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Abstract

We consider the problem of sparse Cholesky factorization with limited main memory. The goal is to e�ciently
factor matrices whose Cholesky factors essentially �ll the available disk storage, using very little memory
(as little as 16 Mbytes). This would enable very large industrial problems to be solved with workstations of
very modest cost.

We consider three candidate algorithms. Each is based on a partitioning of the matrix into panels. The
�rst is a robust, out-of-core multifrontal method that keeps the factor, the stack, and the large frontal
matrices on disk. The others are left-looking methods. We �nd that straightforward implementations of all
of them su�er from excessive disk I/O for large problems that arise in interior-point algorithms for linear
programming. We introduce several improvements to these simple out-of-core methods, and �nd that a
left-looking method that nevertheless uses the multifrontal algorithm for portions of the matrix (subtrees of
the supernodal elimination tree whose multifrontal stack �ts in memory) is very e�ective. With 32 Mbytes
of main memory, it achieves over 77 percent of its in-core performance on all but one of our twelve test
matrices (67 percent in that one case), even though the size of the factor is, in all cases, hundreds of millions
or even billions of bytes.

1 Introduction

Due to recent trends in microprocessor design, including improved integrated-circuit fabrication techniques
and the introduction of hardware for the detection and exploitation of instruction-level parallelism, inexpen-
sive microprocessors now o�er peak performance levels that were only available on vector supercomputers
just a few years ago. Of course, near-peak performance can only be obtained when algorithms make e�ective
use of the multi-level memory hierarchies (registers, on-chip caches, o�-chip caches, etc.) typically found on
these systems. Fortunately, sparse matrix factorization can be written to make excellent use of a memory
hierarchy [15, 17]. The e�ect is that extremely large sparse linear systems can be solved in reasonable time
on very inexpensive systems. Large sparse linear systems routinely arise in a variety of engineering and
operations research disciplines, so there is signi�cant practical interest in solving them in a robust and cost
e�ective manner.

One important issue that a�ects both robustness and cost e�ectiveness is the sheer size of the factor
matrices computed during the factorization. One can address this issue by simply purchasing an enormous
amount of memory. The obvious drawbacks of this approach are:

� It substantially increases the price of the workstation. Today, adding one gigabyte of memory to a
typical workstation (enough for a relatively large problem by today's standards) roughly triples the
cost of the machine.

� It is inexible. There will always be problems too big for the chosen quantity of memory.

A second approach is to rely on the virtual memory paging system, allowing the operating system to
move data between memory and disk. This approach has the advantage that it requires no modi�cation to
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in-core programs, but experience with large-scale scienti�c applications has shown that it is unacceptably
slow.

The third approach, already widely used in the structural analysis community, is to use an out-of-core
method in which the Cholesky factor is kept on disk, other data structures remain in core, and data is
explicitly moved between memory and disk. Out-of-core sparse factorization was originally performed using
frontal or pro�le methods [12, 16, 25]. More recently, people have moved to more e�cient approaches such as
the multifrontal method [8]. When the multifrontal method succeeds in running without exhausting available
core storage, it is quite e�ective. Unfortunately, it imposes a signi�cant minimum memory requirement: if the
multifrontal stack does not �t in core, the method fails. While this stack is typically much smaller than the
factor for two-dimensional structural analysis problems, the stack can grow quite large for three-dimensional
problems, and can actually be larger than the factor for some linear programming matrices.

We seek to perform Cholesky factorizations of arbitrarily large problems, constrained only by the size
of the disk. We describe and evaluate several methods for doing this. The �rst is a simple extension of
the multifrontal method to handle the case where the multifrontal stack does not �t in core. The second
and third are panel-oriented, left-looking, out-of-core methods. We �nd that while the multifrontal method
is extremely e�ective when its stack �ts in core, a left-looking variant is actually more e�ective when the
multifrontal stack does not �t. We present experimental results for some very large matrices from structural
analysis, computational uid dynamics, and linear programming. Even for problems where the out-of-core
multifrontal method requires 1 GByte of memory for its stack, this left-looking method achieves two-thirds
of in-core performance using only 16 MBytes of in-core storage for numerical data.

We call our best method the Bobcat method. Like the animals found in nature and the machines found
at construction sites, this method is quite versatile, packing a lot of power into a small space.

2 Sparse Matrix Factorization

Every symmetric, positive de�nite matrix A has a Cholesky factorization A = LLT ; computing L is the
most costly step in solving the linear system Ax = b. If A is sparse, then normally L is also sparse, but
less so: the nonzero structure of A, i.e. the set of pairs (i; j) for which Aij 6= 0, is a subset of the nonzero
structure of L+LT . One ordinarily �rst permutes the rows and columns of A symmetrically so as to reduce
the number of nonzeros in L.

2.1 The Cholesky Algorithm

Let n be the order of A. The following program computes its Cholesky factor L.

for j = 1 to n

copy A(*,j) into L(*,j)

for k = 1 to j-1

if (L(j,k) != 0) then cmod(j,k)

endfor

cdiv(j)

endfor

The cmod(j; k) operation subtracts Ljk times the kth column of L from the jth; the cdiv(j) operation scales
the jth column by the square root of its jth element.

