, a server throughput is reaching its maximum capacity of 100% at

100% of load and stays steady at 100% for higher load. While for session workload - the

server throughput in completed sessions is dramatically decreasing with a higher load and

longer sessions. The curves of this �gure provide a most pictorial motivation for studying the

overloaded web server performance with respect to session-based workloads.

Figure 5 shows a server throughput in completed sessions for a workload with �xed session

length: 1, 5 , 15 and 50 and a following typical client model:

� mean think time = 5 sec,

� timeout = 1 sec,

� number of retries = 1.
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Figure 5: Throughput in Completed Sessions for Overloaded Server with a Fixed Session Length and

One Retry with Timeout = 1sec.

The server performance in the overloaded region has dropped signi�cantly in both cases: a

server running a \single request workload", and a server running a session-based workload.

There is a simple relation based on:

� the server capacity,

� listen queue size and

� the client timeout value

which explains the probability of retries issued by the client.

The server listen queue is limited to 1024 bu�ers. If a listen queue gets full, then any coming

requests get a \connection refused" message. Since a server processes 1000 connections per
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Figure 6: Throughput in Completed Sessions for Overloaded Server with Fixed Session Length, Time-

out = 1sec and Two Retries.

second but the listen queue length is 1024 (1024 > 1000), it creates a possibility that the

requests which are currently last in the listen queue, will be processed by the the server later

than one second after they have been issued by the clients. If this happens, a client will abort

a previous connection and send a retry. It leads to a server being even more overloaded. Many

sessions (especially, a single request long) will be aborted because they are not able to meet

the timeout and retry requirements. A client timeout of 1 second might be considered as an

additional quality of service requirement: it sets a limit on a request latency to 1 second. If

this requirement is not met (after a given number of retries) the session is aborted.

Figure 6 shows a server throughput in completed sessions, for a workload with a �xed session

length: 1, 5 , 15 and 50 and a typical client model:

� mean think time = 5 sec,

� timeout = 1 sec,

13



 

SesLength=1_Timeout=5

SesLength=5_Timeout=5

SesLength=15_Timeout=5

SesLength=50_Timeout=5

Throughput in Completed Sessions (%)

Load (%)15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

100.00 150.00 200.00 250.00 300.00

Figure 7: Throughput in Completed Sessions for an Overloaded Server with a Fixed Session Length

and One Retry with Timeout = 5sec.

� number of retries = 2.

The server performance results are the same as for the client with one retry (shown in Figure 5)

since it is very likely for the reissued requests either to see the listen queue being already full,

or again to get at the very end of the listen queue and be not able to meet the latency

requirements for the second time.

Figure 7 shows a server throughput in completed sessions, for a workload with a �xed session

length: 1, 5 , 15 and 50 and a typical client model:

� mean think time = 5 sec,

� timeout = 5 sec,

� number of retries = 1.
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Since a server processes 1000 connections per second and the listen queue length is 1024, the

latency to process any accepted request is less than 2 seconds. Since the client timeout is

5 seconds, as speci�ed above, it means that a client is never going to retry. Indeed, the results

shown in Figure 4 and Figure 7 are the same. If the client timeout is greater than a server

time needed to process all the requests from the listen queue then it eliminates the possibility

of client timeouts and retries.

Since we are interested in studying a model with a full range of possible client-server interac-

tions, we carefully select the model parameters allowing them.

Without loss of generality for the rest of the paper, we assume a model with the following

client parameters:

� a think time between the requests of the same session is exponentially distributed with

a mean of 5 seconds;

� a timeout - the time client waits for a reply before resending the request - is set to 1

second;

� a number of retries to resend the request after timeout is 1.

4.2 Extended Model: Exponentially Distributed Length Sessions

In this section, we will lift the �xed session length assumption which we used in Section 4.1, to

analyze and to justify the client parameters and will introduce a more general session model.

For the rest of the paper, we assume the session lengths to be exponentially distributed with

a given mean. In order to analyze the server behavior depending on a session length, we have

performed experiments for session lengths with a mean of 5, 15 and 50.

