
CSL: Communicating Structures
Library for Systems Modeling and
Analysis

Vadim Kotov, Tomas M. Rokicki, Ludmila Cherkasova
Computer Systems Laboratory
HPL-98-118
June, 1998

E-mail: [kotov,rokicki,cherkasova]@hpl.hp.com

concurrent
distributed
systems,
hierarchical
systems,
Communicating
Structures,
system
modeling,
simulation

CSL is a C++-based library and a core environment for the
modeling and analysis of Systems of Systems (SoS), large-
scale distributed systems with components that are complex
systems themselves.
To be able to model SoS, the whole diversity of their
components and structures is represented as
Communicating Structures, uniform and systematic
compositions of a small number of basic concepts that
describe communication, data traffic, and data
placement inside SoS. SoS are represented as hierarchical
networks of nodes. Each node has memory that may
contain items. Nets are sets of links that connect the nodes.
The items are generated at some nodes and move from node
to node along links, with some delay. The item generation,
transformation, and movement is controlled by the parallel
processes running on the nodes. Items, nodes, memories, and
nets may be elementary or aggregated objects.
CSL uses modified structures of C++/CSIM, a process-
oriented discrete-event simulation package [Sch95, Mes96],
to generate and coordinate concurrent processes as well as
GUI and visualization tools for the model construction,
providing input parameters, and analysis of the modeling
results.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

Contents

1 INTRODUCTION 4

2 THE CSL STRUCTURE 8

3 THE CSL BASE 9

3.1 Data Structures : 9

3.2 C++/CSIM Constructs : 9

3.3 Names, Parameters, Attribures, Trees : 11

4 THE CSL OBJECTS 13

4.1 CSL Object : 13

4.2 CSL Item : 14

4.3 CSL Memory : 15

4.4 CSL Net : 17

4.5 CSL Node : 19

4.6 Registry and Registers : 20

5 THE CSL BASICS 21

5.1 Process : 21

5.2 Simulation Node : 22

5.3 Queue Node : 27

5.4 Queue Net : 27

6 CSL PARTS KIT 28

6.1 Memories : 28

6.2 Nets : 29

6.3 Nodes : 31

2

7 SIMPLE MODEL EXAMPLES 31

7.1 The First Example : 31

7.2 The Second Example : 37

7.3 The Third Example : 39

8 GRAPHICAL INTERFACE FOR CSL 40

8.1 Programs and Files : 40

8.2 Start : 40

8.3 Subnodes Information : 41

8.4 Canvas : 42

8.5 Adding a New Node : 42

8.6 Editing Node Information : 42

8.7 Add a New Link : 45

8.8 Creating a New Node (Net, Memory) Type : : : : : : : : : : : : : : : : 47

8.9 Setting and Running the Model : 49

8.10 SIMON : 50

8.11 Hotspots : 51

8.12 Multiruns : 53

9 CONCLUSION 53

10 CONTRIBUTIONS AND ACKNOWLEDGMENTS 55

11 References 55

3

1 INTRODUCTION

Standardization and uni�cation of processors, memories, storages, and I/O devices and the

increasing use of commodity o�-the-shelf components has raised the level of computer design.

The computers themselves have become components of various types of clusters, systems, and

networks. Networks of computers are combined into multilevel distributed systems of diverse

topologies. The integration interfaces and protocols are exploding in number and complexity.

Individual software components and software systems are also integrated into large distributed

software systems with speci�c software architectures. Speci�cation, veri�cation, and analysis

of software architecture is becoming more and more important in the industrial software

environment.

A growing number of today's applications have become distributed. Di�erent stand-alone

applications, both proprietary and commercial, have been integrated into large heterogeneous

application systems with speci�c application architectures.

Finally, hardware, netware, software, middleware, and application architectures have com-

bined into integrated system architectures and, as a result, the variety of feasible system

architectures is rapidly increasing. The complexity of these systems is increasing signi�cantly

because they contain large numbers of subsystems and components built by diverse vendors

and often represent "black boxes" for the system integrators. We call such systems Systems

of Systems (SoS).

Some examples of today's SoS are:

- clusters of multiprocessor computers;

- multi-tiered processing centers;

- enterprise intranets supporting common business processes;

- distributed mission-critical applications;

- distributed control systems;

- distributed design/manufacturing systems;

- the World-Wide Web;

4

- and combinations of the above.

Typical SoS have to satisfy many strict requirements (many of which are conicting), among

which are

- cost e�ectiveness (SoS are often unique and expensive);

- responsiveness;

- throughput;

- scalability and exibility;

- availability;

- maintainability;

- reliability, fault tolerance, and recoverability;

- data and application integrity;

- security.

Concurrency and non-trivial distributed communication are major challenges to system de-

signers. More and more objective and elaborate methods and tools are required for the

evaluation of system architectures. For all this, the competitive market does not allow much

time to experiment with prototypes. There is a clear need for design methods, techniques, and

tools that allow designers to construct and analyze quickly and reliably various hypotheses

and evaluate them against both a wide spectrum of desired system properties and against

various applications.

However, SoS represent a challenge for the modeling and analysis, as their solution space is

huge and complex. Modeling methods and tools typically used in object-oriented analysis and

design (for example, UML [Fow97] and statecharts [Har97]) are biased to the speci�cation

aspects as their main goal is to support the rigorous and e�cient design and development

process. For SoS, the main problem is to identify the satisfactory solutions among a sea of

solutions. SoS are also too complex and diverse to �t into the Procrustean framework of a

formal semantics.

5

To meet this challenge, SoS models should be as simple as possible, without, of course, losing

those features that are important for system validation. The best way to simplify the models

is to

- identify the few main modeling objectives and those system features and parameters

that are relevant to the objectives;

- use the minimal number of concepts that are common to most of the systems and with

which the modeling objectives can be adequately speci�ed;

- develop convenient modeling data handlers, statistics, and analysis libraries, as well as

visualization-animation tools.

Here we propose to view computer and information systems as communicating systems in

which the main activities are related to the coordination of data tra�c and data placement.

The modeling objectives are:

- evaluation of system performance in terms of average latencies, throughput, utilization,

sensitivity to variation in the system and workload parameters;

- identi�cation of congestions, bottlenecks, non-fairness, and unpremeditated behaviors.

Such a view emphasizes those system features and components that generate and manage the

data tra�c.

This report presents the Communicating Structures Library (CSL), a core environment for

the modeling and analysis of large communicating systems. CSL is intended to meet the

need for a global system modeling methodology that handles both complex behavior and high

performance. The key issue is to �nd a way to model systems at di�erent levels of abstraction

in order to support both top-down and bottom-up design.

In its most general form, Communicating Structure is a hierarchical and concurrent structure

that represents the system components and the communications between them in a uniform

and systematic way.

The system components are represented simply as nodes. Each node has memory that may

contain items. Nets are sets of links that connect the nodes. The items are generated at some

6

nodes and move from node to node along links, with some delay. Items may be modi�ed

by nodes. The item tra�c models the data tra�c in the system, which is represented as a

communicating structure.

Items, nodes, memories, and nets may be elementary or may have some structure. For exam-

ple, an item may represent simple data such as a byte, a word, a frame, a packet, as well as

a complex message and large chunks of data. The nodes may represent relatively small units

such as registers, caches, and functional units, or larger computer components such as pro-

cessors and memories, or subsystems such as multiprocessors, large storage units, computer

clusters, subnets, etc. Nets may represent simple point-to-point links as well as busses, cross-

bars, interconnects, cascaded switches, LANS, communication lines, and other data transfer

facilities.

Thus, the items, nodes, memories and nets are CSL objects that are either simple or aggre-

gated. The CSL objects may be assigned di�erent attributes (numbers, variables, functions,

and processes) that:

- de�ne quantitative parameters such as the number of subobjects in an object, time

constraints, etc.;

- locate an object in the model hierarchy such as the object's name and its relative address

in the hierarchy tree;

- change the behavior of objects;

- provide input data for objects and register their behavior and for output and further

analysis;

- provide data and functions for analytical modeling.

A model in CSL is a hierarchy of nodes with one top node that has no parent. Nodes are

assigned processes that are invoked to generate items, receive/send items from/to other nodes,

and to transform the items, if necessary.

In general, any information that is relevant to a speci�c study of a system may be easily

added to a Communicating Structure that models the system. Communicating Structures

allow easy abstraction and re�nement modi�cations in order to be used at di�erent levels of

modeling detail.

7

In the case of simulation, CSL accumulates generic or parameterized CSL objects, functions,

and processes that may be quickly assembled into a particular simulation model and tuned

to a speci�c case study as de�ned by user-entered input parameters (see 3.3).

