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This paper describes an algorithm for calculating
texture coordinates and their partial derivatives
during scan conversion of planar polygons. These
values are required in texture mapping for anti-
aliasing algorithms, where a resampling filter
combines texture elements (a.k.a. texels) in a
weighted average. Perspective projection requires
an image warp accomplished with rational-linear
(a.k.a. hyperbolic) interpolation.  A single division
per pixel and a few addition and multiplication
operations yields the texture coordinates and their
partial derivatives.
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1. Introduction

Texture mapping of planar polygons viewed with perspective projection is accomplished with
rational-linear interpolation [1], which also is known as hyperbolic interpolation [2]. The
procedure for calculating texture coordinates at each pixel is as follows:

1. Apply a perspective warp (from texture space to screen space) to the texture
coordinates at vertices.

2. Linearly interpolate the warped texture coordinates down edges and across spans in
screen space.

3. At each pixel, apply the inverse perspective warp (from screen space to texture space)
to the warped texture coordinates to recover the texture coordinates.

The perspective warp and its inverse are achieved by division of a homogeneous coordinate.
Division is a relatively slow operation, typically requiring on the order of ten clock cycles or
more with partial pipelining or none at all. Hence, the inverse perspective warp at each pixel
often is implemented with a single division for the reciprocal of the homogeneous coordinate and
one multiplication per texture coordinate. This usually is faster than performing a division for
each texture coordinate.

Fast shadows and lighting effects can be implemented with texture mapping hardware by
augmenting the texture coordinates with their own homogeneous coordinate [3]. The spatial
coordinates have a homogeneous coordinate for the perspective projection to the screen.
Similarly, a light can project its field onto a texture via a homogeneous coordinate associated
with the texture coordinates. These lighting effects can be implemented easily on conventional
texture mapping hardware simply by modifying the divisor in the inverse perspective warp
performed at each pixel.

In addition to calculating the texture coordinates at each pixel, texture-mapping implementations
compute the partial derivatives of the texture coordinates with respect to the screen’s spatial
coordinates. These partial derivatives appear in the vector gradient operator, which yields the
maximum directional derivative of a scalar field, and in the Jacobian, which yields the factor
needed for changing variables in a multiple integral [4]. Subsequently, these partial derivatives
are sometimes called the gradients or Jacobian components, respectively.

Texture-mapping implementations use the partial derivatives of the texture coordinates for anti-
aliasing algorithms. Convolution of a resampling filter with a texture image is an operation that
averages the weighted texture elements (a.k.a. texels) [5]. Filtering can be expensive so real-time
systems benefit from doing some filtering in advance as a preprocessing step. A popular storage
structure for retaining the preprocessed texture is a MIP map, which is a multi-resolution texture
in the form of an image pyramid [6]. Heckbert investigated methods of selecting the resolution
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level within the image pyramid and suggested taking the maximum length of the two Jacobian
basis vectors [7].

Isotropic or space-invariant filtering based on bilinear or trilinear filtering [8] of MIP map texels
works well for polygons parallel to the screen, but textures become blurred as polygons tilt
toward becoming parallel to the line of sight. The footprint of a pixel projected into texture space
changes in shape and size as scan conversion moves from pixel to pixel across the polygon
viewed in perspective. Anisotropic or space-variant filtering considers the change in footprint
shape and size, and the result is sharper textures for polygons tilted toward the horizon. A filter
with a good balance of quality and performance is the Elliptical Weighted Average (EWA) filter
[9] combined with a MIP map [5, 10]. The shape and size of a pixel footprint in texture space for
the EWA filter is an ellipse fitting inside a parallelogram, whose sides are the Jacobian basis
vectors. Footprint assembly [11] is a real-time approximation of the EWA filter, and it derives the
footprint shape from the Jacobian basis vectors.

For every pixel, texture-mapping implementations need the texture coordinates for retrieving
texels to be mapped to the screen and the partial derivatives of the texture coordinates for anti-
aliasing algorithms. This paper describes an algorithm for calculating these in a scan-line method
that requires only a single division per pixel. Then, one multiplication per texture coordinate
yields the texture coordinates. In addition, one multiplication per pixel plus half of one
multiplication per partial derivative yields the partial derivatives.

2. Background

We seek an algorithm for interpolating texture coordinates and their partial derivatives for planar
polygons viewed with a perspective projection. This section briefly describes the background
material: rational-linear interpolation and fast shadows and lighting effects.