We can de�ne an n-vertex tree, known as the elimination tree of A [22], by examining the nonzero
structure of L. The tree is rooted at vertex n, and all paths to the root traverse a monotone increasing
sequence of vertices. In fact, the parent of vertex k is vertex j if the �rst nonzero below the main diagonal
in the kth column of L occurs in the jth row1. We let T j denote the subtree rooted at vertex j (Tn is the
whole elimination tree). The signi�cance of the elimination tree is that it expresses the dependences in the
elimination algorithm compactly. The elimination tree is the transitive reduction of the digraph of L, i.e.
the set of column-modi�cation dependences.

1If A is reducible, then it has an elimination forest. We assume that A is irreducible.
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We use the term panel to mean a set of adjacent matrix columns. If the columns of the given matrix and
its factor are partitioned into panels, and the panels are numbered from 1 through N , then the factorization
program above can be modi�ed as follows:

for J = 1 to N

copy A(*,J) into L(*,J)

for K = 1 to J-1

if (L(J,K) != 0) then pmod(J,K)

endfor

pdiv(J)

endfor

The pmod(J;K) and pdiv(J) operations are natural analogues of the corresponding column operations. They
operate on matrices instead of individual columns. In discussing panel methods, we will make use of the
panel elimination tree, which has one vertex per panel. We let T J denote the subtree rooted at panel J .

An important concept in sparse factorization, particularly in the context of performance, is the super-

node [3]. A supernode is a set of adjacent columns (a panel) in the factor matrix with identical nonzero
structure. A supernodal method is a panel method in which the panels are supernodes (perhaps not max-
imal). The corresponding panel elimination tree is then a supernodal elimination tree. The fact that all
columns within a supernode share the same nonzero structure allows most of the work in a panel operation
(pmod(J;K) or pdiv(J)) to be performed using dense linear algebra kernels. In general, larger supernodes
lead to higher performance, since more work is done in dense kernels.

It is customary to perform supernode amalgamation to reduce the number of distinct supernodes in the
factor matrix, thus increasing the size of the supernodes [2, 8] at the expense of treating some zeros of the
factor as if they are nonzero. Amalgamation merges pairs of supernodes with similar but not identical zero
structure. Amalgamation typically reduces the number of supernodes in the factor matrix substantially.

2.2 Left-Looking Factorization

The sparse factorization program introduced in the last section speci�ed a particular order of operations.
Because all modi�cations to the pivot column or panel (j or J) are performed together, using source columns
to its left, this organization is usually called a left-looking method. Note that this sequence is not mandated.
The right-looking method, which will be discussed shortly, is obtained by interchanging the two loops.

A left-looking method can be made to go out-of-core by taking advantage of the following observation:
once column j of L has been completed, row j of L is never accessed again. Liu's general sparse out-of-core
scheme [13] writes column j to disk once a cdiv(j) operation has been performed, and occasionally purges all
nonzeros in rows numbered less than the current destination column from memory. Results in Liu's paper,
however, indicate that this approach requires more in-core memory than the multifrontal method.

2.3 The Multifrontal Method

The multifrontal method [8] is an approach to organizing right-looking sparse matrix factorization with these
advantages: it performs most of its computation using dense matrix data structures and algorithms, and it
goes out of core in a natural way.

Associated with each supernode is a frontal matrix. If the �rst column in a c column supernode has m
nonzeros, then the associated frontal matrix is of order m; the leftmost c columns contain the nonzeros from
the supernode, and the remaining triangular matrix of order m� c is called the update matrix. It contains
all the updates (by cmod operations), from columns in the supernode and their elimination tree descendents,
to higher-numbered columns.

The multifrontal method makes a postorder traversal [5] of the supernodal elimination tree. When it
visits a vertex, it performs the following steps:

MF-1 Allocate storage for the frontal matrix.

MF-2 Scatter-add the appropriate columns of A into the �rst c columns of the frontal matrix.
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MF-3 Scatter-add the update matrices from all the child supernodes into the frontal matrix. These supernodes
are located at the top of a multifrontal update stack , and are popped o�, as they will not be used after
this.

MF-4 Perform c elimination steps on the frontal matrix, to compute the c factor columns and the update
matrix.

MF-5 Store the c factor columns in the data structure for the factor, and push the update matrix onto the
stack.

The algorithm uses three important data structures: the factor is one, the stack is the second, and the space
for the current frontal matrix is the third.

An out-of-core method is obtained by keeping the multifrontal update stack and the current supernode
in core (its update portion is typically allocated at the top of the update stack). Factor columns are written
to disk as they are computed (Step MF-4). Note that this method performs the minimum possible I/O for
an out-of-core method: it writes the factor matrix to disk once. Unfortunately, it fails when either the stack
or any of the frontal matrices is too big for main memory. In practice, many large problems cause this simple
approach to fail. A simple extension to the method keeps the stack on disk as well. This approach still fails
when a single frontal matrix does not �t. We will not consider either of these approaches further, although
we will use the traditional multifrontal method as a subroutine for our other methods.