Figure 8 shows throughput in completed sessions for an overloaded web server.

These results are quite di�erent from �xed session length case, shown in Figure 5. First of all,

the server throughput in completed sessions is much higher. Second, the ordering is somewhat

counterintuitive: web server performance is better for workloads with a longer session mean.

How can it be explained?

First of all, the server throughput is measured as a number of completed sessions. Now, we

have sessions of di�erent length, since the session lengths are exponentially distributed. Our

�rst explanation of the above phenomenon is that shorter sessions have higher chances to

complete. Thus, the better \quantitative" value of throughput can be obtained at a price of

\lower quality" of this throughput.
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Figure 8: Throughput in Completed Sessions for Overloaded Server.

The second explanation is of a di�erent nature. Let us consider a session length distribution

with a mean of 50. When a long session gets aborted, it creates a potential amount of unused

server resources, big enough to service several short sessions. Applying the same reasoning to

a session length distribution with a mean of 5 { we can see that the di�erence between \long"

and \short" session lengths for this distribution is less signi�cant: often several sessions are

aborted before it creates enough \unused" server resources to complete an additional session.

Let us analyze the simulation results in detail. Figure 9 shows the average session length of

completed sessions against the average session length of all generated sessions as the model

input. As it is clearly seen, the average session length of completed sessions is signi�cantly

lower than the original,input distribution. For the load of 300% and the original average

session length of 5, 15 and 50, the average length of completed sessions is 1.7, 4.3 and 13.4

correspondingly.

The session lengths are de�ned to be exponentially distributed with a given mean m. In order
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Figure 9: Average Length of Completed Sessions.

to analyze the distribution of the completed sessions in more detail, we will partition them in

the following three bins:

� �rst bin: the sessions shorter or equal to m;

� second bin: the sessions longer than m but shorter or equal to 2 �m;

� third bin: the sessions longer than 2 �m;

Figure 10 shows the percentage of original and completed sessions in three bins by length for

an overloaded server running a session-based workload with a mean of 50.

The original distribution by session lengths is the following:

� �rst bin: 63%;
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Figure 10: Percentage of Completed Sessions in Three Bins by Length for an Overloaded Server

Running Session-Based Workload with Mean = 50.

� second bin: 23%;

� third bin: 14%.

The distribution of completed sessions under 300% load changes dramatically:

� �rst bin: 98.14%;

� second bin: 1.83%;

� third bin: 0.03%.

Indeed, the overloaded web server discriminates against the long sessions in a quite severe

way: almost all the completed sessions fall in the �rst bin, the sessions from the second and

the third bins are practically absent.
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Figure 11: Server Useful Utilization of Processing Sessions which Complete.

To complete the analysis of an overloaded web server running a session-based workload we

introduce a new performance measure: useful server utilization. Traditionally, a server per-

formance is characterized by its throughput and utilization. We have shown a di�erence in

throughput of an overloaded web server, when measured in percentage of completed requests

and in percentage of completed sessions. We apply the same idea to characterize server uti-

lization. We de�ne useful server utilization as server busy time spent processing only sessions

which complete.

Figure 11 shows useful server utilization as a function of load and session length. The results

are overwhelming: the overloaded, \busy looking" server produces an amazingly small amount

of useful work: around 15% for a 200% load; less than 7% for a 300% load.

This concludes our preliminary analysis of the behavior and performance characteristics of

an overloaded web server running a session-based workload. This section raises rather serious

question: is such server behavior expected and acceptable for commercial sites? Since the
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Figure 12: Commercial Workload Session Length Distribution.

answer is rather obvious, the next question to ask is: can a web server be augmented with

session based admission control mechanism to prevent the server from becoming overloaded

and to ensure that longer sessions are completed?

