
A Non-Invasive Platform Supporting
Distributed, Real-Time, Multimedia
Collaboration

Ming C. Hao, Joesph S. Sventek
Software Technology Laboratory
HPL-98-101
May, 1998

distributed,
real-time,
multimedia,
collaboration

This report describes the architecture and an
implementation of SharedApp, a platform
supporting distributed, real-time, multimedia
collaboration.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

HP Laboratories
A Non-invasive Platform Supporting
Distributed, Real-Time, Multimedia Collaboration

Ming C. Hao and Joseph S. Sventek

This report describes the architecture and an implementation of SharedApp,
a platform supporting distributed, real-time, multimedia collaboration.

May 21, 1998
HPL/STL/DSA-98-001

Version 1.0
1.0 Introduction

1.1 Business Need

One of the frequently-mentioned promises of ubiquitous
distributed computing is the ability to support real-time
electronic collaboration. By coupling such electronic
interactions with voice (and potentially, video) channels,
non-collocated individuals should be able to produce col-
laborative artifacts without incurring the costs and incon-
venience of travel to a central location for face-to-face
collaboration.

This is especially true for those industries in which there is
a heavy dependence upon sophisticated, computer-aided
design (CAD) tools, such as the automotive and aerospace
industries. In addition to collaborative design, other forms
of interaction around the CAD artifacts must occur for
these companies to successfully conduct business - e.g.
interactions between design engineers and factory-floor
engineers when setting up the manufacturing lines or
between design engineers and maintenance engineers
when servicing a product. In each of these cases, it is diffi-
cult or impossible to achieve collocation between the com-
municants. As a result, distributed, collaborative use of
design tools is a high priority for these industries.

The current state of the art for collaboration software is
limited to providing a shared 3D view [4], only. Most soft-
ware collaboration research prototypes and products are
based on file/image/store-forward sharing.

1.2 Invasive Solutions

There has been a substantial amount of research into the
infrastructure needs for real-time, collaborative tools [1-
12]. These infrastructures have predominantly required
that applications be specially constructed to avail them-
selves of features in the infrastructures in order to support
collaborative use. Those that have taken a less invasive
approach [8] still require that the application code be
relinked with a special library in order to support collabo-
rative use. An application vendor wishing to support col-
laboration using these infrastructures, in addition to the
equivalent stand-alone product, would have to support two
or more products in the marketplace.

Unfortunately, the commercial imperative in the comput-
ing industry today is to produce best-in-class applications
targeted for use by individual users. The sheer size of the
market for such applications easily dwarfs that for collabo-
ration-aware applications. As a result, few vendors go to
the trouble of producing collaboration-ready applications
for consumption by the public.
May 21, 1998 2:26 pm

A Non-invasive Platform Supporting Distributed, Real-Time, Multimedia Collaboration

a-
i-

-
]

n-
se
e
in-
ut
a-
ted
-

Remote, real-time collaboration relies heavily upon addi-
tional, isochronous channels of communication, in addi-
tion to the non-isochronous, data interaction provided by
collaboration-aware applications. A voice channel is abso-
lutely necessary, and a some systems [8, 18] have experi-
mented with video channels, as well. The requisite degree
of coupling/synchronization of the isochronous channel[s]
to the data channel is not generally agreed, and many of
the research efforts in collaboration infrastructures have
spent considerable effort in providing support for these
isochronous channels.

1.3 Our Non-invasive Solution

The platform that we have developed (SharedApp),
described herein, was designed to meet the following
requirements:

• it must be non-invasive to applications, window sys-
tems, and operating system platforms;

• it must operate well in network environments with lim-
ited sustainable bandwidth; and

• it must support fully-synchronized collaboration
among a small (2-10 participants) group of distributed
collaborators using their application[s] of choice.

An explicit non-goal of the current work is to integrate
voice communication into the data communication infra-
structure. Successful use of a SharedApp collaborative
session requires each user to have an out-of-band voice
connection with the other users. This is easily achieved
through the use of voice bridging technologies available
from most telecom network operators.1

The remainder of the paper is as follows: section 2
describes the architecture of SharedApp; section 3 details
the implementation and experience building and using
SharedApp in an X Windows environment; section 4 com-
pares this work with previous work in the field; and sec-
tion 5 summarizes the work and describes future
directions.

2.0 The SharedApp Architecture

Any platform supporting collaboration must address the
following technical issues:

• is the collaborative application centralized or repli-
cated?

• is the application itself collaboration-aware?

• how are user interactions synchronized?

The following sections describe the SharedApp architec-
ture with regards to these technical issues.

2.1 Centralized vs. Replicated Structure

There are two possible structures for constructing a collab-
oration infrastructure:

1. in a centralized structure, there is only one instance of
the shared application; input to the application is sent
to the execution site, and the output of the application
is sent to all of the collaborating displays; examples of
this style of system are SharedX [3] and JVTOS’s
Shared Window System [1,2]

2. in a replicated structure, an instance of the shared
application is executed locally on each user’s workst
tion; user inputs to and outputs from the shared appl
cation only occur locally, with some coordination
traffic occurring between the instances of the applica
tion; examples of this style of system are MMConf [8
and VConf [9]

As illustrated in Figure 1 on page 3, a common impleme
tation technique for the centralized structure is to interpo
a pseudo-window-server between an application and th
display’s window server. The pseudo-server receives w
dow system calls from the application, and fans these o
to the window servers for each of the connected workst
tions; it also receives the input events from each connec
workstation. This implementation technique usually gen
erates substantial network traffic due to the continual
transmission of graphics primitives and bitmaps to the
connected workstations. JVTOS [1,2] and SharedX [3]
both use this technique.