CSL is a system analysis package, not a universal modeling language that makes emphasis

on the precise speci�cation of system structure or behavior. It supports a programming, not

a pictorial, style of modeling (though it has a graphical interface and visualization support

for the analysis of the modeling results). The CSL hierarchy is based on C++ classes; CSL

concurrency uses the main structures of C++/CSIM, a process-oriented discrete-event simu-

lation package [Sch95, Mes96]. CSL is transparent in that sense that the user can use not

only the CSL constructs but also everything below them: C++/CSIM, C++, and plain C.

2 THE CSL STRUCTURE

There are several levels of the modeling primitives and constructs in the CSL environment.

The lowest level, CSL BASE, is formed by data structures, classes, and algorithms that allow

us to comfortably de�ne, construct, and modify the components of Communicating Structures.

The second level, CSL OBJECTS, contains the basic components of Communicating Struc-

tures and instruments to assemble them.

The third level, CSL BASICS, provides means to build simulation or analytical models out

of components of the previous level.

The next level contains the generic CSL PARTS KIT, which serves to customize and re�ne

Communicating Structures to make them adequate for the speci�cation and evaluation of

particular types of systems. It also accumulates mathematical and statistics libraries.

Finally, CSL DOMAIN LIBRARIES are built by users and provide the means to make the

construction and analysis of models in di�erent domain-speci�c areas fast and reliable.

The CSL GUI provides the graphical and visualization means for the easy construction, run-

ning and analysis of the CSL models, particularly during prototyping and debugging stages.

8

3 THE CSL BASE

The CSL BASE is a base sublibrary of appropriate templates and auxiliary classes underlying

CSL in order to

- form high-level abstract data structures (array, list, tree, etc.);

- provide the control and synchronization of parallel processes; and

- organize the connections the between model's structural attributes and its external input

and output parameters.

3.1 Data Structures

For example, the template class Array<T> declares an array that can expand to accommodate

new elements and can be pruned by deleting some positions (together with the elements in

those positions). The positions and the elements can be addressed both by an integer index

and by using an array iterator as in C++ STL (Standard Template Library [Muss96]).

Other examples of such structures are the template classes List<T>, PriorityQueue<T> and

AssocMatrix<Key, Val>. In general, the usage of the abstract structures and algorithms

notations and semantics in CSL follows the STL line. However, STL is not included in CSL

as a supporting library, as most of the STL potential is not used by CSL.

3.2 C++/CSIM Constructs

A set of modi�ed CSIM structures is introduced to generate and coordinate concurrent pro-

cesses. A C++/CSIM process is a C++ procedure that executes a create statement. This

statement invokes a new thread that proceeds concurrently with the process that has invoked

it. So, a typical process looks like:

process(arg1, ..., argn){

create(``PROCESS'');

.....................;

}

where process is the process identi�er and PROCESS is the process's external name.

9

There can be several simultaneously active instances of the same process each of which has

its own runtime environment. A process can be in one of four stages: passive (and ready

to start), active, holding (allowing a simulation time to pass), and waiting (for permission to

continue after it has been interrupted).

The mechanisms to organize the interactions between the processes are mailboxes, facilities,

and events.

The CSL class Mailbox is derived from the CSIM mailbox and all CSIM mailbox operations

and functions are valid in CSL. Mailboxes are used for interprocess communication. A process

can send a message to a mailbox and receive a message from a mailbox. When a process does

a receive operation on an empty mailbox, it automatically waits until a message is sent to this

mailbox. The CSL Mailbox is augmented by an additional operation send with delay that

makes it possible to send a message to a mailbox with some time delay.

The basic mailbox statements are:

MAILBOX.send(int message);

MAILBOX.send_with_delay(int message, TIME delay) ;

MAILBOX.receive(int *message);

The semantics of the CSL class Facility ms is similar to that of CSIM facility ms but it is

implemented via a Mailbox. This was done in order to avoid the CSIM restrictions on the

release operation. Facility ms models a resource. It contains a single queue and several servers.

Only one process at a time can hold a server after it executed the reserve statement. If there

is no available server, the process waits in the queue until one of the servers is released and

there is no process waiting in the facility queue ahead of this process.

So, the basic facility statements are:

FACILITY.reserve();

FACILITY.release();

FACILITY.use(TIME hold_time);

Events are used to synchronize processes. An event is a state variable with two states, occurred

and not occurred, and two queues for waiting processes. One of these queues is for processes

that have executed the wait statement (and are in a waiting state) and another is for processes

that have executed the queue statement (and also are in the waiting state). When the event

10

occurs, by executing the set statement, all waiting processes and only one of the queued

processes are allowed to proceed. The statement clear resets the event to the not-occurred

state.

The basic event statements are:

EVENT.wait();

EVENT.queue();

EVENT.set();

EVENT.clear();

3.3 Names, Parameters, Attribures, Trees

The class CSL Name provides a convenient way to construct compound names, which are

useful for naming hierarchical objects. Such a compound or \full" name is, in fact, a \mul-

tistring", a string that consists of substrings delimited by a special delimiter (the default is

\."). Each substring represents the name of a predecessor of the object in the hierarchy to

which it belongs. For example, a subobject of an object may be given a \full name" which

contain the name of this object as a pre�x and the subobject's name as its "�rst name". An

example of a name is net1.computer5.CPU2.cache.

To easily parameterize the CSL models, the classes Parameter and Attribute are introduced.

The external parameter makes it possible to add to an input �le a named input string and

convert it into a value of a simple type (integer, double, string), into a list of values, into a list

of lists, etc. For example, the standard CSL parameter EndTime, which sets the time when

a simulation must stop, is de�ned as follows:

Parameter EndTime("EndTime", "Stops simulation by time", "1000000") ;

The default time is 1000000 time units. A user can change it by adding the following line into

an input �le:

EndTime = 500000

The class Attribute provides the connection between structural attributes and external param-

eters through regular expression-matching between the structural name and the external pa-

rameter. Each Attribute has a name associated with it. It may be, for example, the name of an

object or the name of another element related to the object. Each Attribute also has a match,

11

which is a pointer to a Parameter that is the most speci�c matching parameter. For instance,

.InterArrivalTime is a potential match that is not very speci�c. Node1..InterarrivalTime is

a more speci�c match. After all of the model parameters are de�ned and all of the attributes

are constructed, the matches are found and can then be used.

The classes Observe and Utilize provide external visibility for statistical and other computed

values. Each observable has a name and a value, which keep track of time-valued observables.

These are values such as utilization for which the average value over time, rather than just

the average of a number of observations, is critical.

As all CSL objects may have a hierarchical structure, the class Tree is introduced. It represents

tree-like hierarchies with the class members and functions that help to handle the hierarchy,

for example, to select subtrees and sets of subtrees, to check some properties of trees, to apply

functions to objects-subtrees, etc.

A CSL object may be simple, in which case it has no internal structure. It may also be

a structured object, i.e., a tree that consists of other objects, which are the object's direct

subobjects, or children. (The containing object is, naturally, the father for its children.) The

children may be, in turn, hierarchical objects. A structured object is the top object if it has

no father.

CSL objects may have external hierarchical names. Such a name consists of the \�rst name",

which is preceded by the name of the object's father and the names of all its other ancestors.

The object also has its \local address", which is the object's position number in the array

of its siblings, i.e all the children of its father. So, the position of an object in a hierarchy

of objects may be indicated both by its compound name and by a list of integers that are

\local addresses" of all the object's ancestors plus the position number of the object as the

last element of the list.

Here is a simpli�ed structure of the class Tree (without member functions and some auxiliary

class members):

class Tree{

public:

Tree *father; // the tree supertree (father)

Tree *top; // the top tree in the tree's hierarchy

int number; // the ordinal number of the object as a child

CSL_Name name; // the tree external name

12

Array<Tree*> *children; // pointer to the direct subtrees (children)

Tree(Tree *_father, char *_name);

};

4 THE CSL OBJECTS

The basic elements of Communicating Structures are items, memory, nets and nodes.

Nodes typically generate, receive, store, forward, and, perhaps, modify data abstractly pre-

sented as items. They store and retrieve items in the node's memory. Nets connect the nodes

into a communicating structure in which the items travel from source nodes to destination

nodes. These elements are derived from the common CSL class Object.

As all CSL objects may have a hierarchical structure, the class Object is derived from the

class Tree, which represents tree-like hierarchies with the class members and functions that

help handle the hierarchy, for example, selecting subtrees and sets of subtrees, checking some

properties of trees, applying functions to subobjects, etc.