5 Sessions Length Distribution for Commercial Web Sites

In order to outline a workload space of interest and narrow the simulation space, we have

analyzed web server access log data from a particular commercial site. This commercial

site allows small businesses to purchase products online. This site provides the clients with

product catalogues to browse, ability to add selected products to a \shopping cart", and

�nally to purchase the contents of the shopping cart, completing the sale. Figure 12 shows a

session length distribution, speci�c for sales and non-sales transactions.

The distributions clearly show that the sale sessions are much longer than non-sale sessions.

The following table summarizes the distribution statistics:
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Mean Session Length Percentage of Sessions

Total 36.5 100%

Sales 73.6 18.3%

Non-Sales 28.2 81.7%

(1)

The average session length of a sale is more than 2.5 times longer that of non-sale. If we

apply the partitioning in three bins proposed in Section 4.2 then sale-sessions belong to the

second and third bins. As it was shown the vast majority (98%) of sessions which complete

on an overloaded server fall in a �rst bin. As a result it would signi�cantly impact sales and

pro�tability of the site.

6 Web Quality of Service Requirements

An overloaded server has poor throughput for longer sessions because it is unable to sustain

the level of service needed to complete these sessions. As we saw in Section 5, visitors making

purchases tend to generate longer sessions and are most a�ected by inadequate service levels.

We introduce the term, web quality of service, to describe the service levels needed to complete

web sessions. A web server that ensures a fair opportunity and guarantee of completion for

all sessions, independent of session length, exhibits good web quality of service.

A competing requirement is the site operators desire to maximize the number of sessions

completed. Server throughput should be maximized subject to providing adequate web quality

of service. Our notion of useful server utilization captures this combined goal and results in

the objective of maximizing useful server utilization.

One of the e�ects of poor web quality of service is that large numbers of sessions are aborted.

Web site visitors may abort sessions because:

� at some point during their session they receive "connection refused" messages (in the

case when the server listen queue is full).

� at some point during their sessions delays become intolerable and even retries (which

further overload the server) fail to yield a timely response.

To summarize, a web server providing good web quality of service will have the following

characteristics:

1. Visitors will have a fair chance of completing sessions, independent of session length.

2. Server will minimize waisted work in order to maximize useful server utilization.

3. There will be a minimal number of aborted sessions (ideally zero).
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7 Session Based Admission Control Mechanism: Responsive-

ness vs Stability

To satisfy the web quality of service requirements discussed in Section 6, we introduce a

session based admission control mechanism for a server handling a session-based workload.

The main goal of an admission control mechanism is to prevent a web server from becoming

overloaded. We introduce a simple admission control mechanism based on the server CPU

utilization.

The basic idea of a session based admission controller is as follows: the server utilization is

measured during prede�ned time intervals (say, each second). Using this measured utilization

(for the last interval) and some data characterizing server utilization in the resent past, it

computes an \observed" utilization. If the observed utilization gets above a speci�ed threshold

then for the next time interval (i.e. the next second), the admission controller will reject all

the new sessions and will only serve the requests from already admitted sessions. Once the

observed utilization drops below the given threshold, the server (controller) changes its policy

for the next time interval and begins to admit and process new sessions again.

Formally, the admission control mechanism is de�ned by the following parameters:

� Uac { an ac-threshold which establishes the critical server utilization level to switch on

the admission control policy;

� T1; T2; :::; Ti; ::: { a sequence of time intervals used for making a decision whether to

admit (or to reject) new sessions during the next time interval. This sequence is de�ned

by the ac-interval length;

� fac { an ac-function used to evaluate the observed utilization.

We will distinguish two di�erent values for server utilization:

� Umeasured
i { a measured server utilization during Ti { the i-th ac-interval;

� Uobserved
i+1 { an observed utilization computed using a given ac-function fac after ac-

interval Ti and before a new ac-interval Ti+1 begins, i.e. U
observed
i+1 = fac(i+ 1).

