
Direct Calculation of MIP - Map
Level for Faster Texture Mapping

Kevin Wu
Computer Systems Laboratory
HPL-98-112
June, 1998

E-mail: kevinwu@hpl.hp.com

computer graphics,
texture mapping,
MIP mapping,
trilinear filtering,
floating-point
arithmetic

This paper describes a method applicable to texture
mapping for calculating the MIP-map level directly from
the IEEE-standard floating-point representation of the
compression value. This calculation ordinarily requires
execution of a base-2 logarithm, and it needs to be
performed once per pixel. However, the full logarithm
need not be evaluated because only the integer part of the
result is required. The MIP-map level is essentially the
base-2 exponent of the MIP map compression value, and
this exponent is immediately available from the IEEE-
standard floating-point representation.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

1

1. Introduction

In texture mapping implementations, MIP mapping [1] is a common anti-aliasing technique. A
MIP map is a multi-resolution image pyramid. The highest resolution image is level 0 at the base
of the pyramid. The next higher level is formed by convolving the current level with a low-pass
filter kernel and subsampling each direction by a factor of two. By recursively applying this
process, all levels of the pyramid are defined with the highest level consisting of a single texture
element (a.k.a. texel). The MIP map saves computation during rendering because the appropriate
texture resolution is available in prefiltered form whether a textured surface is near or far from
the viewer. For decimation or so-called “minification” where a lower resolution is required, a
continuous value d quantitatively describes the spatial compression of texels from texture space
to screen space. The MIP-map level k selected during rendering is the largest integer less than or
equal to the base-2 logarithm of d. The calculation is performed at each pixel so avoiding
evaluation of the logarithm is desirable.

Direct calculation of the MIP-map level from the compression value d is possible with only a
simple mask-shift-subtraction sequence when d is in IEEE floating-point format. The MIP-map
level k is essentially the base-2 exponent of d.

2. IEEE Floating-Point Format

A number in IEEE floating-point format [2, 3] has three fields: a sign bit s, an exponent e, and a
fraction f. For single-precision numbers, e is 8 bits and f is 23 bits in size. For double-precision
numbers, e is 11 bits and f is 52 bits in size. The sign bit is the most significant bit, followed by
the exponent in the next most significant bits, followed by the fraction in the least significant
bits. All of the following discussion applies to single-precision numbers; the extension to double-
precision numbers is straightforward.

The following rules determine the value of a single-precision floating-point number:

1. If e = 255 and f ≠ 0 , then the value is NaN (not a number) regardless of s.

2. If e = 255 and f = 0 , then the value is − ∞1b gs .

3. If 0 255< <e , then the value is − −1 2 1127b g b gs e f. .

4. If e = 0 and f ≠ 0 , then the value is − −1 2 0126b g b gs f. .

5. If e = 0 and f = 0 , then the value is − 1 0b gs .

Rule 3 (normalized form) applies to most numbers that can be represented with this format. Rule
4 (denormalized form) extends the range for numbers that are very small in magnitude.

2

3. MIP Map Filter Size

A MIP map stores multiple resolutions of a texture in a precalculated image pyramid. During
rendering, the scan converter interpolates texture coordinates across a surface. At each pixel, the
scan converter maps a color from the texture to the pixel. This color should be a blend of all
texels in the pixel’s projection onto texture space where the filter profile determines the weights
applied to the texels. For square pixels, the projection is an arbitrary quadrilateral for perspective
projections when the surface is a triangle. A local affine approximation [4] of the pixel’s
footprint in texture space is a parallelogram with the Jacobian basis vectors forming the edges as
shown in Figure 1. The Jacobian basis vectors are the columns of the Jacobian matrix J from
screen to texture space. The elements of the Jacobian matrix are the partial derivatives of the
texture coordinates with respect to the screen coordinates.

J =

∂
∂

∂
∂

∂
∂

∂
∂

L

N

MMMM

O

Q

PPPP
=
L
NM

O
QP

s
x

s
y

t
x

t
y

s s
t t

x y

x y

(1)

MIP-map levels are formed by applying a square filter. By implication, MIP mapping
accomplishes anti-aliasing by approximating the parallelogram of the pixel’s footprint in texture
space with a square filter shape. Williams [1] uses Heckbert’s suggestion [5] for computing the
texture compression value d. The approximate size of the square filter shape is the length of the
longer of the two Jacobian basis vectors.

x

y

s

t
Jacobian
basis
vectors

Texture

spac
Screen

spac

s
t

x

x

L
NM

O
QP

s
t

y

y

L
NM

O
QP

Figure 1: Pixel's footprint in texture space.

3

d
s
t

s
t

x

x

y

y

= L
NM

O
QP

L
NM

O
QP

F
HG

I
KJmax , (2)

With this selection of d, the textured surface is excessively blurred when the pixel footprint is
long and narrow, particularly when blending texels with bilinear or trilinear interpolation [6].
However, these texel blending operations are simpler to implement in hardware than higher
quality anisotropic texture filtering methods [4, 7, 8, 9, 10, 11].

4. Calculation of MIP-Map Level

In a MIP map, the relationship between the compression value d and the MIP-map level k is
established by two conditions. Let the vertical and horizontal distance between adjacent texels be
1 in level 0, and consider a Jacobian matrix equal to the identity matrix. A unit change in x or y
produces a unit change in s or t, respectively. For this case, the length of either Jacobian basis
vector is 1 so d = 1. Thus, the first condition is that when d = 1, the appropriate choice of MIP-
map level is k = 0. The second condition is that the resolution of MIP-map level k + 1 is half that
of level k. In other words, the compression value d is twice as large at level k + 1 than at level k.
With these two constraints, we seek the MIP-map level k for an arbitrary compression value d
such that

2 2 1k kd≤ < + (3)

or equivalently

k d= log2 (4)

where the floor function a is the largest integer less than or equal a. As a practical
consideration, this computed value of k needs to be clamped between 0 and the highest level of
the MIP map before attempting to read texels.