The class Object is also derived from the class Facility ms and has an attribute and a utilize

associated with it. This makes the object a resource for which concurrent processes may

compete and provides \hooks" for supplying input data to objects and collecting statistical

information.

4.1 CSL Object

The class Object is derived from the classes Tree and Facility ms. The �rst derivation makes

possible the construction of structured hierarchical objects. The second derivation makes the

object a resource for competing concurrent processes. The number of servers in the object is

set during the object construction. The object member functions make it possible to reserve

and to release subobjects of the object. In particular, the reservation of a chain of nested

hierarchical objects may be used in many di�erent ways for organizing special accesses to the

internal hierarchy of structured objects.

An auxiliary class Context combines into one argument three typical arguments for object

constructors: a pointer to the object's father, the object (last) name, as well as a Parameter

13

that may be used to provide constructors with external information about the object structure

and parameters.

class Object: public Tree, public Facility_ms{

public:

Attribute attr;

Utilize use;

Object(Context C);

}

An object also has an Attribute and a Utilize associated with it. The object attribute attr

will match any structural parameter name that is a string ending with the su�x \.AT". The

value of such a parameter is a list of pairs. The �rst element of such a pair is a \keyword"

identifying the value that is the second element of the pair. For example, the list (SERV 1)

provides one server for the object as a facility. The Utilize use keeps track of the time during

which the object was used for some speci�c activities.

4.2 CSL Item

An Item represents an entity that migrates in a communicating system. In CSL, an Item is,

in fact, a Tree, not an Object, so it has no facility, attribute or utilize. This is because items

are \dynamic" entities that are born, travel and perish. They cannot be reserved and it is

meaningless to provide values to them via attributes and matching.

In addition to the common Tree members, the class Item has special members. The item

has a unique (for its life cycle) id, a numerical identi�er created at the time when the item

is generated and released at the time when the item ceases to exist (to be used by newly

born items). Items are generated in nodes of Communicating Structures that are represented

in CSL by the class Node described below. Each item carries with it a pointer send to the

sender-node that is its birthplace and a pointer last to the last-visited node. It also carries a

destination path dest, which de�nes the item potential route leading to its destination (maybe

just to some intermediate destination). The path represents a sequence of pointers to nodes

which the item intends to visit. Not all nodes that the item will actually pass need to be listed

in the path. The routes between subsequent points of the path are optional and subject to

some chosen routing. The original destination path may be modi�ed on the way or, after the

14

item reaches its original destination node, it may be assigned a new destination. The item has

an integer length that is typically treated as a message (packet, etc.) length in some user's

units (bits, bytes, words, etc.). The item length is used in CSL BASICS only in a default

virtual function that computes the speed of transfer of items along links. However, any other

user interpretation of length is possible.

If an item has subitems, then these subitems may be spawned into a set of items that are

issued when the item has reached its destination and is ready to disappear. This topic will

be discussed in more detail later on when the transfer of items in Communicating Structures

is described.

Each item may be assigned a special ItemTag that represents the item type and serves to

distinguish between di�erent sorts of items. Here is a simpli�ed declaration for the class Item.

class Item: public Tree{

public:

int id; // the item identifier

Node *send; // the item sender

Path dest; // the item destination path

Node *last ; // the last visited node

int length ; // the item length

const ItemTag *tag ; // the item type tag

Item(Node* send_node, const ItemTag &_tag, int _length, char *_name, Item *_father);

};

The class Item member functions serve to modify items and to handle time and space at-

tributes, for example, to mark time stamps, to change the item destination, the item length,

or to change its tag.

4.3 CSL Memory

A CSL Memory is an Object that stores Items. In the general case, a memory is a hierarchy

of (sub)memories with the ability to store items at di�erent levels of the hierarchy. The top

memory of the hierarchy is contained in a Node. At the bottom of this hierarchy are simple

memories Bu�ers, which are arrays of locations holding pointers to stored items.

15

The class Memory has members (the memory size, the current number of stored items, the

number of items waiting to be stored, and the last-visited submemories or locations) that help

to monitor and control the availability of items and storage space in the memory. As a CSL

Object, the memory can be a resource that allows us to prevent noncontrolled nondeterministic

concurrent access to it.

An Address is a pair that represents the address of an item in a Memory. Its �rst element is

a pointer to the memory or its submemory. Its second element is an integer. If the pointer

points at a structured memory, then the integer identi�es its submemory. (If the integer

is negative, then this is interpreted as an arbitrary submemory.) If the pointer points at a

Bu�er, then the integer identi�es a location in this Bu�er. (If the integer is negative, then it

is interpreted as an arbitrary location.)

These are simpli�ed Memory and Bu�er class declarations:

typedef Pair<Memory*,int> Address ;

class Memory: public Object{

public:

int memsize; // the (maximal) capacity of the memory

int numitems; // the current number of items in the memory

int waiting; // the number of items waiting to be stored

int last_get; // the number of the last-visited submemory or location

//to get an item

int last_put; // the number of the last-visited submemory or location

//to put an item

event GET; // the event that signals retrieval of an item

event PUT; // the event that signals storing an item

Memory(Context C);

virtual Item* get(Address address);

// extracts an item stored at the address

virtual Address *put(Item *item, Address address);

// stores an item at the address

};

class Buffer: public Memory, public Array<Item*>{

16

public:

Buffer(Context C) ;

Item* get_item(int n);

// extracts an item from the {\em n}-th location

void put_item(Item *item, int n);

// stores the item into the {\em n}-th location

};

The virtual access functions get and put �rst �nd and reserve requested or available locations;

then they retrieve or store an item. For this purpose, these functions use the virtual functions

virtual Address OKget() ;

virtual Address OKput() ;

The functions serve to de�ne speci�c patterns of the sequential access to a submemory (includ-

ing a location) when its exact address is not speci�ed. The functions use information about

the ordinal number of the last-visited submemory or location (last get or last put). Then they

calculate a new position taking into account the previous access position. One can put an

item in a location only if the location is empty, that is, it does not contain an item. One can

get an item from a location only if the location contains an item. That enables the creation

of special memory access strategies, for example, those used in FIFO or pushdown (stack)

memories. This possibility will be exploited in the the CSL PARTS KIT section.

4.4 CSL Net

The CSL Net is an Object that makes connections between the nodes. In the general case, the

net inherits a multilevel hierarchy from the class Object.

class Net: public Object{

public:

Net (Array<Net*> *subnets, Context C) ;

};

The "top" net, that is, a net with no father-net, is a part of a Node de�nition for which it

17

provides communication links among the node's subnodes. At the bottom of this hierarchy

are Links, \elementary" nets, each of which connects just a pair of nodes.

The default number of servers for a net is chosen to be the sum of the number of servers of the

net's children. In case of a "simple" net (its subnets are links), a net is just an array (set) of

links de�ning some connection pattern for a set of nodes. The default number of servers for a

simple net is the sum of the number of servers of the net's links. That means that we assume

that the net is a priori just a set of links or a set of sets of links and does not impose any

additional restrictions on the tra�c of items along its links. If a user decreases the number

of servers for the net, some restrictions may occur, as the reservation of a link requires also

reservations of all nets containing the link.

Each link delivers items from a from-node to a to-node with delay which is a function of the

link bandwidth and the transferred item length (or some other item attributes). The from-

and to-nodes are identi�ed by their pointers.

Being derived from the class Object, the link is a resource with some number of servers that

de�ne the maximal number of transfers that may occur along the link simultaneously.

This is a simpli�ed class declaration for the CSL Link.

class Link: public Net{

public:

Node *from; // from-node

Node *to; // to-node

double bandwidth; // the link bandwidth (in some user's units)

Link(Node *_from, Node *_to, double _bandwidth, int numservers);

};

The net hierarchy may be treated as a hierarchy of sets of links and their subsets. This makes

possible the use of structured nets to model switches and interconnects at an abstract level,

as the logic of switching is conveniently expressed in set theory terms. Some examples of this

approach will be presented in the section CSL PARTS KIT.

18

4.5 CSL Node

The main building block of Communicating Structures and CSL models is the node.

The class Node serves to de�ne the static structure (topology) of CSL models. Such a node is

an object that represents a hierarchical graph; its subobjects (subnodes) are its vertices and

its directed arcs are the links connecting its subnodes. Both the node and its subnodes may

contain memory. The class Node also contains Memory as its member. The whole CSL model

itself is a top-level CSL node.