In this paper, we will consider ac-function fac(i+ 1) de�ning Uobserved
i+1 in the following way:

� fac(1) = Uac;

� fac(i + 1) = (1 � k) � fac(i) + k � Umeasured
i ; where k is a coe�cient between 0 and 1,

and it is called ac-weight coe�cient.
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A web server with an admission control mechanism re-evaluates its admission strategy on

speci�ed by the time intervals T1; T2; :::; Ti; ::: boundaries. Web server behavior for the next

time interval Ti+1 is de�ned in the following way:

� If Uobserved
i+1 > Uac then any new session arrived during Ti+1 will be rejected, and web

server will process only requests belonging to already accepted sessions.

� If Uobserved
i+1 � Uac then web server during Ti+1 is functioning in a usual mode: processing

requests from both new and already accepted sessions.

There are two desirable properties for an admission control mechanism: responsiveness and

stability. If a server's load during previous time intervals is consistently high, and exceeds

its capacity, then responsiveness is very important: the admission control policy should be

switched on as soon as possible, to control and reject newly arriving tra�c. However, if the

server receives an occasional burst of new tra�c, while still being under a manageable load,

then the stability, which takes into account some load history, is a desirable property. It helps

to maximize server throughput and does not unnecessary reject newly arriving tra�c.

As we can see, these two properties are somewhat contradictory:

� responsiveness leads to a more restrictive admission policy (since there is a chance of

\over reacting" to occasional tra�c bursts while overall a server is not yet overloaded).

It aims to achieve higher web quality of service guaranties at a price of slightly lower

server session throughput (in particular, when a server operates in a heavy load area

but is not yet overloaded).

� stability takes into account a server's load history. In such a way, that it delays a

�rst reaction of an admission control policy to the overload, while it still looks like an

occasional burst, rather than a consistent overload. If a total server load is still around

the server capacity then such a strategy allows better server session throughput to be

achieved. However, if the overload is consistent then a less restrictive rejection policy

inevitably leads to a higher rate of aborted sessions, and as result to poorer session

completion characteristics.

The value of coe�cient k in de�nition of fac introduces a family of admission control policies

which cover the space between stable and responsive policies.

If k = 1 then the admission control policy is based entirely on a value of measured server

utilization during the last ac-interval. Let us call this strategy ac-responsive.

If k = 0:1 then the admission control policy decision is strongly inuenced by a server load

prehistory, while the impact of a measured server utilization during the last ac-interval is

limited. Let us call this strategy ac-stable.
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8 Cost of Rejection

Session based admission control combines several functions:

� it measures and observes the server utilization;

� it rejects new sessions when the server becomes critically loaded;

� it sends an explicit message of rejection to the client of a rejected session.

We believe that sending a clear message of rejection to a client is very important. It will

stop clients from unnecessary retries which could only worsen the situation and increase the

load on the server. If the server promises to serve these clients, say in �ve minutes, it might

be enough to resolve the current overload and provide a high level of service without loosing

customers. Commercial sites might use some additional stimuli and bonuses issued in these

rejection messages to keep their customers satis�ed.

However, issuing an explicit rejection message imposes an additional load on a web server.

The higher the load { the greater the number of rejection messages sent by the server. How

large is the rejection overhead? What percentage of total messages constitutes the rejection

messages?

This section derives a worst case bound to estimate the rejection overhead as a function of

the applied load and average session length.

We use the following denotations:

� Sr - a server capacity in requests, i.e. number of connections (requests) per second a

server can sustain.

� Ss - a server capacity in sessions, i.e. number of sessions per second a server can

complete.

� SesLength - an average session length.

� Load - an applied load in sessions (Load = 2 means a load of 200% of server capacity).

� x - a number of rejected sessions per second.

� y - a number of completed sessions per second.