2.1 Rational-Linear Interpolation

Rational-linear interpolation described by Heckert and Moreton [1] and hyperbolic interpolation
described by Blinn [2] are equivalent methods so we will use the name rational-linear
interpolation hereafter. It is the most efficient method for interpolating coordinates on planar
polygons transformed by a perspective projection. Based on Blinn’s description, a summary of
the procedure is as follows:

1. Let the spatial coordinates in homogeneous screen space be ~ ~ ~ ~x y z w . These
coordinates are obtained by transforming polygon vertices from model space via a 4×4
homogeneous matrix incorporating a perspective projection. Let the texture coordinates
be ~ ~s t . These are bound to the polygon vertices. Construct an array of coordinates for

each vertex: ~ ~ ~ ~ ~ ~x y z w s t 1 .
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2. Perform view clipping of the polygons and linearly interpolate all coordinates to clipping
boundaries wherever clipping occurs.

3. Perform projection to screen space by dividing all coordinates by the homogeneous
spatial coordinate ~w . In practice, calculating the reciprocal 1 ~w  and multiplying it by all
the coordinates is faster. This yields ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~x w y w z w s w t w w1 1 . Rename

this array to x y z s t q1 .

4. Linearly interpolate all the coordinates down polygon edges and across spans.

5. At each pixel, perform the z buffer test, and on success, project the warped texture
coordinates back to texture space by dividing by the homogeneous texture coordinate q :
$ $s t s q t q= .

6. Map the texels around $ $s t  to the pixel with an anti-aliasing algorithm.

Blinn notes that besides spatial and texture coordinates, other values such as normal and color
coordinates can be interpolated in a like manner. In practice, real-time systems rarely apply
rational-linear interpolation to normals and color. Graphics hardware that performs a lighting
calculation (requiring normals) per pixel is rare because the calculation is slow and expensive.
Colors often undergo only linear interpolation instead of rational-linear interpolation because the
calculation is faster and visual artifacts are more difficult for human viewers to detect for colors
than texture coordinates.

The procedure warps the texture coordinates to screen space, linearly interpolates the warped
texture coordinates in screen space, and applies the inverse warp to the warped texture
coordinates. The texture coordinates take the general form

$
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Thus, we recover the original texture coordinates bound to the polygon vertices. For scan-line
interpolation, the incremental form of the texture coordinates is
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where the spacing between pixels ∆x  is usually 1 in screen space, so it can be ignored safely. In
Equation 2, note that we can write finite differences in place of differentials because the texture
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coordinates in screen space vary linearly with the spatial coordinates in screen space. The partial
derivatives are constant across the planar polygon in screen space so they can be calculated once
per polygon. Since division is a slow operation, a faster method than dividing each texture
coordinate by qi + 1  is to calculate the reciprocal 1 1qi +  and multiply it by each texture coordinate.

2.2 Fast Shadows and Lighting Effects

Segal et al. described a method of implementing fast shadows and lighting effects with a simple
extension to texture mapping hardware [3]. The method introduces a new space called the light
coordinate system, where points are described by the vector x y z wl l l l . This is a

homogeneous texture coordinate system, where the texture coordinates x t  and y t  are obtained
by dividing by the homogeneous coordinate. The primary mathematical result from that paper is:

x
x
w

x w
w w

t
l

l

l

l= =
~
~        and       y

y
w

y w
w w

t
l

l

l

l= =
~
~ (3)

where ~w  is the homogeneous coordinate of homogeneous screen space as before.

Let us make the substitutions $s x t= ,  $t y t= ,  ~s x l= ,  ~t y l= ,  and ~q wl= , then
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Equations 1 and 4 are remarkably similar. Segal et al. state that quantities in the numerators and
denominators of Equation 3 should be linearly interpolated and the divisions should be
performed at each pixel.

As before, let s s w= ~ ~ , t t w= ~ ~ , and q q w= ~ ~ , then Equation (4) becomes
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Equation 5 is the general form of Equation 1 for which ~q = 1  because the texture coordinates
~s and ~t are bound to the vertices. In the general case, the texture coordinates are transformed by
a homogeneous matrix incorporating a perspective projection. This leads to a value of ~q  not
equal to 1, in general. The general procedure for interpolating texture coordinates is similar to
the special case in Section 2.1 except that the denominator is q q w= ~ ~  instead of 1 ~w .
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OpenGL [12, 13] is a de facto industry-standard 3D graphics application programming interface
(API) for which Segal is a co-architect [14]. OpenGL has a 4×4 homogeneous texture matrix for
transforming the texture coordinates ′ ′ ′ ′s t r q , which are bound to the vertices. This

transformation yields the texture coordinates ~ ~ ~ ~s t r q  in lighting space. The procedure in
Section 2.1 is applicable to this general case simply by augmenting the vertex arrays with the
extra texture mapping coordinates: ~ ~ ~ ~ ~ ~ ~ ~x y z w s t r q . Section 4 lists the individual
steps for the general case in detail.