The node's internal links (if it is an aggregated node) are clustered into a Net. The member

net contains all the links that connect the node with its subnodes (both ways) and the node's

subnodes among themselves. The net fully de�nes the node structure. To be able to analyze

and modify the structure with ease, two useful lists of links are added to the class Node:

- the list inlinks contains the links that enter the node;

- the list outlinks contains the links that leave the node.

The class Node's member functions serve to construct the node communication structure,

identify speci�c groups of links, �nd paths in the internal structure of the node, and modify

this structure.

class Node: public Object{

public:

Memory *memory; // the node's memory

Net *net; // the node's net

List<Link*> *inlinks; // the list of in-links

List<Link*> *outlinks; // the list of out-links

Node(int memory_size, char *memory_type, char *subnode_type,

int num_subnodes, char *subnodes_name,

char *net_type, double net_bandwidth, Context C);

Node(Memory *_memory, Array<Node*> *subnodes, Context C);

Node(Context C);

};

19

When given two subnodes of a node, one of the member functions, namely path(Node *from,

Node *to) , �nds the shortest local path in the node's internal structure connecting these two

subnodes.

4.6 Registry and Registers

Most of the CSL basic objects such as Memory, Net, Node, as well as new types of objects

that a user may introduce as derivative classes of the basic objects, may be constructed in

two ways. They may be built with the help of constructors that explicitly de�ne and initialize

all the subobjects and class members in the constructor body's code. A more exible and

convenient way is provided by a constructor with an argument that is a CSL Parameter whose

value can be de�ned and modi�ed with a model input �le. However, if we want to inform

the object constructor about the types of its subobjects, we need mechanisms that convert an

input string specifying the type into an identi�er of the object type that can be used in the

constructor.

The template class Registry is a \metaconstructor" that constructs an object of a speci�c

type using a string name for this type and Context, which contains a Parameter describing

the structure, parameters, and properties of the constructed object.

The object type is a string that has been registered by Register. All registered classes should

also have a constructor of the form

Class(Context) ;

For example, let the class Memory contain a constructor

Memory(Context C) ;

This class must have been registered by Register in the following way:

Register<Object, Memory> MemoryObject("Memory");

The string "Memory" identi�es the registered name of the class Memory.

Now we can use the function:

Memory *make_memory(char *object_type, Context C) ;

20

which in the call make memory(\Bu�er", context) ; builds a Bu�er and returns a pointer

to it. This function actually calls the Registry member function buildOne which selects an

appropriate class constructor to build a memory of the indicated type.

Using object constructors with Parameter, a user can completely transfer the description of

the structure of the whole model into the ModelStructure parameter in the input �le.

5 THE CSL BASICS

The basic CSL objects form a conceptual CSL kernel that is augmented by classes that

convert the kernel into a CSL model of speci�c type: simulation model, or queueing model, or

(stochastic) Petri Net model, etc. These classes are currently collected in the CSL BASICS

sublibrary.

5.1 Process

The class Process introduces main generic processes that are associated with the simulation

node (see the next section 5.2).

The startup process makes the node active using the generation process, which initializes item

tra�c from the node (if the node is allowed to generate as indicated by the Boolean tag

generator), and starts the main node procedure process that generates the default or user-

de�ned processes that transfer items to and from the node and allocate them in the node's

memory.

Figure 1 shows the structure of the startup process. (In this and subsequent �gures, a rectangle

represents a function (procedure), a rounded rectangle represents a CSIM process, a rhombus

is a condition, and a circle is loop condition.)

When a CSL model is initiated, each model's node with a non-zero tag generator starts its

generation process. This process is recursive: it may generate an item or it may initiate

another next-level generation process. Several levels of generation are useful when there is a

hierarchy of generated items: messages consisting of frames, sessions consisting of messages,

etc. The value of the tag generator speci�es the number of the generation levels.

The virtual function generation de�nes the generation procedure for each level of generation.

The default function is \empty". The virtual timing function is used to de�ne the interarrival

21

startup

true
false

generator

 generation_process

generation

process

timing

run

Figure 1: Startup Process

time for the generated items.

5.2 Simulation Node

The class SimNode represents a simulation node and is derived from the class Node and from

the class Process, which is derived from the class Mailbox.

The node's processes generate and control item tra�c and change and register the node's

behavior. Most of the basic simulation node member functions and processes are virtual and

may be customized for speci�c purposes by user. The default de�nitions of these functions

provide \generic" item tra�c that is generated in one subset of nodes and destined for another

subset of nodes using the shortest path routing.

This is a simpli�ed class declaration for the node with main member processes and functions:

class SimNode: public Node, public Process{

public:

SimNode(int memory_size, char *memory_type, char *subnode_type,

int num_subnodes, char *subnodes_name,

char *net_type, double net_bandwidth, Context C);

22

SimNode(Memory *_memory, Array<Node*> *subnodes, Context C);

SimNode(Context C);

virtual void initialize(); // the initializer function

void generation_process(int level, // the item generation process

Item *item);

void main_process(Address *location); // the main node's process

virtual void transform(Item *item); // the item transform function

virtual void terminal_point(Item *item); // the termination function

virtual void transfer(Item *item); // the item transfer function

};

The virtual function generation generates an item (with the help of the virtual functions

make item and timing) and then stores the item in the node memory with the help of the

store function (see Figure 6).

In the default de�nition, the function make item generates an item with the generating node

as sender. A destination path is de�ned with the help of the virtual function destination.

The default function destination produces a destination path that consists of one randomly

selected node. An identi�er is attached to the newborn item. Any customized de�nition of

the function make item may replace the default one.

generation

generation_process

stat_item

generation_level

make_item

> 0= 0

Figure 2: Generation

23

After the generated item is stored in the node's memory, the virtual function push process

sends a message to the node's mailbox in order to activate the node's main process, which

was initiated by the Process function process, and then waits for a message to arrive at the

mailbox. This message contains a pointer to the address of the location in which the item

was stored.

The main process (see Figure 3) prescribes the node behavior. The node main function ex-

ecuted in the process is virtual. It is de�ned as a superposition of several virtual functions

discussed below. Hence, the node main function may be either completely rede�ned in derived

classes or it may be partially customized by changing the de�nitions of some of the constituent

functions while leaving others unchanged.

The node main argument is a memory location pointer that arrives as a message to the node

mailbox. The function starts with the begin main function, which reserves the node and its

memory or submemories and returns a memory address from which an item will be extracted

for processing in the node. This returned address may di�er from the address received by the

mailbox).

Then the node main extracts the item and analyzes its destination path. If the destination

path is empty, the process completes its work without actually doing anything. Otherwise, the

head of the path is studied. If it is the pointer to this node, it is deleted from the path. If the

item is simple and its remaining path is empty then the terminal point function is initiated.

The terminal point terminates travel for the item in the communicating structure and collects

statistics related to the item.

Otherwise, the transform function starts. This function may make some changes to the item.

In particular, the function may change the item destination or make clones of the item for

subsequent spawning into the communicating structure. The transform function will almost

always be customized, as it actually de�nes the node's functionality. The default version of

transform is an \empty action".

After the transformation, the main process either terminates, if the item is simple and received

no new destination, or the transfer function is initiated (see Figure 4).

The transfer function organizes the transfer of the item or the item copies in the case of

multicast to other nodes. In the default de�nition, it analyzes the item destination path

and selects one of the possible transfer modes: monotransfer or multicast; synchronous or

24

process

Mailbox

main_process

node_main

transform_condition

transfer_condition

begin_main

transform

transfer

end_main

true false

true false

Figure 3: Main Node Process

asynchronous transfer.

In the monotransfer synchronous mode, the transfer function is directly executed. The func-

tion starts with the routing. An adjacent node is chosen to which the transferred item is sent.

The link connecting these nodes is reserved, the counter of items waiting to be stored in the

accepting memory is incremented, and space for the item in this memory is reserved. If there

is no space, the link is released and the process waits for the GET event to occur to repeat

its transfer attempt. If the attempt is successful, the item is stored in the accepting memory

after the transfer delay. The link is released, and the waiting counter is decremented. The

transfer of the item is complete.

25

process

Mailbox

main_process

node_main

transform_condition

transfer_condition

begin_main

transform

transfer

end_main

true false

true false

Figure 4: Transfer

The monotransfer asynchronous mode di�ers from the synchronous one in that while the

main process proceeds the item is copied and a process concurrent with the transfer function

is invoked to transfer the copy.