The straightforward approach to evaluating Equation (4) begins with computing log2 d with the
natural logarithm function of a standard math library.

log
ln
ln2 2

d
d= (5)

This approach computes ln d and multiplies by the precomputed value of 1 2ln . Finally, this
product is the argument of the floor function of a standard math library. However, two calls to
library functions per pixel are time consuming.

4

A faster approach begins with the observation that log2 d of a binary number d is essentially
the number of bits from the binary point to the most significant digit. If the binary representation
of d is

d
n

= 1xxx x.xx xL124 34 L (6)

then the MIP-map level is k n= . This approach computes the MIP-map level by counting the
number of bits from the binary point to the most significant digit. A binary search (O nlogb g)
would be even faster than a linear one (O nb g).

The approach taken in this paper depends on representing d in IEEE floating-point format. In
particular, d is most likely to be in the form given by Rule 3 of Section 2.

d fs e= − −1 2 1127b g b g. (7)

Since d is the length of a Jacobian basis vector, it is non-negative so s = 0 . Applying log2 yields
an intermediate result.

log log . log .2 2
127

22 1 127 1d f e fe= = − +− b gc h b g
integer fraction

123 1 24 34 (8)

Note that 1. f is in the range 1 2, g so log .2 1 fb g is in the range 0 1, g. Applying the floor
function yields k.

k d e= = −log2 127 (9)

The algorithm for computing the MIP-map level k from the compression value d in IEEE
floating-point format is as follows:

1. Apply a mask to d to set the sign bit s and the fraction f to 0 without changing the
exponent e.

2. Shift the result of Step 1 to the right by the width of f. This gives e as an integer.
3. Subtract 127 from the result of Step 2.
4. Clamp the result of Step 3 to the range of 0 and the highest level of the MIP map.
5. The result of Step 4 is k.

As long as the value of d is not NaN, this algorithm returns the correct result because of the
clamping step. This approach is simpler and likely faster than the preceding two approaches.

5

5. Interlevel Interpolation Value

Interlevel interpolation uses the compression value d to interpolate texture colors between MIP-
map levels. Linear and trilinear texture filtering use interlevel interpolation to create smooth
transitions between MIP-map levels. Starting with Range (3), we apply linear interpolation
between the two levels k and k + 1.

d k k k= + − ≤ <+2 2 2 0 11λ λc h (10)

Solving for λ gives the interlevel interpolation value.

λ λ= − ≤ <−2 1 0 1k d (11)

A slightly faster way to evaluate this equation is available by substituting Equation (9) into
Equation (7) and noting that s is 0.

d fk= 2 1.b g (12)

Then we substitute Equation (12) into Equation (11).

λ= − = − =−2 2 1 1 1 1 0k k f f f. . .b gc h (13)

To calculate λ in 9.23 fixed-point format, we set s and e to 0 while leaving f unchanged.
Alternatively, to calculate λ in floating-point format, we calculate 1. f in floating-point format
by setting e in d to 127 (because we want 20 and the offset in IEEE floating-point format is 127)
and subtracting 1.0.

6. Conclusions

A fast method for calculating the MIP-map level is possible via direct processing of the IEEE
floating-point form of the texture compression value. The mask-shift-subtract sequence is faster
than the straightforward approach of computing the base-2 logarithm followed by the floor
function. In addition, a slightly faster calculation of the interlevel interpolation value is possible
via direct processing.

1. References

[1] Lance Williams, Pyramidal Parametrics, in Proceedings of SIGGRAPH ’83, Computer Graphics, 17(3):1–11,
July 1983.

6

[2] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, Institute of Electrical and
Electronics Engineers, New York, N. Y., 1985.

[3] Walt Donovan and Tim Van Hook, Direct Outcode Calculation for Faster Clip Testing, in Graphics Gems IV,
Paul S. Heckbert, ed., AP Professional, Cambridge, Mass., 1994.

[4] Paul S. Heckbert, Fundamentals of Texture Mapping and Image Warping, Master’s thesis, Dept. of Electrical
Engineering and Computer Science, University of California, Berkeley, California, June 1989.

[5] Paul S. Heckbert, Texture Mapping Polygons in Perspective, NYIT Computer Graphics Lab, Technical Memo
13, April 1983.

[6] Alan Watt and Mark Watt, Advanced Animation and Rendering Techniques: Theory and Practice, Addison-
Wesley, Wokingham, England, 1992.

[7] Elliot A. Feibush, Marc Levoy, Robert L. Cook, Synthetic Texturing Using Digital Filters, Computer Graphics,
SIGGRAPH 1980 Proceedings, 14(3):294–301, July 1980.

[8] M. Gangnet, D. Perny, and P. Coueignoux, Perspective Mapping of Planar Textures, Eurographics 1982, pp.
57–71, September 1982.

[9] Ned Greene and Paul S. Heckbert, Creating Raster Omnimax Images from Multiple Perspective Views Using
the Elliptical Weighted Average Filter, in IEEE Computer Graphics and Applications, 6(6):21–27.

[10]Robert C. Lansdale, Texture Mapping and Resampling for Computer Graphics, Master’s thesis, Dept. of
Electrical Engineering, University of Toronto, Toronto, Ontario, Canada, January 1991.

[11]Andreas Schilling, Günter Knittel, and Wolfgang Strasser, Texram: A Smart Memory for Texturing, in IEEE
Computer Graphics and Applications, 16(3):32–41, May 1996.

