(ﬁ/” HEWLETT®

PACKARD

A Generic Proxying Facility for CMW
Based on the SOCKS Protocol

Chris I. Dalton

Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-98-100(R.1)

February, 1999

SOCKS, multi-level Our research into the application of Compartmented

security, CMW Mode Workstation (CMW)[1] technology has
highlighted the need for a general method of allowing
networked applications controlled but transparent
access across CMW compartments.

This report looks at using the SOCKS TCP relay
protocol [2] to provide such a generic proxying facility.
We consider the case where a CMW host is situated
between an internal and an external network and has
network interface connections to both.

First, we show how SOCKS can be used to provide
clients on the internal network with access to TCP
application services residing on the external network.

Secondly, we consider a more complex configuration
where the CMW platform is used to run multiple
independent applications that require access to an
organization's internal legacy systems. Access by
applications to systems on the internal network is
controlled using SOCKS.

We end with a discussion on the security implications
of using SOCKS and SOCKS on CMW in particular.

Internal Accession Date Only

o Copyright Hewlett-Packard Company 1998

1 Introduction

Our research into the application of Compartmented Mode Workstation (cMW) [1] tech-
nology has highlighted the need for a general method of allowing networked applications
controlled but transparent access across CMW compartments.

This report looks at using the SOCKS TCP relay protocol [2]'to provide such a generic
proxying facility. We consider the case where a CMW host is situated between an internal

and an external network and has network interface connections to both.

First, we show how SOCKS can be used to provide clients on the internal network with
access to TCP application services residing on the external network.

Secondly, we consider a more complex configuration where the cMW platform is used to run
multiple independent applications that require access to an organization’s internal legacy
systems. Access by applications to systems on the internal network is controlled using

SOCKS.
We end with a discussion on the security implications of using SOCKS and SOCKS on CMW
in particular.

We assume the reader is familiar with CMW concepts and terminology, in particular its use
as a firewall type host. If not, then details can be found in 3, 4].

2 The socks protocol and toolkit

The sOCKs protocol is a protocol for relaying TCP sessions through an intermediate host
such as a firewall. It allows transparent proxying of application protocols such as telnet,
ftp and HTTP.

The SOCKS toolkit%is an implementation of the SOCKS protocol. It consists of a proxying
server process and a client library.
The SOCKS server process runs on the intermediate host. It’s role is to form a virtual circuit

between the client and the application server and to relay packets between them. Access
control mechanisms within the SOCKS server process allow a policy of network access to be

established and enforced.

The client library provides direct plugin replacements for the standard TCP socket API
calls3. The SOCKS protocol is carried out below the socket API layer and is therefore

transparent to the application.

Creating a SOCKSified client is usually only a two step process. First, the existing socket

1socKs4.2
2 Available from ftp://ftp.nec.com/pub/socks/
3connect, bind, accept, listen and select.

calls are renamed to their SOCKS equivalent. Secondly, the application is linked against the
socks library. Shared library versions of the client libraries are available for some UNIX
platforms; In this case there is no need to recompile client source code. Client libraries are

also available for Macintosh and Windows platforms.

Figure 1 shows a typical usage of SOCKS in a firewalled environment. Here the firewall host
acts as a barrier between an external and internal network. The packet filtering function of
the firewall ensures that there is no direct access allowed between systems on the external
and internal networks. A SOCKS server is run on the firewall host to allow (controlled)

access to external hosts from internal clients.

Web %voctl’csiﬁcd
e

Server
\ FIREWALL / Browser

INTERNAL network

\

EXTERNAL network

\

Socksified

remote
telnet

host

Figure 1: Common SOCKS configuration

2.1 Access control in SOCKS

It is possible to restrict what hosts and application services a client can connect to through a
socks server. Access control for a client using the SOCKS protocol is enforced by the SOCKS
server process. The access control policy that any particular SOCKS server mandates is
defined by rules within a configuration file for that server. The access control rules allow a
policy based on a combination of user, requesting host, destination host and service port

to be established.

2.2 Logging

The SOCKS server has the ability to log all connection requests and also the number of
bytes transferred across a connection.

2.3 Hostname resolution

The hostname to 1P address resolution procedure done by the client is unmodified by the
socksifying process. This requires that any hostnames that a clients wishes to use must
be resolvable by that client. It is not sufficient that the SOCKS server process can resolve

the hostnames. The case where the intermediate host is a firewall separating internal and
external networks usually implies that the internal clients have access to a DNS name server
capable of resolving external addresses. See also section 6.