The multicast occurs if the item has an empty destination path and is a composite item, that

is, it has subitems. These children are transferred and the item itself ceases to exist. For each

child an individual transfer is organized. If the multicast is asynchronous, the main process

spawns the individual transfer processes and proceeds. Otherwise, it waits until all spawned

processes terminate. To determine when all the individual transfer processes have terminated,

a counter of spawned processes num proc and an event TRANS are introduced. The counter

26

is set to the number of transfers; each completed transfer decrements the counter; the event

TRANS occurs when the counter becomes equal to 0.

The main process is ended by the virtual function end main which, for example, may release

the resources reserved by the begin main function.

5.3 Queue Node

The current version of CSL allow us to construct simple queueing networks [Tan95]. A CSL

node and a CSL net (more often, a link) can be presented as a \service center" or a \queue

node" (we will use the second term, though the �rst term is often used when discussing

queueing networks).

Such a queue node is modeled by a QueueModel, a class that constructs and executes a queue-

ing model that is associated with the queue node, that is, with a node or a link. The type of the

model is de�ned by arrival type that de�nes the arrival time distribution, by the service type

that de�nes the service time distribution, and by the number of servers num servers. We use

Kendall's notation from queueing theory, where for instance \M" stands for the exponential

distribution, and \G" means a general distribution. Thus, the with \MG10" type denotes a

queueing model with the exponential distribution arrival time distribution, the general service

time distribution, and 10 servers.

The input data for the queueing model are: an interarrival rate rate and a mean service time

service time. In the case of the general distribution, the squared coe�cients of variation are

required for both arrival time and service time distributions.

The model returns the the average waiting time (di�erent approximations: heavy tra�c,

Allen-Cunneen, upper bound), the average time spent in a queue node, the average number

of items in the node, the average number of waiting items, and their standard deviations.

The di�erent constructors QueueModel(Node *node) and QueueModel(Link *link) are used

to build queueing models for nodes and for links.

5.4 Queue Net

The class QueueNet makes possible to describe a Jackson network of queues. The network is

constructed with the help of function make net. In the default version of this function, each

27

CSL node and each CSL link is assigned a queueing model, which is introduced using the

class QueueModel.

Given the number of the network queue nodes and, for each queue node, the arrival rate from

outside the network, the probability that an item goes from this node to another given node,

the service time, the number of servers, the QueueNet returns for each node: the average

time spent in a queue node, the average number of items in the node, the average number of

waiting items, and their standard deviations.

6 CSL PARTS KIT

The CSL PARTS KIT contains sublibraries that accumulate those system templates (struc-

tures, functions, and processes) that are frequently used. Some of these parts are generic,

that is, they are used quite often but are not basic CSL objects or functions. Others may

be specialized and are often used in domain-speci�c models. We consider some examples of

useful system parts in this section. We expect the CSL PARTS KIT to continue to grow and

to be subdivided into speci�c domain-oriented kits.

6.1 Memories

Some speci�c types of memories that are derived from the class Memory are introduced in

the \Memories" part of the KIT.

The classes FIFO, Stack and PriorityQueue are introduced as classes derived from the class

Bu�er. These memories are often serve as \control memories" that help to implicitly control

the tra�c in Communicating Structures.

Bu�er, FIFO, Stack, and PriorityQueue are examples of "simple" memories. In many cases it

is convenient to have a node memory with two submemories, each of which hosts a portion of

the tra�c going through the node. For example, one submemory may take care of the ingoing

tra�c and another, the outgoing tra�c. (In this way one can avoid deadlock.) To support

such types of memory, the classes DoubleBu�er, DoubleFIFO, and DoublePriorityQueue are

provided.

More sophisticated memory is exempli�ed by the class InOrderFIFO, which is derived from

the FIFO class. All items stored in the memory are divided into two groups, frame items

and data items. For each frame item, there is exactly one data item with the same identi�er.

28

When a frame item arrives, it is stored according the FIFO rules. When a data item arrives,

it �nds its matching frame and replaces it. It is possible to get an item from the memory

head only if the item is a data item. This memory may be used to organize in-order tra�c in

Communicating Structures.

6.2 Nets

Frequently used topologies are accumulated in the \Nets" part of the CSL PARTS KIT.

First of all, the class SimpleNet represents non-structured nets that are just arrays of links.

Those connections between nodes in which it is not necessary to distinguish between subsets

of links may be represented as simple nets.

Let us consider two sets of nodes that we will refer to as input nodes A and output nodes B.

The input nodes represent the from-nodes for net links and the output nodes will represent

the to-nodes for net links. These sets may intersect or even be identical. In the last case, one

set A represent both sides of the transfer activities. Let N be the number of input nodes and

M be the number of output nodes.

It is convenient to de�ne the topology of the connections de�ned by a simple net using auxiliary

connectivity functions. The connectivity functions are predicates that are valid for some

subsets of integer pairs. The �rst element of each pair is in the range [0, N]; the second

element is in the range [0, M]. There is a link between the i-th and j-th nodes in a connection

de�ned by some connectivity function if and only if the function is true for the pair (i,j).

For example, the function alwaysconnected is the predicate that is true for any pair of integers

in the range. The function parallelconnected is the predicate that is true only for pairs of the

type (i,i).

Suppose we want to connect the node sets A and B by links that lead from every node of A

to every node of B. This type of connection is represented by the OneWayMultiBus simple

net. It is formed using a set of links that connects each input node with each output node

(a bipartite graph constructed with the help of the connectivity function alwaysconnected).

All links have the same bandwidth. If the node sets A and B coincide, the net MultiBus is

derived.

The number of servers supplied to the nets OneWayMultiBus or MultiBus de�nes how many

29

items can be transferred concurrently between these nodes. If the number of servers is equal

to the number of links (this is the default number of servers), there is no restriction on parallel

tra�c among the nodes. If, however, we supply the net with only one server, only one item

can be transferred at a time.

The latter case is represented by the simple net Bus which is derived from the net MultiBus

simply by setting the number of servers to one. Thus, the Bus net is a communicating structure

abstraction of real bus-type nets. This abstraction captures the two basic properties of simple

busses: (1) any input point is connected to any output point, and (2) only one item at a time

may be transmitted.

The simple net RightLoop connects nodes in a loop by unidirectional links in such a way

that the i-th node is connected to the ((i � 1) mod N)-th node, where N is the total num-

ber of nodes. This type of connection is built with the help of the connectivity function

rightcyclicshift.

The number of servers in the net de�nes the number of transfers that may occur simultaneously

in the RightLoop. In similar way, the simple net LeftLoop is constructed.

Restricting the number of servers to one, transforms the loop nets into ring nets in which only

one transfer at a time may occur.

The combination of RightLoop and LeftLoop makes a Loop that connects a node with both

its left and right neighbors. This is made with a special SimpleNet constructor that takes

two SimpleNets as arguments, builds a union of their link sets, and uses the resulting link set

to make the Loop. This is an example of compositional construction of CSL objects. This

approach is especially sound for nets as they represent sets of links for which set operations

may be used directly as compositional operations.

The classes RightRing, LeftRing, and Ring are derived from the classes RightLoop, LeftLoop,

and Loop by imposing the restriction that only one transfer may occur at a time in each of

these nets.

In a net from the class StarOut, a central node is connected by N links to a set of N nodes-

receivers.

Similarly, each node in a set of N nodes-senders is connected by a link to the central receiver-

node in a net from the class StarIn.

30

The combination of Starout and StarIn results in the net class Star which provides bydirec-

tional tra�c among a central node and a set of \peripheral nodes".

Other more complex nets introduced in CSL PARTS KIT, such as XBar (crossbar) and

Hammock, show that quite complicated restrictions imposed on item tra�c in interconnects

can be expressed through hierarchies of nets and schemes of reserving subnets and links.

6.3 Nodes

The CSL node implements the central notion of Communicating Structures and is the basic

building block of any CSL model. Hence, the part of the CSL PARTS KIT that provides

special cases of CSL nodes is the central part of the kit.

We introduce some derived classes of nodes with some special types of memories: Bu�er,

FIFO, DoubleBu�er, DoubleFIFO, etc. These memories help to control item tra�c implicitly.

Some Node and SimNode virtual functions are rede�ned to support implicit tra�c control.

The derived classes can be also parameterized with relation to the types of their subnodes

and types of their nets using Parameters and Registry mechanisms.