Another drawback to the pseudo-server scheme is that
only graphics calls directed to the pseudo-server can be
shared. Most sophisticated graphics applications, like
CAD tools, use direct hardware access (DHA) to maxi-
mize graphics performance. Use of DHA bypasses the

1. This assumption (out-of-band voice communication) significantly
simplifies the provision of a collaboration platform. If there is a need
to more formally synchronize the audio content with the data content
(e.g. to store potentially causally-related content for later replay),
then it will be necessary to not only augment the current system with
microphones and speakers, but also to battle with the network for suf-
ficient guaranteed bandwidth to provide adequate voice quality.
2 of 11

A Non-invasive Platform Supporting Distributed, Real-Time, Multimedia Collaboration

ve
h

z-

he
h

n

er

ar-

of

4.

lat-

-
y
on
 of
window system, rendering the pseudo-server technique
useless for collaboration with DHA applications.

The replicated structure significantly reduces the network
traffic and offers superior response time, but at the
expense of synchronization complexity among multiple
instances of the shared application. Lauwer’s “Replicated
Architectures for Shared Window Systems” [6] describes
some of these synchronization problems in detail; they
usually manifest themselves as input/output inconsistency
among the multiple displays and event ordering difficul-
ties. To resolve these problems, Lauwers required that
applications be made collaboration-aware. Many other
solutions to synchronization issues have been proposed
[10-12,14].

Due to our requirement for operation in network environ-
ments with limited sustainable bandwidth, SharedApp
employs the replicated structure, thus trading off band-
width for processor cycles. This structure also permits
DHA applications to be used collaboratively. In exchange
for the flexibility provided by the replicated structure,
SharedApp must solve the synchronization problems
inherent in a replicated structure.

2.2 Application Encapsulation

Central to the design of the SharedApp architecture is the
following assertion:

Once a window-based application has been initiated
and initialized to a particular state, all changes to the
application are effected via events delivered by the
window system.

For applications that satisfy this assertion, we can achie
a non-invasive, replicated, collaborative structure throug
the following steps:

1. create a collaboration session by initiating and initiali
ing instances of the application to be shared on the
multiple workstations involved in the session; and

2. capture events targeted at each of these application
instances; multicast the captured events to each of t
collaborating instances and replay the events to eac
collaborating instance.

In order to do this non-invasively, step 1 above is broke
down into three constituent steps:

a. create a component that acts as the session controll

b. create an encapsulation component on each of the t
get workstations to be involved in the session

c. initiate and initialize an application instance on each
the target workstations

This component structure is shown in Figure 2 on page

The session controller and application encapsulators (p
form infrastructure) conspire to provide the collaborative
work session. The individual application instances con-
tinue to be operated in single-user mode. As such, this
structure satisfies the non-invasive requirement for the
collaboration platform.

2.3 Synchronization

As alluded to in Section 2.2 on page 3, once this compo
nent structure is in place, the collaboration is achieved b
capturing window system events targeted at an applicati
instance’s window, communicating those events to each
Figure 1. Centralized Intercept Structure

Intercept
Pseudo Server

Workstation 2

 Workstation 3

Workstation 1

 Workstation 4

Application

3 of 11

A Non-invasive Platform Supporting Distributed, Real-Time, Multimedia Collaboration
the encapsulators, and replaying those events to the appli-
cation instances.

The synchronization requirement described in Section 1.3
on page 2 requires that the collaborators be synchronized
in both place and time. Since we have exchanged the com-
munication load of the centralized structure for concurrent
execution in the replicated structure, we must ensure that
each instance eventually is in the same state. In order to
use the application collaboratively in real-time, we must
also ensure that the replay of each event to the multiple
instances is sufficiently synchronized in time. Absent
either of these characteristics, the system will be unusable
for real-time collaboration.

In order to meet the synchronization in place requirement,
it is essential that each instance see the same sequence of
events. This implies a total ordering on the events received
from all of the instances. It also demands that the applica-
tion instances be deterministic with respect to the event
sequence - i.e. if multiple instances, all starting in the same
initial state, process identical sequences of events, they
will all end up in the same final state. This ordering can be
achieved if the platform infrastructure implements some
form of floor control, either implicit or explicit (from the
point of view of the users).

In order for the collaborators to see the same view at the
same time, it is also necessary to synchronize the event

replay at the different sites. There are a variety of mecha-
nisms that can be used for such synchronization, varying
from the extremely pessimistic (2-phase protocol for each
event) to the extremely optimistic (totally open loop).
Realistic systems will fall somewhere in the middle of this
spectrum, using a 2-phase protocol to synchronize around
critical events (in terms of the need for interactive syn-
chronization) in the event sequence.

2.3.1 Event Capture
The normal activity when a user types a character or
presses a mouse button on a window is the delivery of a
window event, appropriate to the user action, to the appli-
cation that owns the window [13]. That application is nor-
mally sitting in an event loop, retrieving each event in turn
and performing the processing appropriate to the type of
the event.