3 Limited Memory Factorization Methods

We now consider three methods for performing limited storage out-of-core factorization. As mentioned
earlier, the �rst is a simple extension of the multifrontal method. The second and third are left-looking
methods.

3.1 A Robust Multifrontal Method

Our simple extension of the multifrontal approach begins by identifying the largest subtrees of the supernodal
elimination tree that can be factored with a traditional multifrontal method using available in-core memory.
Using the terminology of [4], we call each of these subtrees a domain, and we refer to all elimination tree
vertices not belonging to such subtrees as the multisector . During the postorder traversal of the elimination
tree, domains are factored with the stack held in core. Once the factorization of a domain is complete, the
update matrix from the supernode at the root of the domain is written to a stack �le on disk.

When a supernode not belonging to one of these domains is factored, its children have stored their
updates in the disk stack. Its own frontal matrix may or may not �t in core. To deal with this possibility,
the frontal matrix is divided into panels. Panels are chosen so that each one �ts in half of available memory.
We use the other half to hold other panels that must be read from disk to fully compute this panel. For
each panel, the corresponding panels of the updates from its children are read from the stack �le on disk
and added to the panel; then, modi�cations are performed from all earlier factor panels in the same frontal
matrix, and the panel is written to disk. Note that no step in this process requires more than two panels to
be in memory simultaneously2.

One subtle issue in this method is that it performs left-looking factorization within the frontal matrix; a
panel is modi�ed by factor panels to its left. The (to us) more natural extension to the multifrontal method
would perform a right-looking factorization, computing updates from the current panel to later panels in
the current frontal matrix and storing them to disk. This extension would perform roughly twice as much
I/O as the variant we employ. For each panel (with the exception of the �rst and last ones in the frontal
matrix), the right-looking method must read updates from disk, modify them, and then write them back.
The variant we use only reads completed panels. The issue of a left-looking approach performing less I/O

2We write the panels of the current supernode's update matrix as they are computed. This occurs before all panels of the

frontal matrices of children are read. Thus a simple disk stack does not su�ce. One obvious solution is to allow the stack on

disk to be nonsequential, but the accompanying fragmentation issues would be di�cult to address. Instead we use an odd stack

and an even stack. An update matrix from a supernode whose depth in the supernodal elimination tree is an odd number is

written to the odd stack, and vice versa. Thus, one always reads updates from one stack �le and writes updates to the other.
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when a frontal matrix does not �t in memory arises later, when we compare multifrontal and left-looking
methods.

3.2 Block-Oriented Methods

An alternative out-of-core factorization method, which we considered in [20], partitions the matrix into
rectangular blocks. In other words, we partition the columns into contiguous subsets and make the same
partition to the rows, thereby blocking the matrix into rectangular sub-matrices. All nonzero values that fall
in LIJ are part of one logical block. The partitioning is chosen so that no block occupies more than one-third
of available memory. The factorization can then be carried out by viewing the matrix as a dense matrix
of sparse blocks and performing a standard, dot-product dense Cholesky factorization on these blocks. At
most three blocks need to be in memory at any one time.

There are a number of interesting problems related to this method: how to choose the column partition?
What ordering of the task graph minimizes I/O? What block replacement strategy? (The optimal strategy,
which replaces the block whose next use is last, is usable here since we know a priori the entire computational
schedule.)

Experiments with our block-oriented method have produced results inferior to those achieved by the
panel-oriented methods we present here; we have not pursued this approach further.

3.3 Left-Looking Out-of-Core Methods

The two left-looking out-of-core methods we consider are panel methods. Each panel is a supernode or
a part of a supernode { we split the supernodes of L into panels so that no panel is larger than half of
available memory. Thus, our panels are contiguous sets of columns that have the same nonzero structure.
The left-looking methods perform a panel factorization in the natural way. Let there be N panels. The
algorithm is:

/* Left Looking, Out-of-Core Panel Factorization */

real X0(half_of_core), X1(the_other_half)

for J = 1 to N

populate_panel_from_A( J, X0 )

for K = 1 to J-1

read_panel_into_core( K, X1 )

update_panel_from_panel( J, X0, K, X1 )

endfor

factor_panel_in_core( J, X0 )

write_panel_to_disk( J, X0 )

endfor

Rows of supernodes must either be all zero or all nonzero. For this reason, in update panel from panel(),
every column of the source panel K is involved, while a subset of the columns of the destination panel J are
modi�ed.

The reader may object that this approach is less e�cient than the multifrontal method, since the update
step is a sparse update, while all updates in the multifrontal method are dense. Previous studies [15, 17]
have shown that left-looking methods actually give comparable performance to multifrontal methods.

Clearly this algorithm performs more I/O than a multifrontal method when the multifrontal stack �ts
in core. It reads panels from disk (several times) as well as writing them to disk (once)3. We therefore
consider hybridizations of the multifrontal and left-looking methods to reduce overall I/O. Many hybrids are

3Note, however, that when read panel into core() reads panel K, it need only read the portion at and below block row J.

Our disk �les are organized in row-major order within each panel to facilitate this optimization. We discovered that failure to

do this yields prohibitively inferior results.
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possible [1, 14]; we consider two. Both �nd subtrees of the supernodal elimination tree that can be factored
using the multifrontal method with the stack held in core (domains). The remainder of the matrix (the
multisector) is factored using the left-looking algorithm above.