7 SIMPLE MODEL EXAMPLES

7.1 The First Example

This program is a simple model of a communicating structure. It consists of exm1.h and

exm1.C �les:

exm1.h �le:

#ifndef EXM1_H

#include "User.h"

#include "CSL_Basics.h"

#include "Nodes.h"

extern Parameter NumSuperNodes ;

extern Parameter SuperMemType ;

extern Parameter SuperMemSize ;

extern Parameter SuperNodeDelay ;

extern Parameter GlobalNetType ;

31

extern Parameter GlobalBandwidth ;

extern Parameter NumSimpleNodes ;

extern Parameter FIFOSize ;

extern Parameter SimpleNodeDelay ;

extern Parameter LocalNetType ;

extern Parameter LocalBandwidth ;

class SimpleNode: public DoubleFIFONode{

public:

SimpleNode(Context C = Context::C0) :

DoubleFIFONode(FIFOSize.intVal(), 0, C){

generator = 1;

delay = SimpleNodeDelay.realVal() ;

}

virtual ~SimpleNode() ;

virtual void destination(Item *item) ;

};

class SuperNode: public SimNode{

public:

SuperNode(Context C = Context::C0) :

SimNode(SuperMemSize.intVal(), SuperMemType.charVal(),

"SimpleNode",NumSimpleNodes.intVal(), "SIN",

LocalNetType.charVal(),

LocalBandwidth.realVal(), 0, C) {

delay = SuperNodeDelay.realVal() ;

}

virtual ~SuperNode() ;

} ;

class Model: public Node{

public:

Model(): Node(0, "Memory", "SuperNode",

NumSuperNodes.intVal(), "SUN",

GlobalNetType.charVal(),

GlobalBandwidth.realVal(), 1) {}

} ;

#define EXM1_H

#endif

32

exm1.C �le:

#include "exm1.h"

Parameter NumSuperNodes("NumSuperNodes", "The number of supernodes", "1");

Parameter SuperMemType("SuperMemType", "The type of a memory in a supernode", "1");

Parameter SuperMemSize("SuperMemSize", "The size of a memory in a supernode", "1");

Parameter SuperNodeDelay("SuperNodeDelay", "The SuperNode delay", "0") ;

Parameter GlobalNetType("GlobalNetType", "Global et type","Bus") ;

Parameter GlobalBandwidth("GlobalBandwidth", "Link bandwidth in global net", "0.0");

Parameter NumSimpleNodes("NumSimpleNodes",

"The number of simple nodes in a supernode", "1");

Parameter FIFOSize("FIFOSize", "The size of a FIFO in a node", "1");

Parameter SimpleNodeDelay("SimpleNodeDelay", "The SimpleNode delay", "0") ;

Parameter LocalNetType("LocalNetType", "Local net type","Star") ;

Parameter LocalBandwidth("LocalBandwidth", "Link bandwidth in local net", "0.0");

Register<Object,SimpleNode> SimpleNodeObject("SimpleNode") ;

Register<Object,SuperNode> SuperNodeObject("SuperNode") ;

void SimpleNode::destination(Item *item) {

Array<Tree*> allleaves = TOP->all_leaves() ;

item->dest = Path(1, (Node*)(TOP->some(&allleaves))) ;

}

SimpleNode::~SimpleNode() {} ;

SuperNode::~SuperNode() {};

void user_main(void){

_dummy_nets() ;

TOP = new Model() ;

}

void user_termination(){}

void user_watch(void){}

void user_special_main(void){}

This model represents an object of the class Model, which is a top node in the model hierarchy

of nodes. It consists of some number of structured nodes that are called SuperNodes and each

of which consists of the same number of simple nodes SimpleNodes.

33

The class SimpleNode is derived from the CSL PARTS KIT class DoubleFIFONode. Each

simple node has DoubleFIFO as its memory. This memory consists of two FIFO submemories,

each having a maximum size de�ned by the parameter FIFOSize. This and other parameters

serve to supply the model with user-de�ned information that is provided in some input �le

(the �le exm1.in in our case).

The class SuperNode is derived from the class SimNode, and subnodes of the supernode are

of type SimpleNode. Each supernode also has a memory of a type de�ned by the parameter

SuperMemType and a size de�ned by the parameter SuperMemSize.

The supernodes are interconnected in the model by a net of a type de�ned by the user with the

parameter GlobalNetType. It may be, for example, the net Bus, which is de�ned in the CSL

PARTS KIT. All links of the global net have the same bandwidth de�ned by the parameter

GlobalBandwidth.

Similarly, the simple nodes are interconnected by a net of a type de�ned by the user with the

parameter LocalNetType. It may be, for example, the net Star which is de�ned in the CSL

PARTS KIT. All links of the local net have the same bandwidth de�ned by the parameter

Local Bandwidth.

The parameters SuperNodeDelay and SimpleNodeDelay de�ne delays in the supernodes and

simple nodes.

Items are generated in simple nodes and are sent also to simple nodes. The customized virtual

function destination generates a random destination node for each item. The generated items

are stored in the second FIFO of the node's DoubleFIFO memory.

The simple-node transform function determines which of its two FIFOs contains the item that

initiated the transformation. If it is FIFO number one, the item was just generated in this

node and no transformation need be made. If it is FIFO number zero, the item has arrived at

this node as its �nal destination, and the standard node function terminal point is executed.

The function user main contains the execution part of the model. It is called from the

CSL main.C �le of CSL BASICS which contains the main code that runs the model in the

CSL environment. Note that both node classes are registered in the exm1.C �le:

Register<Object,SimpleNode> SimpleNodeObject("SimpleNode") ;

Register<Object,SuperNode> SuperNodeObject("SuperNode") ;

34

This allows us to use strings "SuperNode" and "SimpleNode" as arguments in class construc-

tors.

The values of the parameters mentioned above are provided by the user in the input �le

exm1.in:

ModelName = exm1

NumSuperNodes = 4

SuperMemSize = DoubleFIFO

SuperMemSize = 6

SuperNodeDelay = 10

GlobalNetType = Bus

GlobalBandwidth = 50

NumSimpleNodes = 4

FIFOSize = 2

SimpleNodeDelay = 5

LocalNetType = Star

LocalBandwidth = 100

InFile = csl.in

This input �le also contains a \reference" InFile to another input �le csl.in, which is the default

for \standard" CSL parameters introduced in CSL BASE. These parameters are collected in

a separate �le for convenience.

StartTime = 0

EndTime = 2500

PrintStatistics = true

PrintStructure = true

Debug = true

ShowMemory = false

Watch = true

WatchUtilization = true

WatchInterval = 250

Simon = false

Commun = false

SimonList = ()

35

SimonNonList = ()

UserSpecialMain = false

BreakName = ""

BreakTime = 0

FullName = false

MeanInterarrive = 40

AttributeResolution := false

ListAttributes := false

CSIMEntityCount = 1000000

CheckMemLeaks = false

WatchMemAllocs = false

CSIMTraceOn = false

LogUtilization = false

Here the parameter EndTime sets the modeling termination time. The parameter PrintStruc-

ture prints the model structure. The parameter Debug prints the states of nodes and items as

the items arrive at the nodes and are transformed there. The parameter PrintStatistics prints

when its value is the �nal statistics. And so on.

A typical command line appears as follows:

exm1 InputFile=exm1.in OutputFile=exm1.log

It may be abbreviated as:

exm1 IF=exm1.in OF=exm1.log

One can modify the value of a parameter de�ned in the input �le by adding the name of the

parameter and its new value to the command line:

exm1 IF=exm1.in OF=exm1.log NumSimpleNodes=10 NumSuperNodes=10

The model �le exm1.C should contain include CSL �les User.h, Basics.h, and Nodes.h, to be

executed in the CSL environment.

So the Make�le should look like this:

CSLBASEDIR = /common/csl/base

36

CSLOBJDIR = /common/csl/objects

CSLBASICSDIR = /common/csl/basics

CSLKITDIR = /common/csl/kit

CSIMDIR = /common/csim

SIMONDIR = /common/simon

CXXFLAGS = -I$(CSLBASEDIR) -I$(CSLOBJDIR) -I$(CSLBASICSDIR) -I$(CSLKITDIR) \

-I$(CSIMDIR) -I$(SIMONDIR) -g -v

default: exm1

OBJS = exm1.o

exm1: $(OBJS)

CC $(CXXFLAGS) -o exm1 $(OBJS) $(CSLKITDIR)/kit.a\

$(CSLBASICSDIR)/csl.a $(CSLOBJDIR)/obj.a $(CSLBASEDIR)/base.a \

-L$(SIMONDIR) -lmon -lgcsim -lm

7.2 The Second Example

In the �rst example, the structure of the model was de�ned inside the code with the help of

\detailed" constructors of nodes Model, SuperNode, and SimpleNode. Parameters were used

just to de�ne numbers and strings in the lists of arguments.