A critical capability required to enable the SharedApp
platform is a non-invasive method for a third-party appli-
cation to capture the events generated by the window sys-
tem before they are delivered to the owning application.
We have successfully achieved this capability for both X
Windows-based applications and for Windows/NT-based
applications [19-22]. Given the structure shown in
Figure 2 on page 4, each Encapsulator Instance is wired to
capture window system events destined for its correspond-
ing Application Instance at session setup time.
Figure 2. Component structure for a SharedApp session

Session Controller

Encapsulator Instance N

Application Instance N

• • •

Encapsulator Instance 2

Application Instance 2

Encapsulator Instance 1

Application Instance 1

P
L
A
T
F
O
R
M

I/S
4 of 11

A Non-invasive Platform Supporting Distributed, Real-Time, Multimedia Collaboration

his
s
i-

m-

ap-

f

h of
o
2.3.2 Event Encoding
Once the events are captured, different types of processing
may be performed on the event data. Some examples are:

• while the network traffic resulting from the events is
already relatively small compared to shipping graphics
primitives and bitmaps, it may be necessary to further
compress the event stream - e.g. motion events are gen-
erated by the window system by sampling at relatively
short intervals of time; shipping each such motion
event separately will generate many small packets of
network traffic; with no loss of precision, one can com-
press the motion events gathered over a longer period
of time, or until a non-motion event occurs, replacing
the sequence of motion events by the last motion event
in the sequence

• as stated in Section 2.3 on page 3, the application
instances must be deterministic; during our experimen-
tation, we have found that certain windows toolkits
(e.g. Motif) take liberties with collapsing successive
motion events on the event queue prior to delivering
the next event to the application in its event loop; in
order to disable this source of non-determinism, we
have found it necessary to stuff null-events between
successive motion events in the event stream; this null-
event stuffing protocol is depicted in Figure 3 on
page 5

• event packets generally contain the (x,y) coordinates
where the event occurred, usually in terms of pixel
number; in order to permit each user to customize his/
her window sizes, the events that are distributed by the
session controller have had the coordinates normal-

ized; it is the responsibility of the encapsulator to map
the normalized coordinates to the actual coordinates
for its application instance

2.3.3 Event Mapping
Once an event has been captured and communicated to all
of the application encapsulators, we must be sure that the
event is replayed into the correct window in each applica-
tion instance.

Most window systems today support a hierarchical struc-
ture among the windows that populate a user’s screen; t
includes not only windows that the user would think of a
windows, but also buttons, menus, and other screen art
facts that, in fact, are implemented as static or dynamic
windows.

At session establishment time, the session controller co
municates with each encapsulator to discern the window
hierarchy for the application instance on that host. This
permits the session controller to establish a canonical m
ping for the shared application’s static window hierarchy
such that this event mapping can take place. This algo-
rithm is shown schematically in Figure 4 on page 6.

The platform infrastructure components must also map
dynamic windows that come into existence as a result o
the actions of the application. Since the application
instances are deterministic, we are guaranteed that eac
the instances will create the same window in response t
the same event stimulus.
Figure 3. Null event stuffing schematic

EncapsulatorBDBUCHM4 M3 M1M2 φ BDBUCHM4 M3 M1M2 φ

Legend: M<i> - motion event
BD - button down event
BU - button up event
CH - character event
φ - null event

Input Event Stream Output Event Stream
5 of 11

A Non-invasive Platform Supporting Distributed, Real-Time, Multimedia Collaboration
2.3.4 Event Communication
After capturing and encoding input events, the session
controller tags (with the target window identifier) and
communicates the events to each of the encapsulators; dur-
ing this process, the controller defines the fixed order of
events that all instances will see; it may also group the
events into blocks or perform any other activities that may
enhance the communication performance and synchroni-
zation (See Section 2.3.5 on page 6 for more details on
synchronization). Each encapsulator forwards the received
events to its application instance; the instances automati-
cally trigger their own event handlers to execute received
events. Events are processed just as they would be if the
window events had been directly entered into the applica-
tion windows by a user on that host.

The communication from an encapsulator to the session
controller is unicast, while that from the session controller
to the encapsulators is inherently multicast. Depending

upon the size of the collaboration group, one can choose
different mechanisms to achieve the multicast functional-
ity. Due to o(N2) complexity in the synchronization algo-
rithm, defined in Section 2.3.5 on page 6, we did not find
it necessary to use an actual multicast mechanism, prefer-
ring to simply perform N unicast operations to the encap-
sulators.

2.3.5 Event Synchronization and Replay
As mentioned previously, a useful collaboration frame-
work must be able to synchronize the activities of all of
the instances in time. In addition to the communication
delays that can be experienced in communicating the
events to the encapsulators, the end workstations may
have differing processing speed characteristics. The algo-
rithm must be able to synchronize with respect to both of
these sources of asynchrony.
Figure 4. Establishing canonical window hierarchy

6f

6a 60

6b 6c 6d

65

63

68 66

61

62

6eDisplay 1 Display N

ApplicationApplication

get hierarchy

Encapsulator 1 Encapsulator N• • •

get hierarchy

9f

9a 90

9b 9c 9d

95

93

98 96

91

92

9e

Session Controller

0a 00

0e

0f

0b 0c 0d 01

02

03

05

08 06
6 of 11

A Non-invasive Platform Supporting Distributed, Real-Time, Multimedia Collaboration

s-
t
m

 for
t a
s
nt
t

or

v-

it

he
he

r
).

ue,
t at
n
The SharedApp platform has chosen to use a 2-phase pro-
tocol between the session controller and the encapsulators.
This protocol can be likened to the usual 2-phase commit
protocols used between a transaction monitor and the par-
ticipants in a transaction.