The di�erence between these two hybrids is in how they handle the seam between the domains and the
multisector. The �rst, which we call Pruned Panel, Left-Looking (PPLL), simply performs the left-looking,
out-of-core algorithm on the multisector. Source panels are fetched from disk whether they belong to a
domain or to the multisector. Note that this hybrid does not need to compute updates from domain nodes
to multisector nodes. The multifrontal method is therefore modi�ed to compute updates only to columns
within the same domain.

In the second hybrid, the frontal update matrix from the root supernode of each domain is written to
disk. When the method factors a panel in the multisector, it fetches all relevant updates from domains, plus
all relevant supernodes from the multisector. We call this second hybrid Pruned Panel, Left-Looking (with
Updates) (PPLLU ).

Details of the required data structures and their impact on storage requirements are discussed in Ap-
pendix A.

3.4 Di�erences in the Methods

Before presenting results, let us �rst discuss how we expect the methods to behave. First we note that all
three are identical at two extremes: (i) when the multifrontal stack �ts in core, and (ii) when the factor
matrix is dense. The main di�erences occur between the two extremes.

Tall, narrow multisector supernodes reveal an important di�erence between the methods. These super-
nodes produce large update matrices, often forcing the multifrontal method to write the associated update
matrix to disk, even though little work is performed on the entries of this matrix. Such supernodes are
handled more e�ectively by a left-looking approach.

The multifrontal method has an advantage when the columns in a source panel modify only a few of the
columns in a destination panel. Left-looking methods can potentially fetch a large source panel to update
only a small number of destinations. In the multifrontal method, all modi�cations are done within dense
frontal matrices, so every column fetched from disk modi�es every column in the destination panel.

The PPLL method is expected to have a smaller average I/O grain than the other two methods. The
reason is that it fetches supernodes from deep in the elimination tree. Supernode widths generally decrease
as you move down in the tree. As we will discuss shortly, I/O grain is an important determinant of I/O
speed.

4 Results

This section presents results for the methods described above. We then describe two techniques for improving
the observed results.

4.1 Test Environment

All performance data presented in this paper comes from a Silicon Graphics Origin 200 system with a
180 MHz R10000 processor and 1 GByte of main memory. We use a machine with a large amount of
memory so that we can compare out-of-core factorization performance against in-core performance4.

In our experiments, in-core storage for the factorization is limited to 16, 32, or 64 MBytes. Most of the
results presented here are for 32 MBytes, since the 16 MByte and 64 MByte results are qualitatively similar.
Our �nal performance summary table includes results for all three. It is reasonable to ask whether these
memory levels are too small, especially since some of the unfactored matrices we consider are larger than the
memory set aside for the factorization. Our intent in this paper is to demonstrate that very little memory is
required to obtain large fractions of in-core performance. We therefore choose particularly stringent memory
constraints. Recognize too that not all of the memory in a machine is available for the factorization.

4For the three test matrices whose factors are larger than a gigabyte, we estimate in-core runtime by performing out-of-core

factorization within the available memory and subtracting the time spent moving data to and from disk.
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Table 1: Test matrices.

Multifrontal Ops to
Rows jAj max front max stack L Ind L NZ factor
(K) (MBytes) (MBytes) (MBytes) (MBytes) (MBytes) (Billion)

One 2-D Problem
XLEMD 655 202 24 48 13 766 47

Five 3-D Problems
TROLL 213 73 29 60 6 508 53
TH2 123 19 16 36 4 342 33
SWEDEN 84 80 76 144 3 723 179
CUBE50 125 6 62 117 3 385 83
CUBE80 512 24 387 725 13 2594 1314

Six LP Problems
GISMONDI 12 5 151 295 1 272 138
MULTICOM 30 10 145 312 2 421 165
DEC92FD 61 10 146 408 3 571 248
FLEET 49 5 151 412 2 362 169
PRODPLAN 1205 316 262 10290 19 1035 340
STE36B 28 19 469 996 1 1217 1105

The �le system we use to hold the factor and stack matrices consists of a 2-way striped disk. We measured
latency for random read requests at roughly 10 milliseconds and bandwidth at nearly 20 MB/s. To put these
numbers in perspective, we note that a 200 KByte read happens at an e�ective bandwidth of 10 MB/s.
A 20 KByte read happens at less than 2 MB/s. Hence, I/O grain size can play an important role in the
performance of an out-of-core algorithm.

We measure the performance of the various out-of-core algorithms using two metrics: total required I/O
and average read grain size. Note that we ignore write grain size. All of the algorithms considered here write
large, contiguous blocks of data. They often write these blocks in small pieces (e.g., completed panels of the
factor matrix). These small writes are easily bu�ered in memory (by the programmer or by the �le system),
and therefore can be treated as having a large e�ective grain. Reads, on the other hand, typically involve
disparate locations on the disk, making bu�ering ine�ective. We discuss our assumptions about �le systems
in detail in Appendix B.