The second example presents the same model, for which both the model structure and nu-

merical parameters are de�ned in an input �le using the standard CSL BASE parameter

ModelStructure. ModelStructure represents a nested list of strings, some of which serve as

keys that are recognized by the node constructors of type Node(Context C) (in which Con-

text C contains a parameter C.param). These keys are followed by strings that are treated as

input data, for example, the parameter substring:

net (type Bus band 50)

This parameter informs a node constructor that its net will be of type Bus with a link band-

width of 50.

In this case the �le exm2.h looks like:

#ifndef EXM2_H

#include "User.h"

#include "CSL_Basics.h"

#include "Nodes.h"

37

class SimpleNode: public DoubleFIFONode{

public:

SimpleNode(Context C): DoubleFIFONode(C){

generator = 1;

}

virtual ~SimpleNode() ;

virtual void destination(Item *item);

};

class SuperNode: public SimNode{

public:

SuperNode(Context C): SimNode(C) {}

virtual ~SuperNode() ;

} ;

#define EXM2_H

#endif

The �le exm2.C follows:

#include "exm2.h"

Register<Object,SimpleNode> SimpleNodeObject("SimpleNode") ;

Register<Object,SuperNode> SuperNodeObject("SuperNode") ;

void SimpleNode::destination(Item *item) {

Array<Tree*> allleaves = TOP->all_leaves() ;

item->dest = Path(1, (Node*)(TOP->some(&allleaves))) ;

}

void user_main(void){

_dummy_nets() ;

}

void user_termination(){}

void user_watch(void){}

void user_special_main(void){}

The input �le exm2.in follows:

38

ModelStructure = \

(name exm2 net (type Bus band 50.0 sep 1) \

numsubs 4 subs ((name SUN type SuperNode memory \

(type DoubleFIFO size 6) node_delay 10.0 \

net (type Star band 100.0) \

numsubs 4 subs ((name SIN type SimpleNode memory \

(type DoubleFIFO size 2) \

node_delay 5.0)))))

InFile = csl.in

7.3 The Third Example

When a user builds a model using only prede�ned CSL objects from the CSL PARTS KIT or

a CSL DOMAIN LIBRARY, the user may use the following simple .C �le:

#include "CSL_Basics.h"

#include "PartsKit.h"

#include "User.h"

void user_main(){

_dummy_nodes();

_dummy_memories() ;

_dummy_nets() ;

}

void user_watch(){}

void print_statistics(){}

void user_termination(){}

void user_special_main(){}

The user may also use the input �le exm3.in with parameter ModelStructure similar to that

used in the exm2.in.

ModelStructure = \

(name exm3 net (type Bus band 50.0 sep 1) \

numsubs 4 subs ((name SUN memory (type DoubleFIFO size 2) \

node_delay 10.0 \

net (type Star band 100.0) \

39

numsubs 4 subs ((name SIN memory (type DoubleFIFO size 2) \

node_delay 5.0 generator 1)))))

InFile = csl.in

8 GRAPHICAL INTERFACE FOR CSL

The CSL GUI provides means to easily construct, run and analyze CSL models. It includes

a collection of programs that are accessed through the main GUI program csl.

The CSL GUI is implemented under Tcl/Tk (version 7.6/4.1).

8.1 Programs and Files

csl //the main Tcl/Tk program for constructing and running models

csl.in //the input file that contains the CSL BASE parameters

set_and_run //the Tcl/Tk program that sets parameters and runs models

slice //an auxiliary shell program processing parameters

template.C //the template C++ code for the construction of a new model

template.class //the template C++ code for a new node(net, memory) class

template.funcs //stors all signatures of virtual functions for new classes

template.make //the template to generate a makefile for a constructed model

simon //the shell command invoking the SIMON program (by Sekhar Sarrukai)

hotspots //the Tcl/Tk visualization program showing hot spots in models

plotaid //the program for tailoring resulting graphs (by Tom Rokicki)

xgraph //the graph plotting program

8.2 Start

The GUI command line is:

csl [ModelName]

When the program starts, a prompt Start Window (Figure 5) appears with the model name,

if one has been speci�ed in the command line. One can enter a new model name or change

the old model name in the entry. The Start Window has two buttons: \New" begins

construction of a new model; \Set & Run" supplies the model (either built at the previous

step or constructed independently) with parameters and runs it.

40

Figure 5: Start Window

8.3 Subnodes Information

After the button \New" is clicked, a Subnodes Dialog Window (Figure 6) requesting infor-

mation about the structure of the model's top node appears on the screen. This window also

pops up when one clicks on the \SubNodes" button in the Node Dialog Window (see Figure

9). The name of the parent node is on the title bar. There are several entries in this dialog

Figure 6: Subnodes Information

window:

\NUMBER OF SUBNODES" speci�es the number of subnodes.

\THEIR NAMES" allows the user to enter the names of these subnodes. If the number of

names m is less than the number of subnodes n, then the last name in the list is replicated

in (n �m) copies with subscripts 0, ... , n �m. For example, if the entered list of names

is (abc) and �ve subnodes are declared, then the actual list of names for these subnode will

be (abc0c1c2). If only one name is entered (for example, a) then for all subnodes, a series of

41

names with subscripts will be generated (in our example it will be (a0a1a2a3a4)).

\NET TYPE" speci�es the type of the net that connects all the subnodes together. All the

nets de�ned in CSL PARTS KIT can be used here (Bus, Star, Loop, etc.). A new net type

may be entered here. In this case, the code for this new net class will be added later on as

rescribed in section 8.8.

\LINKS BANDWIDTH" sets the same bandwidth for all the links in this net.

\NUMBER OF SERVERS" sets the same number of servers for each link in the net.

8.4 Canvas

After the \OK" button in the Node Dialog Window is clicked, a Subnodes Canvas Window

showing all subnodes and links appears (Figure 7). The parent node name is on the title bar.

The circles with names inside represent the nodes and the directed arcs with arrows represent

the links. An arc with arrows on both ends depicts two links that connect a pair of nodes

in both directions. If a model is hierarchical, the di�erent levels of subnodes and the links

connecting them are shown in di�erent sizes and colors.

8.5 Adding a New Node

The middle mouse button is used to add a new node to the subnodes shown in the Subnodes

Canvas. When this button is clicked, a prompt window asks for the name of the new node

(Figure 8). After the name is given, the Node Dialog window is opened on the screen (Fig-

ure 9). Once all the information is complete, a new node appears in the canvas (Figure 10).

8.6 Editing Node Information

If a node in the Subnodes Canvas is double-clicked (left mouse button), a Node Dialog Window

for viewing and changing the information about this node (Figure 9) appears. The following

information can be speci�ed in this window:

\NODE NAME" changes the name of the node. The name of a node that already has children

can not be changed.

\NODE TYPE" speci�es the type of this node. All nodes de�ned in CSL PARTS KIT can

42

Figure 7: Subnodes Canvas

Figure 8: New Node Name

be used here (Bu�erNode, DoubleFIFONode, etc.). If a new type of node is introduced, the

corresponding class has to be de�ned later on (see section 8.8).

\MEMORY TYPE" de�nes the type of the memory in this node.

\MEMORY SIZE" de�nes the size of this memory.

\GENERATOR" speci�es whether this node may generate items or not.

\ASYNCHRO" de�nes the transfer mode (synchronous or asynchronous).

43

Figure 9: Node Information

Figure 10: New Node in Canvas

44

\ALL NODES" is an integer that de�nes how many nodes will be a�ected by the information

in this window:

0 only this node is a�ected;

1 all siblings nodes are a�ected, and

2 all decendants of this node and its siblings are a�ected.

There are three buttons: \OK", \Subnodes" and \Cancel". Clicking \OK" will save all the

information in the node. In addition to saving the information, clicking \Subnodes" will pop

up the Subnodes Dialog window (Figure 6) to construct subnodes for this node (see in section

7.3 for details). To cancel all the input for this node, click the \Cancel" button.

8.7 Add a New Link

To add a new link between two nodes in a Subnodes Canvas, the right mouse button should

be clicked at a node and dragged to and released on top of another node (Figure 12). The

thin white line with an arrow depicts the link you are adding. After you release the right

button at a destination node, a Link Dialog Window asks for the information about this link

(Figure 11).

Figure 11: Link Information

\LINK DELAY" de�nes the bandwidth of this link.

\NUMBER OF SERVERS" speci�es how many servers this link has.

\BOTH DIRECTIONS" indicates whether this link is bidirectional.

45

After all the information is �lled in and \OK" is clicked, and the link will be added to the

canvas (Figure 12).