The protocol between the session controller and the ith
encapsulator is show schematically in Figure 5 on page 7.
The first phase consists of communicating the event
packet to each encapsulator and waiting for each encapsu-
lator to acknowledge receipt. Upon receiving all of the
acknowledgments, the controller then directs each encap-
sulator to replay the event[s] contained in the event packet
to its application instance. The encapsulator responds
when it has replayed the event[s] to its application
instance.

While the above protocol will synchronize with respect to
network delays, it is unable to mask differences in pro-
cessing speed. If the application which is being used col-
laboratively is a complex, 3D modeling tool, a single event
can cause each application instance to initiate a substantial
amount of processing. If there is a severe mismatch in the
processing speeds of the collaborators, the slowest ones
will get further and further behind if one of the faster
machines is actually driving the collaboration (by provid-
ing events). What is needed here is a non-invasive mecha-
nism by which we can determine that the application
instance has completed its processing.

Unfortunately, such a non-invasive mechanism does not
exist. But, we have found a capability that is almost as
good - i.e. we can determine that the application instance
has removed the last event that was placed on its event

queue1. This permits us to synchronize over processing
speed differences, albeit in an “off by one” manner.

If this sub-protocol is enabled for a session, then the
encapsulator delays its “Events replayed” message (me
sage 4 in Figure 5 on page 7) until it has determined tha
the last event in the event packet has been removed fro
the event queue by the application instance.

Note that the sub-protocol does not need to be enabled
a collaboration session in which processing speed is no
concern. In this case, the encapsulator sends its “Event
replayed” message as soon as it has placed the last eve
from the event packet on the application instance’s even
queue.

2.3.6 Floor Control
As mentioned in Section 2.3 on page 3, some form of flo
control is required to guarantee a coherent, identical
stream of events to each application instance. While se
eral types of floor control algorithm are known [8], we
have chosen an explicit floor control mechanism for
SharedApp. Each application encapsulator provides a
floor control window on each participant’s screen. The
floor control provides buttons and dialogue areas to perm
each user to participate in the floor control algorithm.

A user needs to acquire the floor before events that he/s
is generating will be shared with the other instances in t
collaboration. Input events from other participants are
inhibited. The dialogue area in the floor control window
indicates at all times which user currently holds the floo
(or that the floor is not held by anyone, if that is the case

1. No rocket science here - every window system supports both destruc-
tive and non-destructive calls to look at the next event on the queue.
After placing the last event on the application instance’s event que
the encapsulator simply performs a non-destructive get next even
a reasonable frequency until it discerns that the last event has bee
removed from the queue.
Figure 5. 2-phase Protocol used by the Platform Infrastructure

1. Event message

2. I received message

3. Replay events

4. Events replayed

Session Controller Encapsulator i
7 of 11

A Non-invasive Platform Supporting Distributed, Real-Time, Multimedia Collaboration

he

-

y

ti-

-
7

-
m.
2.3.7 Virtual Cursor
During our experimentation with a SharedApp prototype,
we discovered that non-floor-holders were unable to com-
pletely follow the floor-holder’s logic if he/she performed
a substantial amount of cursor movement. From these user
studies, we determined that we needed to provide a
shadow image of the current floor holder’s cursor on the
displays of the other collaborators. This virtual cursor
improves visual perception of collaboration among partic-
ipants since every cursor movement of the current floor
holder’s cursor is exactly replicated to the rest of the par-
ticipants.

As described in Section 2.3.2 on page 5, the encapsulators
may compress multiple motion events (those generated
when the floor holder moves the cursor) based on collec-
tion time or the occurrence of a non-motion event. In order
to support this virtual cursor capability, the current cursor
position must be communicated with each motion event
that is transmitted, such that the virtual cursor can be dis-
played on each of the collaborators’s screens. This mecha-
nism is shown schematically in Figure 6 on page 8.

3.0 The X Windows Implementation

While we have constructed versions of the platform for
both X Windows and Windows/NT environments [15-17],
we will concentrate on our experiences with the X Win-
dows implementation here.

3.1 Architectural Refinement

Since the X Window system supports remote displays, t
Session Controller component, itself, manages the floor
control window and event capture from the Application
Instance components from Figure 2 on page 4. The floor
control window has the Motif look and feel.

We found it necessary to perform motion event compres
sion for realistic applications, null-event stuffing to over-
ride the non-deterministic event elimination performed b
the Motif toolkit, and use normalized coordinates to per-
mit users to personalize the sizes of their windows. The
virtual cursor protocol is piggy-backed onto the motion
event stream.

We use ICCCM communication support to simulate mul
cast between the Session Controller and each Encapsulator
Instance. The 2-phase protocol and last event dispatch
detection algorithm are used.