First of all, there is a simple relation between Sr, Ss and SesLength:

Ss =
Sr

SesLength
(1)
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Since Ss is a server capacity in sessions and Load is an applied load in sessions, Load � Ss is

a total number of issued sessions per second. Obviously, the sum of completed and rejected

sessions per second is a number of sessions in total, a server has received per second:

x+ y = Load � Ss (2)

There are two types of sessions: completed and rejected ones. Each completed session im-

plies that a client consequently makes, on average, the number of requests de�ned by the

SesLength. Each rejected session is equivalent to processing a single request - a worst case

estimate of the cost of sending an explicit rejection message to the client. Thus a number of

requests per second handled by a server is de�ned in the following way:

y � SesLength+ x = Sr (3)

Replacing Ss in (2) with a formula (1), and expressing y from (2), we have the following

equation:

y =
Load � Sr

SesLength
� x (4)

Replacing y with (4) in equation (3) we can express x:

x =
Sr � (Load� 1)

SesLength� 1
(5)

Since x is a number of rejected sessions (rejection messages) per second, and Sr de�nes a total

number of requests per second processed by a server, then a percentage of rejection messages

from the total number of requests is de�ned as follows:

100% � x

Sr

Let us call this percentage the RejectionPercentage. Here is the �nal equation:

RejectionPercentage = 100% �
(Load� 1)

SesLength� 1
(6)

The rejection overhead depends on average session length and the load received by the server.

Figure 13 illustrates the rejection overhead as a percentage of rejection messages to a total

number of requests per second.
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Figure 13: Rejection Cost as a Percentage of Rejection Messages to a Total Number of Requests per

Second.

The rejection cost varies depending on the average session length and applied load: the higher

the load and the shorter the session length { the higher the rejection overhead. However, for

most of the load values and workloads of interest { the overhead is less than 10%.

REMARK: Formula (6) holds for the Load and SesLength values, satisfying the following

condition: Load � 1 � SesLength � 1. For the other values, formula (6) is meaningless and

reects the situation that the applied load is so high that the server's capacity is not enough

to send all the rejection messages.

For example, let us consider a server with a capacity of 1000 requests per second: Sr = 1000,

and let an average session length be 5: SesLength = 5. Then a server capacity in sessions is

200: Ss = 200 accordingly to (1). Load of 500% will produce 1000 sessions per second which

is a maximum request rate server can sustain. Thus all the server capacity will be consumed

sending the rejection messages.

The same value is produced by the formula (6) computing 100% of rejection cost.
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9 Overloaded Web Server with Session Based Admission Con-

trol: Behavior and Characteristics

This section analyzes the simulation results of an overloaded web server augmented with

session based admission control.

We analyze the results produced by the ac-responsive admission control policy introduced in

Section 7 (i.e. ac-weight coe�cient k=1) with the following parameters:

� ac-threshold Uac = 95%

� ac-interval length of 1 second;

a web server augmented with such an admission control policy re-evaluates its admission

strategy each second. Since the ac-responsive policy, Uobserved
i+1 is de�ned entirely by the cpu

utilization measured during i-th second, i.e. Uobserved
i+1 = Umeasured

i :

If a measured cpu utilization for the previous i-th second is above the ac-threshold, i.e.

Umeasured
i > 95% then any new session arriving during the next second will be rejected, and

web server will process only requests belonging to already accepted sessions. Otherwise, for

the next second, the web server is functioning in a usual mode: processing requests from both

new and already accepted sessions.

We performed the experiments for the average session lengths of 5, 15 and 50. We varied a

load from 80% to 300%. The session workload with mean of 5 is not a realistic representative

of commercial workloads. However, we included this case to cover the simulation space and

understand the possible admission control limitations. The same can be said about a load

of 300%: if a web server is consistently overloaded more than 200% it is a time to increase

capacity and to extend it with an additional server. However, for completeness, and to

understand the general behaviour of admission control mechanism we included a load of 300%

too.

Figure 14 shows throughput in completed sessions. At a �rst glance, the only results for

sessions with mean length of 50 look perfect. In fact, the curves correspondent to sessions

with mean of 15 and 5 are justi�ed and, somewhat in line with our expectations. Using

formula (6) in Section 8 for the load of 300% we receive 14% and 50% of rejection overhead

correspondingly to send an explicit rejection message. The percentage of completed sessions

is largely o�set by that amount.