Figure 12: New Link in Canvas

Double-clicking on a link gives the user the opportunity to edit this link. The bandwidth and

number of servers for this link can be changed (Figure 13). Since all links in a net must be

the same, once one link is changed there are only two choices: cancel the change or propagate

the change to all the links in the net.

Figure 13: Link Data Editing

46

8.8 Creating a New Node (Net, Memory) Type

As mentioned above, the user can de�ne a new type of node, net, or memory in the Node

Dialog Window (Figure 14). If one enters a node type that is not prede�ned in the CSL

PARTS KIT and clicks the \OK" button, a window pops up asking for the de�nition of a new

class (Figure 15). The window includes:

- \Class Name" (the name of a new class) ;

- \Derived Class" (the name of its base class) ;

- \Virtual functions" (the virtual functions that need to be rewritten).

Figure 14: Node Information

There are two list boxes side by side in this window. In the left box, all the virtual functions

of the base class are listed. Clicking one sends it to the right box. This means that this

virtual function will be rewritten in the new class. Clicking the virtual function in the right

box sends it back to the left box in case one made a mistake.

Once all the information about the new class is provided and the button \OK" is clicked,

a text window pops up on the screen with the code for the new class, as in the following

example:

//Definition of StarNode begins here:

class StarNode : public BufferNode {

public:

47

Figure 15: New Class Window

// New members begin here:

// The parameter constructor

StarNode(Context C = C0);

// The destructor

virtual ~StarNode();

// Virtual functions begin here:

virtual void generation() ;

virtual Item * make_item() ;

virtual void transform(Address &loc) ;

virtual void transfer(Address &loc) ;

};

StarNode::StarNode(Context C)

: BufferNode(C){

// add your code for constructor here:

}

StarNode::~StarNode() {}

48

// Code of virtual functions for class StarNode comes here:

void StarNode::generation() {

}

Item * StarNode::make_item() {

}

void StarNode::transform(Address \&loc) {

}

void StarNode::transfer(Address \&loc) {

}

It is the user's responsibility to complete the code.

The same process is used for the net and memory when a new type name is entered in an

appropriate entry of the Subnodes Dialog Window (Figure 6).

8.9 Setting and Running the Model

When the construction of a model is complete and the button \Set & Run" is clicked (Fig-

ure 5), the system generates a C++ �le and make�le and tries to compile the code.

To set values of the input parameters and run the model, the button \Start" should be pressed.

The Set and Run Window is popped up (Figure 13). It has two lists of the input parameters

that may be set or modi�ed. The left list consists of all the standard CSL parameters. The

right list consists of parameters from the user input �le. After the parameters are set

or modi�ed, there are two possibilities: run the model once (the button \MONORUN") or

initiate a series of runs for each di�erent set of values for the input parameters (the button

\MULTIRUN").

If the button \MONORUN" has been pressed and the run is complete, the Set and Run

Window is transformed into the Monorun Results Window (Figure 17), which displays some

standard CSL results for modeling (minimal, maximal and mean latencies, and variance of

latencies). This window also has two buttons \SIMON" and \HOTSPOTS" to visualize the

results of the modeling.

49

Figure 16: Set and Run Window

8.10 SIMON

The button \SIMON" starts the program that creates a time diagram, which shows, for a

preselected set of the model's nodes, the time intervals when the main node processes are active

in these nodes. This diagram is built if the CSL input parameter Simon has the value true.

The selection is made with the help of two CSL parameters SimonList and SimonNonList (the

choice is just a matter of convenience). The �rst parameter lists the nodes in which their main

processes are monitored. The second parameter lists the nodes in which their main processes

are not monitored.

If the CSL parameter Commun is on, the diagram shows both the parallel processes in the

model's nodes and communication between these processes.

SIMON is particularly useful for model debugging as it makes visible the parallel processes

and the communications between them.

SIMON can be used without a GUI. After a model is executed with the parameter Simon

equal to true, just type command:

simon

50

Figure 17: Monorun Results Window

An example of a diagram of parallel processes produced by SIMON is shown in Figure 18.

8.11 Hotspots

The button \HOTSPOTS" starts the program hotspots, which draws the hierarchical structure

of the model and shows the intensity of tra�c along the model links and in nodes as well as

the usage of the memory in nodes. If one wants to observe no more than n top levels of the

hierarchy, the number should be typed in the entry near the button \HOTSPOTS".

The green color of links and nodes corresponds to no tra�c or light tra�c. The more intense

the tra�c, the redder the links and nodes. The links also become wider. Congestions become

identi�able as \hot red" links and/or nodes.

The program can be used without a GUI. After a model is executed, just type the command:

hotspots [LogFileName] [the number of levels]

An example of program output is shown in Figure 19.

51

Figure 18: SIMON Output

Figure 19: Hotspots Output

52

8.12 Multiruns

If the button \MULTIRUN" has been pressed and the run is complete, the Set and Run Win-

dow is transformed into the Multirun Results Window (Figure 20), which displays the button

\PLOT GRAPH" and the entries needed to supply the graph drawing program plotaid with

the information about which dependencies should be plotted in the form of two-dimensional

graphs by the basic plotting package xgraph.

Figure 20: Multirun Results Window

An example of such a graph is shown in Figure 21.

9 CONCLUSION

Communicating Structures allow us to reduce the complexity of the SoS modeling and analysis,

in particular:

- to simplify the construction of SoS models with di�erent levels of detail by using ab-

straction/re�nement mechanisms;

53

Figure 21: Plotaid and Xgraph Output

- to describe parallel processes and their interaction in an object-oriented way, speeding

up model debugging and increasing the trustworthiness of the models;

- to speed up the simulation of concurrent processes;

- to accumulate and reuse prefabricated general-purpose and domain-speci�c system mod-

ules;

- to generate and analyze a larger number of system con�gurations and behaviors;

- to use a friendly programming and modeling infrastructure (data generation, collection,

analysis, visualization, etc.).

CSL has been used successfully to model and analyze the architectural options for multipro-

cessor systems with distributed shared memories, as well as for the modeling of trade-o�s in

a mission-critical global enterprise computing environment.

The current version of CSL has been used mostly for simulations, because analytical model-

ing methods were inapplicable to the systems under consideration. However, the analytical

methods, if they work for particular types of systems, may complement simulations using the

Communicating Structures conceptual framework.

54

The most interesting extension of CSL is related to the intelligent browsing of the huge solution

spaces for SoS. The goal is to not miss good architectural solutions. This is a sort of system

synthesis that relies on combining simulation and analytical methods.

10 CONTRIBUTIONS AND ACKNOWLEDGMENTS

.

Vadim Kotov initiated the work on CSL and struggled through the design and implementa-

tion of several releases, trying to �nd the golden mean between: simplicity and expressive

power, clarity of concepts and simulation e�ciency, compactness and compositionality. Lucy

Cherkasova and Tom Rokicki helped to shape the idea of Communicating Structures, some-

times by sharp criticism. Tom designed and implemented \CSL Lite" whose elegant code

formed the basis of the CSL BASE part. Lucy was the �rst user of the �rst version of CSL,

and feedback from her modeling e�orts drove the CSL progress at its most critical initial

stage.

Tom Rokicki is the author of the Plotaid tool.

Vadim Kotov designed the Hotspots visualization.

The visualization tool SIMON was developed by Sekhar Sarukkai.

Naftali Schwartz, a SEED student from the New York University, contributed to the imple-

mentation of the STL view of the CSL template structures.

Tao Zhao, also a student from the same university, helped to redesign the CSL GUI.

The authors would like to thank Denny Georg, Rajiv Gupta, and Josep Ferrandiz for sharing

their ideas, encouraging discussions, and for their overall supportsupport.

11 References

[Fow97] UML Distilled. Addison-Wesley, 1997.

[Har97] Harel, D. and Gery, E. Executable Object Modeling with Statecharts. In Computer,

vol. 30, No. 7, July 1997, pp. 31-42.

[Sch95] Schwetman, H. Object-oriented simulation modeling with C++/CSIM17. In Proceed-

55

ings of the 1995 Winter Simulation Conference, Washington, D.C., ed. C. Alexopoulos,

K. Kang, W. Lilegdon, and D. Goldsman, 1995, pp. 529 - 533, Washington, D.C.

[Mes96] CSIM18 Users Guide. Mesquite Software, Inc., Austin, TX, 1996.

[Muss96] Musser, David R. and Saini, Atul. STL Tutorial and Reference Guide. Addison-

Wesley, 1996.

[Tan95] Tanner, Mike. Practical Queueing Analysis. McGraw-Hill, 1995.

56