3.2 Application Examples

In order to prove the utility and non-invasiveness of the
platform, we have experimented with a number of CAD
applications (Pro/ENGINEER 3D, Catia, ICAD, SRC/
IDEAS, ...) on a number of UNIX platforms (HP-UX,
Solaris, AIX). While it is impossible to convey the collab
orative nature of platform use via a static picture, Figure
on page 9 shows an example of the type of complex co
design projects that can be undertaken using the platfor
Figure 6. Virtual Cursor Movements

last movement

 action

sync piece Pi

last cursor movement

p1

p2

p3

p4p5
p6

floor-holder cursor virtual cursor

idleidle

multicast

generate movement
8 of 11

A Non-invasive Platform Supporting Distributed, Real-Time, Multimedia Collaboration

-

e

e
ve
/
a-

ld
f

-

A major automobile manufacturer has been using a ver-
sion of the prototype with ICAD and SRC/IDEAS to facil-
itate engineering/manufacturing communication since
1996. Hewlett-Packard is in the process of producing a
product from the prototype for general consumption.

3.3 Performance Characteristics

The principal performance measure for a collaborative
platform can be summed up in a single question - i.e. does
the platform manage the bandwidth available to provide
the collaborative user with an interactive experience simi-
lar to a stand-alone user?

One can distinguish two sub-questions:

• can the typical network handle the communication traf-
fic generated by the platform?

• do the various protocols introduced by the platform
cause a degradation in the interactivity of the applica-
tion?

Our most telling test of the bandwidth question occurred
when we deployed the platform for the automotive manu-
facturer in 1996. The company’s intranet consisted of 56
kbit/second dedicated lines between their engineering
facilities and manufacturing facilities. They had previ-
ously attempted to use a centralized structure to provide
the needed collaboration, but with no success due to th
limited bandwidth. Upon installation of the SharedApp
platform, within weeks the collaborative application was
in daily use. “Using ICAD with SharedApp is as respon-
sive as a telnet virtual terminal session.” is representativ
of the testimonials from the customer. Since then, we ha
tested SharedApp over networks with as little as 8 kbits
second and found the interactivity provided by the applic
tion to be acceptable.

We were quite concerned that the 2-phase protocol wou
introduce intolerable delays from the interactivity point o
view. Our experience has been quite to the contrary -
unless you are attempting to use the mechanism over a
very over-subscribed network, the communication proto
Figure 7. Virtual Team Design

Catia/HP

workstation 2

workstation 4

Catia/IBM

workstation 1

workstation 3

SharedApp

Catia/SGI Catia/SUN
9 of 11

A Non-invasive Platform Supporting Distributed, Real-Time, Multimedia Collaboration

-
cols in use all occur well-within the 0.5-2 second response
time that users expect of interactive applications.

If there are severe processing speed mismatches among
the workstations involved, and the users’ collaboration
employs a tool which does a substantial amount of pro-
cessing, the last event dispatch detection algorithm will
cause the collaborative session to run at the speed of the
slowest processor. If a user’s performance benchmark is
relative to a fast processor in stand-alone mode, that user
will obviously be disappointed by the performance when a
slow processor is added to the collaborative mix. It is our
experience that users quickly internalize this situation, and
attempt to employ processors with similar processing
capability when establishing their sessions.

4.0 Comparison with Other Work

Platforms that rely upon a centralized structure, such
JTVOS[1] and SharedX[3], are non-invasive. Unfortu-
nately, since they use the interception approach described
in Section 2.1 on page 2, their use for collaboration in
which there is a large amount of output will demand sub-
stantial communication bandwidth. It is also impossible to
use these platforms to support collaboration with respect
to Direct Hardware Access (DHA) applications.

Most other platforms that use the replicated approach are
invasive - i.e. require that the application be modified in
order to participate in a collaborative session. MMConf
[8] is the least invasive, in that it only requires that the
application be relinked with a substitute library; unfortu-
nately, most users do not have the luxury to be able to per-
form this relinkage, nor is there sufficient adoption of any
one of these platforms such that the major application ven-
dors provide a collaboration-aware version of their appli-
cations.

The system most similar in spirit to SharedApp is the
VConf system [6, 9]. In this work, Lantz and Lauwers
attempted to integrate the Session Controller and the
Application Encapsulator components directly into the
V system window server. Without floor control, they
encountered the expected problems with using their sys-
tem collaboratively. Lauwers [9] proposed making the
applications collaboration-aware to alleviate these syn-
chronization problems. They also did not address the
speed-mismatch problems when using processor-inten-
sive applications.

Microsoft currently distributes a product called NetMeet
ing [18]. NetMeeting differs from SharedApp in the fol-
lowing ways:

• NetMeeting uses a centralized structure, in that one
copy of the application executes at the initiator PC,
with the participants sharing the initiator output dis-
plays.

• NetMeeting is based on sharing of the Windows API.
Thus NetMeeting can not support collaboration using
DHA applications.

• NetMeeting only runs on NT or Windows 95. Share-
dApp is designed for platform independence, although
the implementation of the platform in an X Windows
environment will be different than that for a Windows/
NT environment. Note that the protocols will still be
the same, so interoperation between platforms is possi-
ble.