One of the goals of the admission control mechanism is to minimize the number of aborted

sessions (ideally, reducing them to 0) by explicit session rejection. Figure 15 shows the per-

centage of aborted sessions from those admitted for processing. The results for sessions with
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Figure 14: Throughput in Completed Sessions for Server with Admission Control.

a mean of 15 and 50 are perfect across the whole load space. They meet the desired quality

of service requirement: zero aborted sessions from those accepted for service.

For a workload with mean of 5, the results are getting worse at load greater than 200%.

The reason is that the shorter the average session length { the higher the number of sessions

generated by the clients and accepted by the server during the ac-interval (i.e. 1 second). For

example, if a web server is in \accept mode" then for a load of 300%, during one second it

accepts around 600 new sessions, in addition to the sessions which are already in progress.

The main reason for aborted sessions under this scenario is that the listen queue overows.

One way to �x the problem is to reduce the ac-interval. Figure 20 shows signi�cantly improved

percentage of aborted sessions for a workload with mean of 5 and an admission control mech-
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Figure 15: Percentage of Aborted Sessions from Admitted for Processing by Server with Admission

Control.

anism with an ac-interval of 0.5 seconds. We will discuss further how to tune an admission

control strategy for better performance in Section 11.

One of the main goals of the admission control mechanism is to ensure completion of any

accepted session, independent of a session length.

Figure 16 shows the average session length of completed sessions against the average session

length of all generated sessions as the model input. The results are perfect for sessions with

a mean of 15 and 50 across the whole load space. For a workload with mean of 5, the results

are getting slightly worse at load around 300% of server capacity.

The admission control mechanism dramatically improves the \quality" of the web server

output compared with the similar results for a web server with no admission control shown

in Figure 9.
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Figure 16: Average Length of Completed Sessions by Overloaded Server with Admission Control.

Finally, Figure 17 shows useful server utilization as a function of a load and a session length.

Again, for sessions with a mean of 15 and 50 the results are improved almost an order of

magnitude in overloaded area comparing with the similar results for a web server with no

admission control shown in Figure 11. A slight decline for a curve, characterizing a server

running sessions with a mean of 15, is due to occasional retries in an overloaded area (but no

aborted sessions yet). Useful server utilization for a workload with mean of 5, is expectedly

lower for 300% load due to a number of aborted sessions and related problems discussed above.

This concludes the analysis of an overloaded web server augmented with a session based

admission control policy. It convincingly shows that an admission control mechanism is able

to provide the web-quality of service guaranties discussed in Section 6 { critical for success of

e-commerce retail sites.
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Figure 17: Useful Utilization for a Server with Admission Control.

10 Performance Metrics to Compare Di�erent Strategies

De�nition of an admission control mechanism, given in Section 7, uses the following parame-

ters:

� ac-threshold Uac

� ac-interval length;

� ac-function fac.
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By assigning di�erent values to ac-threshold and ac-interval length, as well as a varying ac-

function between ac-responsive and ac-stable, a whole family of admission control policies can

be introduced.

How do we compare di�erent admission control policies? What are the metrics for their

evaluation?

Let us de�ne a function f ideal, producing an \ideal throughput", in the following way:

f
ideal(Load) =

(
Load; if Load < 100;
100; otherwise.

Let us consider a web server augmented with an admission control policy Fac and processing

a workload de�ned by a session mean SesLength and a load Load.

Let Th(Fac,Load,SesLength) denote the throughput of this web server in completed sessions,

and Ab(Fac,Load,SesLength) denote a percentage of aborted sessions from a total amount of

sessions admitted for processing.

Additionally, let Load1; Load2; :::Loadk =MaxLoad be the (equally spaced) load points.

Let Dif(Fac,SesLength) denote a normalized di�erence between the ideal throughput f ideal

and throughput of the Fac across the same load points:

Dif(Fac; SesLength) =

Pk
i=1 f

ideal(Loadi)� Th(Fac; Loadi; SesLength)

k
(7)

A value of normalized di�erence, de�ned by (7), allows to approximate how far the evaluated

throughput from the ideal one. For example, let Dif(Fac,SesLength)=7. It means that, in

average, throughput of Fac is about 7% less than the ideal one.