5 Test Matrices

Table 1 lists the sparse matrices considered in this paper. These matrices are chosen from a variety of
application areas, including structural analysis, computational uid dynamics, and interior point linear pro-
gramming. The matrices are heuristically reordered prior to factorization using BEND, a multi-level, vertex
separator, nested dissection method [11, 19]. We then perform aggressive supernode amalgamation [2, 8] to
reduce the number of supernodes in the matrix, thus increasing the computational grain and consequently in-
creasing factorization performance. The matrices are then reordered to minimize the size of the multifrontal
update stack [14]. We assume that the reordered matrix A is on disk at the beginning of the factorization.

The table shows the number of rows and columns in each matrix, as well as the size of A (in MBytes).
It also shows the size of the largest frontal matrix plus the maximum size of the multifrontal update stack
for a standard multifrontal method (assuming the current update is held at the top of the stack). The table
also shows the amount of storage required to keep track of the nonzero structure of L using compressed
indices [24], and the amount required to hold the nonzero values in L. We assume an integer requires 4 bytes
of storage and a oating-point value requires 8 bytes. The table also shows the number of oating-point
operations required to factor the matrix. The �rst problem comes from the discretization of a 2-D domains.
We include only a single 2-D problem because the methods described in this paper are not needed for such
problems. Note that for the one 2-D problem considered, the size of the multifrontal stack is much smaller
than A. The next �ve problems come from discretizations of 3-D problem domains (including two regular
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Table 2: Extra I/O (relative to jLj) and read grain size (in MBytes) for out-of-core methods.

Extra I/O Read grain
Matrix PPLL PPLLU MF PPLL PPLLU MF

XLEMD 0.3 0.2 0.3 0.06 3.32 2.99
TROLL 0.5 0.4 0.5 0.09 3.68 3.47
TH2 0.1 0.1 0.1 0.06 7.00 7.00
SWEDEN 2.2 2.2 2.6 0.41 3.50 3.18
CUBE50 1.9 1.7 2.1 0.07 2.59 2.31
CUBE80 7.8 7.6 6.7 0.25 3.79 3.14
GISMONDI 4.7 5.3 7.3 0.22 3.76 4.00
MULTICOM 5.3 4.5 7.2 0.14 2.35 2.66
DEC92FD 5.2 5.6 8.2 0.07 0.60 0.62
FLEET 6.0 6.2 9.8 0.05 0.39 0.43
PRODPLAN 4.0 11.4 32.3 0.06 0.96 2.27
STE36B 15.4 15.7 15.2 1.75 4.72 4.33

grids). Note that the multifrontal stack can be quite large for these problems. The �nal six problems are
normal equations arising from interior point algorithms in linear programming. Note that the standard
out-of-core multifrontal method is ine�ective for most of these problems.

5.1 I/O Performance

The �rst four columns of Table 2 show the amount of extra I/O performed by the PPLL, PPLLU , and MF
methods, over and above the amount required to write L to disk once. An entry of 1:0 means that the
number of matrix entries read and written during the factorization is 2jLj. The �nal three columns in the
table show average read grain sizes (in MBytes) for the various methods. Recall that all results presented
in this paper except those in the �nal table use 32 MBytes of memory to hold factor data.

Looking at the I/O volume numbers, we �nd that the three methods perform similar amounts for the 2-D
and 3-D problems. The left-looking methods usually perform signi�cantly less for the linear programming
matrices. The data is particularly striking for problem PRODPLAN, where the PPLL method performs
one-eighth as much additional I/O as the MF method.

Considering I/O grain, the data in the table shows that the PPLL method produces a much smaller
average read grain size than the other methods. Note that a read grain size of 100 KBytes (roughly average
for this approach) achieves a transfer rate of less than 7 MB/s from a 20 MB/s disk system with a seek time
of 10 milliseconds.

It is clear from the data in the table that the PPLLU method is comparable to each of the other methods
in their respective areas of strength. The one exception is that it (like MF) does far too much I/O for
problem PRODPLAN. The next section shows that this notable failure of PPLLU can be avoided through
a better choice of domains.

5.2 Optimal Domains

Recall that the methods of the previous section choose the largest domains possible. For some matrices, this
strategy is far from optimal. Consider the results for method PPLLU on matrix PRODPLAN. This matrix
contains many tall, narrow supernodes near the leaves of the supernodal elimination tree. The o�ending
supernodes generate very large frontal update matrices. The strategy of choosing the largest possible domains
places these narrow supernodes within domains, while the associated frontal update matrices are written to
and subsequently read from disk. A better approach would be to place these supernodes in the multisector.
Clearly, a more e�ective general strategy is needed for choosing domains.

We now describe an algorithm that chooses the unique set of domains that minimizes I/O volume. The
�rst step in this algorithm is to compute the amount of I/O that would be generated if there were no
domains. (we again consider only I/O above and beyond that performed in writing L to disk). Recall that
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Table 3: Extra I/O (relative to jLj) and read grain size (in MBytes) for optimal domains with algorithm
PPLLU .