3. Partial Derivatives

Anti-aliasing algorithms require the partial derivatives of the texture coordinates in texture space
with respect to the spatial coordinates in screen space for determining the size of a pixel’s
footprint in texture space. Starting from Equation 5, we take the partial derivatives with respect
to x :
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The partial derivatives ∂ ∂s x , ∂ ∂t x , and ∂ ∂q x  are constant across a planar polygon, and they
need to be calculated for Equation 2 to incrementally update the texture coordinates. For a
triangle, they can be calculated by

• sorting the vertices from top to bottom,

• horizontally extending the middle vertex (point A) to the point on the edge joining the
top and bottom vertices (point B),

• linearly interpolating the values between the top and bottom vertices to point B, and

• calculating the ratios of finite differences for points A and B.

Equation 2 requires us to calculate 1 q  at each pixel. We simply square it and multiply by the
terms in the numerators of Equation 6. Thus, these partial derivatives require only one
multiplication per pixel, and three multiplications and one subtraction per texture coordinate.
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For the partial derivatives with respect to y , consider a non-horizontal polygon edge for which
∆y ≠ 0  as illustrated in Figure 1. Each texture coordinate in screen space is a linear function of
only x  and y . The differentials are
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.

Since the texture coordinates vary linearly with x  and y , the differentials can be replaced by
finite differences. Solving for the partial derivatives with respect to y  gives
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These partial derivatives are constant across a planar polygon, and we can calculate them from
the finite differences of a non-horizontal edge and the partial derivatives ∂ ∂s x , ∂ ∂t x , and
∂ ∂q x .

Using the results in Equation 7, the partial derivatives of the texture coordinates in texture space
with respect to the spatial coordinates in screen space are
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Figure 1: A non-horizontal polygon edge in screen space.
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Equations 6 and 8 can be calculated with three multiplications and one subtraction per partial
derivative. We can reduce the operations by substituting the incremental forms of the variables
into Equations 6 and 8. The incremental forms of the variables are

s s x
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∂1 ∆ ,          t t x
t
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∂1 ∆ ,       and       q q x
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Substituting Equation 9 into the numerators of Equations 6 and 8 gives
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where the spacing between pixels ∆x  is usually 1 in screen space so it can be ignored safely. All
the partial derivatives in Equation 10 are constant for a planar polygon so the constant
increments can be calculated once per polygon.

For scan-line interpolation, the constant increments vanish identically in the numerators of
∂ ∂$s x  and ∂ ∂$t x , and the numerators remain constant across the scan line. Since the
denominators of these partial derivatives are equal, the direction of the Jacobian basis vector
∂ ∂ ∂ ∂$ $s x t x  remains constant across the scan line, and only the magnitude changes. This

result could be anticipated from the property that a perspective projection maps straight lines to
straight lines. In particular, an incremental change in x  in screen space leads to an incremental
change in texture space where the direction given by ∂ ∂ ∂ ∂$ $s x t x  is independent of the size
of the increment. However, the same incremental change in x  in screen space preserves neither
direction nor magnitude in the other Jacobian basis vector ∂ ∂ ∂ ∂$ $s y t y . This is illustrated in
Figure 2.
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From a computational viewpoint, we can interpolate four new variables —  the numerators of the
partial derivatives —  down polygon edges. These new variables are linear combinations of
variables that vary linearly in screen space so the new variables also vary linearly in screen
space. Equation 10 suggests that we can interpolate two of the four new variables across a scan
line, and Equations 6 and 8 yield the partial derivatives with one multiplication per pixel and one
multiplication per partial derivative.

4. Interpolation of Texture Coordinates and Partial Derivatives

4.1 General Algorithm

In this section, we tie together the equations of the previous sections to arrive at the general
algorithm for calculating texture coordinates and partial derivatives for a planar polygon viewed
with perspective. Planarity applies to position and texture coordinates.

1. Let the spatial coordinates in homogeneous screen space be ~ ~ ~ ~x y z w . These
coordinates are obtained by transforming polygon vertices from model space via a 4×4
homogeneous geometry matrix incorporating a perspective projection. Let the texture
coordinates in lighting space be ~ ~ ~ ~s t r q . These coordinates are obtained by
transforming the texture coordinates bound to the vertices via a 4×4 homogeneous texture

x∆

y∆

[ ]xtxs ∂∂∂∂ ˆˆ

[ ]ytys ∂∂∂∂ ˆˆ

Texture Space Image Space

Figure 2: Direction and magnitude of Jacobian basis vectors across a scan line.
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matrix. For each vertex, construct an array of coordinates:
~ ~ ~ ~ ~ ~ ~ ~x y z w s t r q .

2. For each polygon, perform view clipping and linearly interpolate all coordinates to
clipping boundaries wherever clipping occurs.

3. Project the vertices to screen space: for each vertex, calculate the reciprocal 1 ~w  and
multiply this by all elements of the coordinate array. The coordinate array at each vertex
has the form ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~x w y w z w s w t w r w q w1 . Rename the variables in

this array to x y z s t r q1 .