The \quality" of the admission control mechanism is strongly reected by the number of

aborted sessions. A new metrics reects it.

Let F 1

ac and F 2

ac be two admission control policies.

F 1

ac is p-ac-better than F 2

ac (p � 0) while processing a workload de�ned by a session mean

SesLength and across the same load points up to MaxLoad if either of the following conditions

hold:
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1.

Ab(F 1

ac;MaxLoad; SesLength) � p

and

Ab(F 2

ac;MaxLoad; SesLength) � p

and

Dif(F 1

ac; SesLength) � Dif(F 2

ac; SesLength);

or

2.

Ab(F 1

ac;MaxLoad; SesLength) � p < Ab(F 2

ac; SesLength);

If an application can tolerate some percentage of aborted sessions (say, up to 5%) then for the

rates of aborted sessions below or equal to 5%, the two strategies are compared with respect

to their throughput in completed sessions, i.e. F 1

ac is 5-ac-better than F 2

ac if the percentage of

aborted sessions for both strategies is less than 5%, and F 1

ac has better throughput, in average,

than F 2

ac.

If the percentage of aborted sessions for F 2

ac is greater than 5% (i.e., F 2

ac hass failed to satisfy

the application requirement on acceptable percentage of failed sessions) while the percentage

of aborted sessions for F 1

ac is less or equal to 5% then F 1

ac is 5%-ac-better than F 2

ac independent

on the throughput.

Using this metrics, we compared the ac-responsive and ac-stable strategies ( F resp
ac and F stable

ac

correspondingly) de�ned by the same ac-threshold Uac = 95% and the same ac-interval length

of 1 second. The comparison has shown that F resp
ac is p-ac-better than F stable

ac across the

di�erent average sessions lengths and maximum load of 300%.

F resp
ac has consistently less number of aborted sessions than F stable

ac . This is an expected result,

because by de�nition an ac-responsive strategy has a more restrictive admission policy.

However, if a workload of interest has an average session length of 50, i.e. SesLength=50,

and the load of interest is limited to 200%, i.e MaxLoad=200%, then the comparison changes:

F stable
ac becomes 0-better than F resp

ac . Both strategies have no aborted sessions across the new

data of interest. However, the throughput in completed sessions of F stable
ac is higher than

throughput of F resp
ac as shown in Figure 18.

Proposed ac-better metrics for comparison of di�erent admission control policies can be re�ned

to reect the application goals and quality of service requirements.
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Figure 18: Throughput in Completed Sessions for AC-Responsive and AC-Stable Strategies, Workload

with Average Session Length of 50.

11 Tuning the Admission Control Mechanism for Better QoS

Choosing the right parameters for the admission control mechanism is very important. In

Section 9, we analyzed the results produced by the ac-responsive admission control policy

with the following parameters:

� ac-threshold Uac = 95%

� ac-interval length of 1 second;

How do the results depend on the length of the ac-interval? What will happen if an ac-interval

is set to 5 seconds?
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Figure 19: Percentage of Aborted Sessions from Admitted for Processing for Server with Admission

Control, AC-Interval = 5sec, Workload with Average Session Length of 5.

Figure 19 shows the percentage of aborted sessions from those admitted for processing for an

admission control mechanism with an ac-interval of 5 seconds. Results are signi�cantly worse

than similar ones shown in Figure 15 for an admission control mechanism with an ac-interval

of 1 second. The reason is that the shorter the average session length { the higher the number

of sessions generated by the clients, and accepted by the server during the ac-interval. For

example, if a web server is in \accept mode" then for the load of 300% during 5 seconds it

accepts around:

� 3000 new sessions (5sec � 3load � 200sessions) for a workload with an average session

length of 5;
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Figure 20: Percentage of Aborted Sessions from Admitted for Processing for Server with Admission

Control, AC-Interval = 0.5sec, Workload with Average Session Length of 5.