5.0 Summary

SharedApp is a light weight, non-invasive application
sharing platform that enables collaborative design using
graphic intensive applications over low bandwidth net-
works. The technology is based on an event driven mecha-
nism to share a reduced event set dynamically controlled
by the current window state. SharedApp has been used to
support collaborative CAD/CAM 3D modeling among
multiple workstations. Its event-multicast design center
permits it to be usable over a variety of network band-
widths (tested as low as 8 kbit/second).

This mechanism is the foundation on which to support vir-
tual co-location and concurrent engineering strategies. The
platform infrastructure supports complete synchronization
and fast response time through replication without modify-
ing applications. With a single user input source and two-
phase protocol, SharedApp maintains a consistent view
among the multiple application instances. With a 1-1 win-
dow hierarchy tree mapping and standard window system
protocols (X Windows and Windows/NT), SharedApp is
designed for heterogeneous processing; it is able to share
applications across different platforms - e.g. HP, SUN,
SGI, IBM. SharedApp is a simple and significant technol-
ogy to support distributed, real-time, collaborative engi-
neering.
10 of 11

A Non-invasive Platform Supporting Distributed, Real-Time, Multimedia Collaboration

e

g,

-
g

-

ev-

d

-

r-
i-
6.0 References

[1] Thomas Gutekunst, Daniel Bauer, et al, “A Distrib-
uted and Policy-Free General Purpose Shared Win-
dow System,” IEEE/ACM Transactions on
Networking, Vol. 3, No. 1, Feb. 1995.

[2] Thomas Gutekunst and Bernhard Plattner, “Sharing
Multimedia Applications Among Heterogeneous
Workstations,” Proceedings of the Second Interna-
tional Conference on Broadband Islands, 1993,
Elsevier Science Publishers B. V.

[3] John R. Portherfield “Mixed Blessings” and “HP
SharedX”, HP Professional, Volume 5, Issue 9, Sep-
tember, 1991.

[4] Uwe Jasnoch, et al, “Shared 3D Environments within
a Virtual Prototype Environment,” Proceedings of
WET ICE ’96.

[5] M. Sobolewski, et al, “Functional Specifications for
Collaboration Services,” Proceedings of 3rd IEEE
Workshop on Enabling Technologies: Infrastructure
of Collaborative Enterprises, Apr. 1994.

[6] J. Chris Lauwers, Thomas A. Joseph, Keith A. Lantz,
“Replicated Architectures for Shared Window Sys-
tems: A Critique,” Communications of the ACM,
1990.

[7] Daniel Garfinkel, Randy Branson, “A Comparison of
Application Sharing Architectures in the X Environ-
ment,” Proceedings of Xhibition 91.

[8] Terrence Crowley, Paul Milazzo, Ellie Baker, Harry
Forsdick, and Raymond Tomlinson, “MMConf: An
Infrastructure for Building Shared Multimedia Appli-
cations,” Proceedings of CSCW 90.

[9] K. A. Lantz, “An Experiment in Integrated Multime-
dia Conferencing,” Proceedings of CSCW 86.

[10] S. R. Ahuja, J. R. Ensor, S. E. Lucco, “A Comparison
of Application Sharing Mechanisms in Real-Time
Desktop Conferencing Systems,” p238-248, Commu-
nications of the ACM, 1990.

[11] C. Ellis, S.J.Gibbs, “Design and use of a group edi-
tor,” Working Conference on Engineering for Human-
Computer Interaction, 1989.

[12] Stephen Zabele, Steven I. Rohall, Ralph L. Vin-
ciguerra, “High Performance Infrastructure for Visu-

ally-intensive CSCW Applications,” Proceedings of
CSCW 94.

[13] Communications of ACM, Special Section on
“Graphical User Interfaces: The Next Generation”,
Apr. 1993, Vol. 36, No. 4.

[14] E. C. Cooper, “Replicated Distributed Programs”, In
Proc. 10th Symposium on Operating Systems. p63-
78, ACM, Dec 1985.

[15] Sventek and Hao, “Collaborating Using Your Favorit
3D Application,” Proceedings of the Third ISPE
International Conference on Concurrent Engineerin
Toronto, Ontario, Canada, August 1996.

[16] Hao, Lee, and Sventek, “A Light-Weight Application
Sharing Infrastructure for Graphics Intensive Appli-
cations,” Proceedings of the Fifth International Sym
posium on High Performance Distributed Computin
(HPDC-5), Syracuse, NY, August 1996.

[17] Hao, Glajchen, and Sventek, “SmallSync: A Method
ology for Diagnosis and Visualization of Distributed
Processes on the Web,” Proceedings of the IEEE S
enth International Workshop on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises,
Stanford University, CA, June 1998.

[18] http://www.microsoft.com/netmeeting/default.htm, the
NetMeeting home page.

[19] U.S. Patent on “Method and Apparatus to Sense an
Multicast Window Events to a Plurality of Existing
Applications for Concurrent Execution,” Hewlett-
Packard, April 1998.

[20] U. S. Patent pending on “A Mechanism to Control
and Use Window Events Among Applications in Con
current Computing,” Hewlett-Packard, Oct 1994.

[21] U. S. Patent pending on “A Mechanism to Synchro-
nize 3D Motion Views Among a Plurality of Existing
Applications in Concurrent Engineering,” Hewlett-
Packard, Oct 1995.