4. For each polygon, calculate some partial derivatives in screen space: ∂ ∂z x , ∂ ∂s x ,
∂ ∂t x , ∂ ∂q x , ∂ ∂s y , ∂ ∂t y , and ∂ ∂q y . These are constant across a planar polygon.
Section 3 suggests methods of calculation.

5. At each vertex, calculate the numerators of the partial derivatives of the texture
coordinates in texture space with respect to the spatial coordinates in screen space.
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Augment the coordinate array at each vertex with the four new variables to obtain the
extended coordinate array x y z s t r q1 α β γ δ .

6. For each polygon, calculate the scan-line increments for two of these four variables:
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where the spacing between pixels ∆x  is usually 1 in screen space. These are constant
across any scan line. Note that ∆α = 0  and ∆β = 0 .

7. For each polygon, linearly interpolate all the coordinates in the extended array down
polygon edges. For convex planar polygons, interpolation needs to be performed only at
the leading edges. For example, the leading edges would be the left-most edges when
scan conversion proceeds left to right.
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8. Let the variables at the beginning of the span have the subscript 0: s0 , t0 , q0 , α 0 , β0 ,
γ0 , and δ0 . For each span, linearly interpolate the required variables across the span.
Note that α  and β  are constant across the span so they need not be interpolated.

z z x
z
xi i+ = + ∂

∂1 ∆           

s s x
s
xi i+ = + ∂

∂1 ∆           

t t x
t
xi i+ = + ∂

∂1 ∆             γ γ γi i+ = +1 ∆

q q x
q
xi i+ = + ∂

∂1 ∆           δ δ δi i+ = +1 ∆

9. For each pixel, perform the z buffer test, and on success, project the warped texture
coordinates back to texture space. To facilitate the projection, calculate the reciprocal of
the homogeneous texture coordinate q  to obtain 1 q . Multiply the reciprocal by the
texture coordinates in screen space to obtain the texture coordinates in texture space:

$s
s
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=        and       $t
t
q

= .

Recall that the interpolated variables include the numerators of the partial derivatives of
the texture coordinates in texture space with respect to the spatial coordinates in screen
space:
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To obtain the partial derivatives, we could square the reciprocal 1 q  and multiply the
result 1 2q  by the four variables:
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However, this would require one multiplication per partial derivative. Since q2  is a
common multiple on all the numerators, we can save multiplications by deferring
multiplication of 1 2q .

10. For each pixel, map the texels around $ $s t  to the pixel with an anti-aliasing algorithm.
This usually requires calculation of the vector norms of the Jacobian basis vectors:

∂
∂

∂
∂

L
NM

O
QP = L

NM
O
QP =$ $s

x
t
x q q q

α β α β2 2 2

1
       and

∂
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∂
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L
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O
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O
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y
t
y q q q

γ δ γ δ2 2 2

1
.

In the first Jacobian basis vector, α β  is invariant across the scan line so the direction

of the vector is constant and α β  needs to be calculated only once per span. In

addition, note that deferring multiplication of 1 2q  to this step saves two multiplications
per pixel.

4.2 Remarks

The general algorithm makes no approximations. It is applicable to both space variant and
invariant filtering methods including bilinear and trilinear [8], EWA [9, 5, 10], and footprint
assembly [9] filtering. The anisotropic methods require the directions and magnitudes of the
Jacobian basis vectors. The isotropic methods require only the magnitudes.

An approximation for hypotenuse is valuable because hypotenuse is a slow operation, and in this
case, the approximation’s error is always bounded. Paeth describes a fast linear approximation of
hypotenuse with less than 12% error [15]. A modified approximation with less than 6% error is
as follows:

a b a b a b a b= + ≈ +2 2 11
32

max , min ,c h c h
In this modification, we distribute the error so that the approximation is sometimes larger than
the actual value and sometimes smaller. The maximum occurs when the two operands are equal
in magnitude. This approximation provides adequate accuracy for anti-aliasing algorithms.
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5. Conclusions

Interpolation of texture coordinates and their partial derivatives for planar polygons viewed with
perspective requires a total of one division and one multiplication per pixel plus one
multiplication per texture coordinate and half of one multiplication per partial derivative.
Updates of the variables are linear with at most one addition per component.

While the algorithm in this paper is simple to implement with parallelism in graphics hardware,
even less effort may be possible with similar anti-aliasing quality. Future efforts could focus on
simplifying the interpolation of partial derivatives. For example, bilinear MIP mapping requires
only determination of the MIP map level. By calculating the levels at the ends of the span, a level
variable could be interpolated instead of the partial derivatives. Exploiting the coherence of anti-
aliasing parameters across a span appears promising.
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