Extra Grain
Matrix I/O (MBytes)

XLEMD 0.2 3.32
TROLL 0.4 3.68
TH2 0.1 7.00
SWEDEN 2.1 3.40
CUBE50 1.7 2.59
CUBE80 7.6 3.76
GISMONDI 4.8 1.47
MULTICOM 4.5 2.35
DEC92FD 5.3 0.54
FLEET 5.8 0.34
PRODPLAN 4.3 0.27
STE36B 15.5 4.04

the portion of panel K below block row J must be fetched from disk for every panel J for which the block
LJK is not zero. Summing these quantities over all relevant panels J gives a quantity fetch(K), the total
amount of I/O associated with fetching panel K. We can then easily compute fetch(T J), the total volume
of I/O generated by fetching panels from subtree T J , for each T J (fetch(TN) is the total I/O volume).

Note that all of the I/O captured in fetch(T J) can be avoided by creating a domain T J . The only cost
of doing so is a write and subsequent read of the update matrix from T J . We can thus easily compute
saved(T J), the amount of I/O that would be saved by creating a domain out of T J . (Of course, if a subtree
cannot be factored with the in-core multifrontal method, it is not allowed to be a domain.)

Given the quantity saved(T J) for each subtree, our goal of minimizing I/O is then equivalent to choosing
the set D of disjoint, allowed subtrees that maximizes

P
TJ2D(saved(T J)). The key observation here is given

an allowed subtree T J , the optimal choice of disjoint subtrees from this tree is either: (i) T J itself, or (ii)
the union of the optimal disjoint subtrees from the trees rooted at the children of J . This observation leads
to a simple recurrence for identifying the optimal set of subtrees. For each panel J with children kids(J),
if you know optimal(T c) for all c 2 kids(J) (the optimal savings from disjoint subtrees rooted at c), then
optimal(T J) is given by:

max
�X

c2kids(J)(optimal(T c)); saved(T J)
�
:

The optimal subtrees can be recovered by �nding the largest allowed subtrees T J for which optimal(T J) =
saved(T J).

Note that this algorithm can be improved somewhat. Recall that I/O grain size is often a more important
consideration than I/O volume. Rather than computing fetch(K), which is the volume of I/O associated
with panel K, we can instead compute time(K), an estimate of the runtime cost of fetching panel K. The
runtime of a single fetch would then include the latency of a read plus the transfer time for reading the panel
from disk. Similarly, we can compute saved(T J) as the runtime savings of writing and subsequently reading
an update from T J rather than fetching the panels in T J .

Table 3 shows the results of applying this algorithm to our test set. The table shows extra I/O for the
method and the average read grain size. Comparing this table to Table 2, we �nd that I/O volumes decrease
signi�cantly for several problems. Extra I/O for algorithm PPLLU on matrix PRODPLAN drops from 11.4
times jLj to 4.3. Read grain sizes drop for some problems as well (from 0.96 MBytes to 0.27 MBytes for
PRODPLAN), but recall that the method takes grain size into account. It has chosen the optimal tradeo�
between I/O volume and I/O grain. This is the Bobcat algorithm { PPLLU with optimal domains.

5.3 Performance

We now look at the performance of the implementation of the PPLLU method we have described. Table 4
gives performance (in Mops) for in-core factorization of the matrices in our test set, as well as the fractions
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Table 4: Factorization performance of PPLLU and in-core.

MF stack jLj In-core perf Fraction of in-core perf
(MBytes) (MBytes) (Mops) 16 MB 32 MB 64 MB

XLEMD 48 779 201 0.94 0.98 0.98
TROLL 60 514 229 0.89 0.95 0.97
TH2 36 346 227 0.91 0.95 0.97
SWEDEN 144 726 247 0.84 0.91 0.96
CUBE50 117 388 249 0.83 0.91 0.95
CUBE80 725 2606 263 0.69 0.82 0.88
GISMONDI 295 272 255 0.80 0.87 0.94
MULTICOM 312 422 249 0.76 0.89 0.95
DEC92FD 408 573 253 0.74 0.81 0.88
FLEET 412 364 253 0.69 0.77 0.85
PRODPLAN 10290 1053 213 0.63 0.67 0.69
STE36B 996 1218 270 0.64 0.79 0.85

of in-core performance obtained with 16, 32, and 64 MBytes of in-core storage. Note that performance degra-
dations are quite small. With 32 MBytes of memory, the method achieves 77{98% of in-core performance for
all problems except PRODPLAN, even when the matrix and the multifrontal stack are signi�cantly larger
than memory. Matrix PRODPLAN gets 67% of in-core performance.

5.4 Overdecomposition

It is not strictly necessary to reserve half of in-core memory for the source panel and half for the destination.
For example, one could �ll all but a small piece of memory with a destination panel and fetch individual
source columns from disk. This strategy reduces I/O volume signi�cantly, since each column fetched from
disk modi�es many more destination columns. The drawback is signi�cantly reduced I/O grain size and
compute grain size. One can strike a balance between the two by performing overdecomposition, by which
we mean a partitioning of the matrix into smaller panels, so that several may simultaneously occupy main
memory.