[22] U. S. Patent pending on “A Mechanism to share Cu
sor for Concurrent Execution and Consistent Graph
cal Views Among a Plurality of Existing
Applications,” Hewlett-Packard, Dec 1995.
11 of 11

	Figure 1. Centralized Intercept Structure
	Figure 2. Component structure for a SharedApp session
	P L A T F O R M
	I/S
	Figure 3. Null event stuffing schematic

	Legend: M<i> - motion event BD - button down event BU - button up event CH - character event f - ...
	Figure 4. Establishing canonical window hierarchy
	Figure 5. 2-phase Protocol used by the Platform Infrastructure
	Figure 6. Virtual Cursor Movements
	Figure 7. Virtual Team Design

	A Non-invasive Platform Supporting Distributed, Real-Time, Multimedia Collaboration
	Ming C. Hao and Joseph S. Sventek
	This report describes the architecture and an implementation of SharedApp, a platform supporting ...
	May 21, 1998 HPL/STL/DSA-98-001 Version 1.0
	1.0 Introduction
	1.1 Business Need

	One of the frequently-mentioned promises of ubiquitous distributed computing is the ability to su...
	This is especially true for those industries in which there is a heavy dependence upon sophistica...
	The current state of the art for collaboration software is limited to providing a shared 3D view ...
	1.2 Invasive Solutions

	There has been a substantial amount of research into the infrastructure needs for real-time, coll...
	Unfortunately, the commercial imperative in the computing industry today is to produce best-in-cl...
	Remote, real-time collaboration relies heavily upon additional, isochronous channels of communica...
	1.3 Our Non-invasive Solution

	The platform that we have developed (SharedApp), described herein, was designed to meet the follo...
	• it must be non-invasive to applications, window systems, and operating system platforms;
	• it must operate well in network environments with limited sustainable bandwidth; and
	• it must support fully-synchronized collaboration among a small (2-10 participants) group of dis...
	An explicit non-goal of the current work is to integrate voice communication into the data commun...
	The remainder of the paper is as follows: section 2 describes the architecture of SharedApp; sect...
	2.0 The SharedApp Architecture

	Any platform supporting collaboration must address the following technical issues:
	• is the collaborative application centralized or replicated?
	• is the application itself collaboration-aware?
	• how are user interactions synchronized?
	The following sections describe the SharedApp architecture with regards to these technical issues.
	2.1 Centralized vs. Replicated Structure

	There are two possible structures for constructing a collaboration infrastructure:
	1. in a centralized structure, there is only one instance of the shared application; input to the...
	2. in a replicated structure, an instance of the shared application is executed locally on each u...

	As illustrated in Figure�1 on page�3, a common implementation technique for the centralized struc...
	Another drawback to the pseudo-server scheme is that only graphics calls directed to the pseudo-s...
	The replicated structure significantly reduces the network traffic and offers superior response t...
	Due to our requirement for operation in network environments with limited sustainable bandwidth, ...
	2.2 Application Encapsulation

	Central to the design of the SharedApp architecture is the following assertion:
	Once a window-based application has been initiated and initialized to a particular state, all cha...
	For applications that satisfy this assertion, we can achieve a non-invasive, replicated, collabor...
	1. create a collaboration session by initiating and initializing instances of the application to ...
	2. capture events targeted at each of these application instances; multicast the captured events ...

	In order to do this non-invasively, step 1 above is broken down into three constituent steps:
	a. create a component that acts as the session controller
	b. create an encapsulation component on each of the target workstations to be involved in the ses...
	c. initiate and initialize an application instance on each of the target workstations

	This component structure is shown in Figure�2 on page�4.
	The session controller and application encapsulators (platform infrastructure) conspire to provid...
	2.3 Synchronization

	As alluded to in Section�2.2 on page�3, once this component structure is in place, the collaborat...
	The synchronization requirement described in Section�1.3 on page�2 requires that the collaborator...
	In order to meet the synchronization in place requirement, it is essential that each instance see...
	In order for the collaborators to see the same view at the same time, it is also necessary to syn...
	2.3.1 Event Capture

	The normal activity when a user types a character or presses a mouse button on a window is the de...
	A critical capability required to enable the SharedApp platform is a non-invasive method for a th...
	2.3.2 Event Encoding

	Once the events are captured, different types of processing may be performed on the event data. S...
	• while the network traffic resulting from the events is already relatively small compared to shi...
	• as stated in Section�2.3 on page�3, the application instances must be deterministic; during our...
	• event packets generally contain the (x,y) coordinates where the event occurred, usually in term...
	2.3.3 Event Mapping

	Once an event has been captured and communicated to all of the application encapsulators, we must...
	Most window systems today support a hierarchical structure among the windows that populate a user...
	At session establishment time, the session controller communicates with each encapsulator to disc...
	The platform infrastructure components must also map dynamic windows that come into existence as ...
	2.3.4 Event Communication

	After capturing and encoding input events, the session controller tags (with the target window id...
	The communication from an encapsulator to the session controller is unicast, while that from the ...
	2.3.5 Event Synchronization and Replay

	As mentioned previously, a useful collaboration framework must be able to synchronize the activit...
	The SharedApp platform has chosen to use a 2-phase protocol between the session controller and th...
	The protocol between the session controller and the ith encapsulator is show schematically in Fig...
	While the above protocol will synchronize with respect to network delays, it is unable to mask di...
	Unfortunately, such a non-invasive mechanism does not exist. But, we have found a capability that...
	If this sub-protocol is enabled for a session, then the encapsulator delays its “Events replayed”...
	Note that the sub-protocol does not need to be enabled for a collaboration session in which proce...
	2.3.6 Floor Control