� 1000 new sessions (5sec � 3load � 66:7sessions) for a workload with an average session

length of 15;

� 300 new sessions (5sec�3load�20sessions) for a workload with an average session length

of 50.

These new sessions are accepted in addition to the sessions which are already in progress.

The main reason, for aborted sessions under this scenario, is that the listen queue overows:

it has a limited size of 1024 entries. As a snowball e�ect: when the listen queue gets full, it

also triggers a set of retries for the requests at the end of the listen queue. The timeout value

is 1 second, and the server can only process 1000 requests per second ( see related discussion

in Section 4.1). One way to �x the problem is to de�ne a shorter ac-interval.
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Figure 21: Throughput in Completed Sessions for Family of AC-Functions: from AC-Stable to AC-

Responsive, Workload with Average Session Length of 15.

Figure 20 shows the percentage of aborted sessions for an admission control mechanism with

an ac-interval of 0.5 seconds. The number of aborted sessions, for a session length of 5, is

signi�cantly less than for an admission control mechanism with an ac-interval of 1 second (see

Figure 15 for comparison).

Varying an ac-threshold Uac from 95% to 97% will slightly increase throughput in completed

sessions at a price of greater number of aborted sessions too, especially for workloads with

shorter average session length. Conversely, decreasing an ac-threshold Uac from 95% to 93%

will improve the quality of output, decreasing the number of aborted sessions, but at a price

of slight decrease of throughput in completed sessions.

Similar impact has an ac-weight parameter in de�nition of ac-function allowing to de�ne a

family of ac-functions: from ac-stable one to ac-responsive one. Figure 21 shows the server
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Figure 22: Number of Aborted Sessions for Family of AC-Functions: from AC-Stable to AC-Responsive,

Workload with Average Session Length of 15.

throughput while running workload with average session length of 15, depending on ac-weight

k used in ac-function fac de�nition (see Section 7).

As expected, the server throughput is higher under \more stable" ac-functions for a load

below 170%. The situation changes for higher load in favor of \more responsive functions".

The rates of aborted sessions are worse for \more stable functions" in higher load area as

shown in Figure 22.

This shows again that ac-stable admission control functions achieve better throughput in the

load range of 85%-120% at a price of higher number of aborted sessions under higher loads.

While ac-responsive admission control functions lead to more restrictive admission policies

and achieve higher quality of service guaranties, especially at high loads but at the price of

slightly lower server session throughput (in particular, when a server operates at loads in the
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range 85%-120%).

Obviously, a hybrid admission control strategy is a desirable goal. Developing a hybrid strat-

egy is one of the goals of the future work.

Another interesting question for future research is the following. For a given web server and

workload characteristics, de�ne an optimal or nearly optimal admission control mechanism.

12 Conclusion

In this paper, we introduce a new, session-based workload for measuring a web server perfor-

mance. We show that an overloaded web server can experience a signi�cant loss of throughput

as a number of completed sessions comparing against the server throughput measured in re-

quests per second.

However, this loss is not always easy to recognize. When the session lengths are exponentially

distributed (in other words, there is enough variability in session lengths) the throughput in

sessions for overloaded server decreases slightly, but not dramatically.

Analysis of the completed sessions reveals, however, that the majority (up to 98%) of com-

pleted sessions are short: the overloaded web server discriminates against the long sessions.

This could signi�cantly impact sales and pro�tability of commercial web sites because the

sale-sessions are typically 2-3 times longer than non-sale ones. Based on this analysis, we

formulate the web-quality of service requirements a web server has to support. In particular,

a fair guarantee of completion, for any accepted session, independent of a session length - is

a crucial requirement for commercial web site to be successful.

We show that a web server augmented with admission control mechanism is able to provide

required web-quality of service guaranties. Incorporating this technique into product allows

HP to o�er solutions to customers that enables them to migrate core business functions onto

web based technologies, and to use web applications for strategic advantage.
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