To be more speci�c, we divide the matrix into panels so that each panel is no larger than 1=D of available
memory. The factorization can then hold D� 1 destination panels in core and fetch a single source panel at
a time. This approach provides a clean approach to working with panels as logical units while not requiring
symmetry between sources and destinations. It has the added advantage that the destination panels do
not need to come from the same supernode. This reduces I/O when there are narrow supernodes. The
disadvantage is that read grain sizes and compute grain sizes decrease. We experimented with PPLLU using
D = 4. We found that I/O volumes drop by 20-30% for the 3-D and linear programming problems, while
read grain sizes usually drop by nearly a factor of two.

Given the large fraction of in-core performance obtained with D = 2, it is perhaps not surprising that
our overdecomposition approach did not signi�cantly improve achieved performance. If I/O costs reduce
performance when D = 2 by 20%, for example, and overdecomposition reduces I/O volumes by 25%, then the
maximum possible performance improvement is 5%. This bene�t must be traded o� against the drawbacks
of overdecomposition; it reduces the I/O grain, thus increasing the �xed costs associated with the I/O,
and it reduces the width of the panels, thus reducing the performance of the computational kernels. While
overdecomposition consistently improved performance, the maximum improvement was only a few percent.
We would expect to see signi�cant bene�ts only when the I/O rate is signi�cantly lower, relative to the
computation rate, than it is on the machine used for our experiments.

6 Related Work

Reducing memory requirements in the multifrontal method by performing the frontal matrix computation
out-of-core is not a new idea. We've heard it discussed in several contexts [9, 10, 23]. Details have not been
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published, however.
Salmon and Warren have recently conducted an investigation of out-of-core methods for the N -body

problem. Their motivation is identical to ours, and they also achieved excellent results; a slowdown of about
�fteen percent compared with in-core methods. In contrast to our approach, they built a user-level demand
paging strategy, with variable page granularity and replacement policy, and employed it as the basis of an
implementation. The completely dynamic nature of the interactions in N -body solvers seems to mandate
this approach [21].

An interesting approach to solving linear systems in limited memory was proposed by Eisenstat, Schultz,
and Sherman [9]. Their proposal does not rely on disk; rather, the columns of L are simply discarded after
their last involvement in a cmod operation, with the exception of the lower right submatrix that corresponds
to a top level separator. Retaining only this portion of the matrix and the updated right-hand side allows one
to solve for the unknowns on the top-level separator. If one then removes these rows and columns from the
matrix, it becomes reducible, and one recursively applies the method to the decoupled subproblems. While
this method has the nice property of requiring no disk, it is not robust under very limited main memory,
and it performs signi�cant redundant work when recomputing discarded portions of the matrix.

7 Discussion

One technique not considered here that might improve read grain size, particularly for problem PRODPLAN,
is sibling amalgamation. The amalgamation approaches in the literature only consider merging a child into
its parent. We could identify cases where merging a child into one of its siblings introduced fewer nonzero
values. Unfortunately, �nding appropriate sibling merges is much more complicated than �nding parent-child
merges. One reason is that a supernode has only one parent, while it can have many siblings. Another is
that the nonzero structure of the parent is always a superset of the structure of the child, so the number of
nonzero values added to the child is easily computed. Siblings do not have this superset relationship. This
issue will require further investigation.

In our view, this work changes the relative merits of direct and iterative methods for symmetric positive
de�nite problems. While iterative methods are often faster than direct methods, perhaps the most common
motivation for their use is to be able to solve very large linear systems using little memory. The results of
this study show that direct methods can also use very little memory.

Another issue that will require further investigation is whether the PPLLU method explored here could
be used as the basis for a limited memory parallel out-of-core method. One obvious approach would be to
build parallel computational kernels. Recall, however, that the PPLLU method spent 10-30% of its runtime
waiting for data from disk. Without also doing parallel I/O, the bene�ts of adding processors would fall o�
quickly. An alternative approach would be to use a parallel panel left-looking method [18], where processors
would be responsible for updates to distinct destination panels. Each processor would then fetch relevant
source panels from disk independently. This approach might lead to a potentially di�cult tradeo�: wide
panels reduce I/O volumes, but they also reduce parallelism. This issue will require further study.

Another possible extension is limited memory unsymmetric factorization with partial pivoting. UMF-
PACK [6] and SuperLU [7] bear many similarities to symmetric multifrontal and left-looking methods,
respectively. It would be interesting to consider how the extensions described here might apply to these
approaches.

An issue not considered here is asynchronous I/O. Most �le systems allow a program to issue a �le system
request, continue with computation, and then retrieve the result of the request at a later time. This allows
the program to hide much of the latency of the request. In a left-looking out-of-core approach, the program
could overlap the fetching of a panel from disk with the computation of an update from the previous panel.
Of course, doing so requires added memory to hold both the previous and current source panels. This
approach therefore introduces a tradeo�: more I/O due to the reduction in available memory versus better
hiding of I/O costs.

One technique we did not consider in this paper is a 2-D decomposition within the panels of the PPLLU
approach. One could easily iterate through rectangular sub-matrices of the current destination panel, fetching
appropriate sub-matrices from source panels when performing updates. This approach has the advantage
that the width of a destination block does not need to decrease as the height of the panel increases. While
the asymptotic growth rates favor a 2-D approach as the problem size goes to in�nity (or the memory size
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goes to zero), the constant factors are such that the method would only provide signi�cant advantages for
matrices much larger than those considered here.