Further discussion on the use and configuration of the SOCKS toolkit can be found in [5, 6]

3 SOCKS on CMW

3.1 Provision of external application service access for internal clients

This discussion is based on the simple network architecture and cCMW configuration of fig-
ure 2. It is comprised of a cMW host with two network interface cards, one connected to
the external network and the other connected to an internal network. The networking on
the cMw is configured such that packets from the external network are labeled sYSTEM
OUTSIDE and packets from the internal network are labeled SYSTEM INSIDE. In this con-
figuration, a connection from the external network can communicate only with processes
labeled SYSTEM OUTSIDE. A connection from the internal network can communicate only
with processes labeled SYSTEM INSIDE The use of CMW in this way creates a clean sepa-
ration between the external and internal networks. The mandatory access controls ensure
packets from one network can not reach the other network.

SYSTEM INSIDE OUTSIDE

EXTERNAL network INTERNAL network
OUTSIDE INSIDE

SYSTEM

Figure 2: Simple CMW configuration

The problem addressed here is how to allow clients on the internal network access to
application services on the external network without compromising the overall system
security enhancements that the use of cMW provides. The solution described is based on

use of the SOCKS protocol.

3.1.1 A trusted SOCKS server

Figure 3 shows the proposed solution of using SOCKS on CMW. A trusted version of the
SOCKS server process runs on the CMWw host. It has been trusted with the ability to switch

between the SYSTEM OUTSIDE and SYSTEM INSIDE sensitivity levels.

Web SYSTEM INSIDE OUTSIDE evocll)(siﬁed

€
OUTSIDE INSIDE / Browser

INTERNAL network

T~

Server

/

EXTERNAL network

remote /

host SYSTEM

Socksified
telnet

Figure 3: Simple SOCKS on CMW configuration

The socks server loops, listening for connections at the level of the internal network inter-
face(SYSTEM INSIDE).

When it receives a packet from an internal client on this interface, it switches to the
level of the external network interface (SYSTEM OUTSIDE) and relays the packet to the
requested application server on the external network.

When a packet is received back from the application server on the external network, the
SOCKS server switches level to that of the external network interface, reads the packet and
switches level back to that of the internal network. The packet is then forwarded to the

internal client.

Importantly, the SOCKS client libraries need no modification to work with the trusted
CMW SOCKS server and are not trusted themselves. The internal clients are standard
socksified clients. For example, a standard web browser that has SOCKS support, such as
the Netscape Navigator, can be used on the internal network to connect to web servers out
on the external network. The fact that there is a cMW host between them is transparent
to both ends of the connection.

3.1.2 Required code changes to the SOCKS server

The code below shows the main processing loop of the socks server. The CMW code
that needs to be added to make it function as in figure 3 is contained within the ##ifdef

"HPUX_CMW sections.

while (1) {

if ((s = select(fdsbits, &fds, NULL,NULL, gtout)) > 0) {
if (FD_ISSET(in, &fds)) {
if ((n = read(in, buf, sizeof buf)) > 0) {
from_in += n;

#ifdef HPUX_CMW
if (setslabel(new_sl) < 0){

e;it(l);
}

#endif
if (write(out, buf, n) < 0){

goto bad;
}

#ifdef HPUX_CMW
if(setslabel(default_sl) < 0) {

;;;t(i);
}

#endif
} else {

goto bad;
}
}
if (FD_ISSET(out, &fds)) {

#ifdef HPUX_CMW
if(setslabel(new_sl) < 0) {

exit(1);
}

#endif
if ((n = read(out, buf, sizeof buf)) > 0) {

from_out += n;

#ifdef HPUX_CMW
if (setslabel(default_sl) < 0){

;;it(l);

}
#endif
if (write(in, buf, n) < 0) {
goto bad;
}
} else {
goto bad;
}
}
} else
}
}

Modifications to the existing SOCKS server code must also include calls to the general CMW
initialization routines. However, the total amount of additional code is small.

3.2 Controlled access to internal legacy systems

Figure 4 shows a more complicated configuration, where the cMw platform is used to run
multiple independent applications, and applications which directly access an organization’s
internal legacy systems.

backend1

client1
OUTSIDE

/-ﬁ.
external-

facing
scrver

.

7

INTERNAL nctwork

b~
EXTERNAL nctwork

backend2 backend3

client2

Figure 4: Controlled access to internal systems

By running each application in a separate compartment, it is possible to ensure that even
if one application is compromised, it cannot be used to attack or interfere with the other
applications running on the same machine. Where an application has to access systems
on the internal network, it is not given direct access, but has to talk to them through a
trusted relay. The relay can limit which internal machines the application communicates
with and also log connection requests.

3.2.1 Using SOCKS to provide the trusted relay functionality

In this section we look at using SOCKS to provide the trusted relay functionality described
above. Here, it is the processing applications that are socksified. Access to internal
systems by the processing applications is via a SOCKS server, which performs the role of

the trusted relay.

We assume that the processing applications within the middle compartments have been
designed to use the sockets API for their communications with the systems on the internal
network.

It is possible to provide the trusted relay functionality with the modifications made to the
SOCKS server code outlined in section 3.1.1. A separate SOCKS server is run at the level of

each of the middle application compartments (or at least those that require access to the
internal network). Each of these SOCKS servers listens on a different port and each has its

own configuration file.