	As mentioned in Section�2.3 on page�3, some form of floor control is required to guarantee a cohe...
	A user needs to acquire the floor before events that he/she is generating will be shared with the...
	2.3.7 Virtual Cursor

	During our experimentation with a SharedApp prototype, we discovered that non-floor-holders were ...
	As described in Section�2.3.2 on page�5, the encapsulators may compress multiple motion events (t...
	3.0 The X Windows Implementation

	While we have constructed versions of the platform for both X Windows and Windows/NT environments...
	3.1 Architectural Refinement

	Since the X Window system supports remote displays, the Session Controller component, itself, man...
	We found it necessary to perform motion event compression for realistic applications, null-event ...
	We use ICCCM communication support to simulate multicast between the Session Controller and each ...
	3.2 Application Examples

	In order to prove the utility and non-invasiveness of the platform, we have experimented with a n...
	A major automobile manufacturer has been using a version of the prototype with ICAD and SRC/IDEAS...
	3.3 Performance Characteristics

	The principal performance measure for a collaborative platform can be summed up in a single quest...
	One can distinguish two sub-questions:
	• can the typical network handle the communication traffic generated by the platform?
	• do the various protocols introduced by the platform cause a degradation in the interactivity of...
	Our most telling test of the bandwidth question occurred when we deployed the platform for the au...
	We were quite concerned that the 2-phase protocol would introduce intolerable delays from the int...
	If there are severe processing speed mismatches among the workstations involved, and the users’ c...
	4.0 Comparison with Other Work

	Platforms that rely upon a centralized structure, such JTVOS[1] and SharedX[3], are non-invasive....
	Most other platforms that use the replicated approach are invasive - i.e. require that the applic...
	The system most similar in spirit to SharedApp is the VConf system [6, 9]. In this work, Lantz an...
	Microsoft currently distributes a product called NetMeeting [18]. NetMeeting differs from SharedA...
	• NetMeeting uses a centralized structure, in that one copy of the application executes at the in...
	• NetMeeting is based on sharing of the Windows API. Thus NetMeeting can not support collaboratio...
	• NetMeeting only runs on NT or Windows 95. SharedApp is designed for platform independence, alth...
	5.0 Summary

	SharedApp is a light weight, non-invasive application sharing platform that enables collaborative...
	This mechanism is the foundation on which to support virtual co-location and concurrent engineeri...
	6.0 References
	[1] Thomas Gutekunst, Daniel Bauer, et al, “A Distributed and Policy-Free General Purpose Shared ...
	[2] Thomas Gutekunst and Bernhard Plattner, “Sharing Multimedia Applications Among Heterogeneous ...
	[3] John R. Portherfield “Mixed Blessings” and “HP SharedX”, HP Professional, Volume 5, Issue 9, ...
	[4] Uwe Jasnoch, et al, “Shared 3D Environments within a Virtual Prototype Environment,” Proceedi...
	[5] M. Sobolewski, et al, “Functional Specifications for Collaboration Services,” Proceedings of ...
	[6] J. Chris Lauwers, Thomas A. Joseph, Keith A. Lantz, “Replicated Architectures for Shared Wind...
	[7] Daniel Garfinkel, Randy Branson, “A Comparison of Application Sharing Architectures in the X ...
	[8] Terrence Crowley, Paul Milazzo, Ellie Baker, Harry Forsdick, and Raymond Tomlinson, “MMConf: ...
	[9] K. A. Lantz, “An Experiment in Integrated Multimedia Conferencing,” Proceedings of CSCW 86.
	[10] S. R. Ahuja, J. R. Ensor, S. E. Lucco, “A Comparison of Application Sharing Mechanisms in Re...
	[11] C. Ellis, S.J.Gibbs, “Design and use of a group editor,” Working Conference on Engineering f...
	[12] Stephen Zabele, Steven I. Rohall, Ralph L. Vinciguerra, “High Performance Infrastructure for...
	[13] Communications of ACM, Special Section on “Graphical User Interfaces: The Next Generation”, ...
	[14] E. C. Cooper, “Replicated Distributed Programs”, In Proc. 10th Symposium on Operating System...
	[15] Sventek and Hao, “Collaborating Using Your Favorite 3D Application,” Proceedings of the Thir...
	[16] Hao, Lee, and Sventek, “A Light-Weight Application Sharing Infrastructure for Graphics Inten...
	[17] Hao, Glajchen, and Sventek, “SmallSync: A Methodology for Diagnosis and Visualization of Dis...
	[18] http://www.microsoft.com/netmeeting/default.htm, the NetMeeting home page.
	[19] U.S. Patent on “Method and Apparatus to Sense and Multicast Window Events to a Plurality of ...
	[20] U. S. Patent pending on “A Mechanism to Control and Use Window Events Among Applications in ...
	[21] U. S. Patent pending on “A Mechanism to Synchronize 3D Motion Views Among a Plurality of Exi...
	[22] U. S. Patent pending on “A Mechanism to share Cursor for Concurrent Execution and Consistent...