8 Conclusions

This paper has explored three approaches to limited memory Cholesky factorization. Each of the simple
approaches we considered had a serious aw when we looked at the behavior of the methods on a wide range of
matrices arising in structural analysis, computational uid dynamics, and interior point linear programming.
We enhanced one of the approaches (a pruned panel, left-looking method) to address the observed aws.
We optimally chose portions of the matrix to factor using a multifrontal method, and we overdecomposed
the matrix into smaller panels than strictly necessary to reduce I/O volumes. The resulting Bobcat method
gives most of the performance of an in-core method using only a small fraction of the in-core memory.
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A Out-of-Core Sparse Matrix Data Structures

While the nonzero values in the matrix consume the majority of storage during the factorization, other
data structures also consume in-core memory. The largest of these is the data structure that records the
nonzero structure of the factor matrix (the compressed indices). Compressed indices typically consume a
small fraction of the storage required by the nonzeros in the factor matrix for the matrices we consider
(typically around 1%). However, the size of the compressed indices is not always trivial compared to the
amount of in-core memory used in the out-of-core method. We would prefer not to be forced to keep these
indices in memory.

Note that the multifrontal method only needs to retain in-core the nonzero structures of the frontal
update matrices on the update stack, plus the nonzero structure of the current supernode. One can maintain
a stack of indices, similar to the update stack, to retain these nonzero structures. The size of this stack is
insigni�cant.

Our PPLLU method only needs to retain the nonzero structures of the supernodes in the multisector
portion, plus the structures of the domain updates. Again, the aggregate size of this structure information
is quite trivial.
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Structural information becomes a problem in the PPLL method. This approach often reaches deep down
in the supernodal elimination tree to fetch a panel. One option is to keep structure information on disk,
retrieving the structure of a panel when the panel itself is retrieved. While this option would not increase
I/O volume signi�cantly, it would roughly halve the I/O grain size unless this information were somehow
interspersed with the panel data (so that the structure of a panel were stored contiguously with the nonzero
values in the panel). We consider this somewhat awkward solution a negative for this approach.

In practice, we believe that the compressed indices are su�ciently compact that it is reasonable to keep
them in memory, letting the virtual memory system move them to and from disk as necessary. Due to the
access patterns discussed above, though, we expect the PPLL approach to generate signi�cantly more virtual
memory I/O tra�c for the compressed indices than the other two approaches.

B File System Characteristics

To evaluate the e�ectiveness of an out-of-core factorization method, it is important to understand the
characteristics of the disks drives and �le systems found on high-performance computers. The features we
describe here are typical in UNIX and advanced PC operating systems.

The performance of a disk drive is usually described using two parameters: latency and transfer rate.
The latency is the time to move a physical disk head to the appropriate portion of the disk (a seek) plus
the rotational delay of the spinning disk. The transfer rate is determined by the rate at which data passes
under this disk head. Typical parameters for a low-cost SCSI disk today are 10 milliseconds latency with a
transfer rate of 10 MB/s.

Application software does not generally write data directly to the disk. Instead, it submits requests to
the �le system, and the �le system determines how to satisfy those requests. File systems employ several
techniques to improve their overall performance. One important technique is �le caching, wherein the �le
system uses free memory in the system to cache disk data. A write from a user application is copied to the
�le system cache rather than being written straight to disk. Similarly, �le system reads move data from the
cache to the user if the requested data is available in the cache, and from the disk to the cache and then to
the user if it is not. When the disk cache �lls, the �le system must discard cached data. Caching provides
several bene�ts. One obvious bene�t is that �le system reads are often serviced from the cache, avoiding the
cost of a disk access. The e�ectiveness of this caching of course depends on the data access pattern and the
size of the disk cache. Another bene�t is that most writes complete almost immediately, since they simply
transfer data to the cache. The data must eventually be transferred to disk, but these transfers are usually
performed in the background, and they can often be performed at a coarser grain than the user's original
write requests. The cost of a disk cache is the system memory used for the cache.

File systems also use striping to increase disk throughput, where the �le system creates one logical disk
using multiple physical disks. Data blocks from a single �le are then interleaved on these disks. When a �le
system read or write spans multiple data blocks (which are typically several KBytes), the �le system can
perform the appropriate reads or writes to di�erent disk drives in parallel. If each physical disk can deliver
10 MB/s, an n-way interleaved �le system can then deliver 10n MB/s (until some other resource, such as
the disk controller, saturates). Note that striping does not improve latency. On the contrary, it may make
it worse, since each drive must move its disk head to the appropriate location to service a request.

As noted earlier, the machine used to perform our experiments is endowed with su�cient memory to
hold several of our test matrices entirely in the �le system cache. To obtain realistic performance numbers
for out-of-core methods on this machine, given that the data is often not actually fetched from the disk,
we use a simple trick. For each �le system read, we compute the amount of time the read should require
(using a simple function of the disk seek time, the disk transfer rate, and the size of the request). If the read
completes in less time than expected, the program sits in an idle loop until the appropriate amount of time
has elapsed.
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