The separate configuration file for each server allows restrictions to be placed on which
systems on the internal network a processing application at a particular level can connect

to.
The main drawback of this approach is that the SOCKS client software in each compartment

has to be modified to connect to a different SOCKS server port. Although this is workable
on a system with only a few middle compartments requiring internal system access, it does

not scale well.

In order to more flexibly support the required functionality of the trusted relay described
above, further modifications must be made to the existing SOCKS server code.

The problem of having to modify SOCKS client software for each compartment can be
avoided by running a single SOCKS server that has been trusted to listen for connections

at multiple sensitivity levels.
If this is done, additions must be made to the SOCKS server access control mechanisms.

The additional mechanisms must allow the SOCKS server to be able to base network access
decisions on the sensitivity level of the connection request, as well as on the existing

available decision criteria.

In the previous case where a SOCKS server per compartment level is run, no change is

_ necessary to the access control mechanisms as there is a separate SOCKS configuration file

per SOCKS server, and hence per compartment level.

3.2.2 Required code changes

Calling the mémiserver [7] function once the listening socket has been opened allows the
SOCKS server to accept connections on that socket at multiple sensitivity levels.

To support the additional access control mechanisms, two further changes have been made
to the sOCKS server code. Firstly, the server now retrieves the sensitivity level of an
incoming connection request. Secondly, an extra (optional) sensitivity label field has been
added to the parameters allowed in a SOCKS configuration rule. '

The socks client libraries do not require modification.

3.2.3 Hostname resolution issues

A process running in one of the middle compartments must be able to resolve any hostnames
that it wishes to use. If the number of hosts on the internal network to which access is
required are small, then using entries from a coded hosts table (/etc/hosts) would probably
be sufficient. For larger scale systems, the multi-level CMW dns software [3] developed by
the author can be used to provide each compartment level with access to a DNS service.

4 Security issues associated with the use of SOCKS

4.1 SOCKs in general

The major security vulnerability that the use of SOCKs introduces is that of allowing
potentially unsafe application protocols into the internal network where client platforms

may then be compromised.

Since SOCKS is a circuit level proxy, it can do nothing to provide protection at the appli-
cation level, other than refusing to proxy a particular application protocol.

By using SOCKS, therefore, clients can become vulnerable to both command driven attacks
and data driven attacks. Command driven attacks are possible where a protocol, such
as X11, allow inherently dangerous commands to be passed in the protocol stream to the
application client. SOCKS cannot check for this. Data driven attacks are possible, for
example, where data is sent to the client and is then executed on the client platform.
Protocols such as http allow this. Again SOCKS cannot protect against this.

Allowing internal clients access to external DNS information can also create a security
vulnerabilty [3].

Despite the vulnerabilties and threats associated with the use of SOCKS, many sites consider
the risks acceptable given the security safeguards that the use of SOCKs introduces.

The main safeguard is ability to have only a single host directly exposed to a potentially
hostile external network. The use of SOCKS enables this whilst still allowing internal
clients transparent access to external application services with the associated minimal

inconvenience to users.

4.2 SOCKS on CMW

The issue discussed here is that of whether the inherent security that the cMw platform
offers is significantly compromised by running a SOCKS server on it. The problems with
application protocol based attacks still apply when the SOCKS server host platform is a
cMw machine. Client side use of CMW can help protect against these attacks but is not

considered here.

When run on the cMw platform, the SOCKS server process needs to be given certain
privileges. The most potentially dangerous privilege it requires is the ability to switch
sensitivity levels. This is needed so that it can talk to both the external and internal
networks; it allows the process to circumvent some of the mandatory access controls. It
becomes the responsibility of the SOCKS server to uphold a security policy. Should an
attacker find a way of exploiting a bug in the server code, then that attacker can make use
of any privileges the code has, and is not bound by the SOCKS server security policy.

SOCKS is the most widely used proxying package on the Internet. It is a relatively small

8

amount of code and has been well tested by the Internet community. The potential for
exploitation of bugs in the SOCKs server code by an attacker appears small.

Only minor changes to the SOCKS server code are needed for it to be able to support CMW
operation. This should not increase the potential for exploitation of bugs in the SOCKsS
server code. Therefore, it is thought that running a SOCKS server on a CMW platform does
not significantly degrade the overall security of that platform.

5 Conclusion

We have found that the use of SOCKS as a base for providing a generic proxying facility for
cMW is feasible. The code changes required to the existing SOCKS toolkit are small and
therefore verifiable. The inherent security of the cMw platform is not significantly reduced
by running a SOCKS server on it.

The trusted versions of the SOCKS server described in the report have been implemented in
an experimental form at Hewlett-Packard Laboratories, Bristol as part of the E2S European

collaborative.

6 Future work

This report discusses software developed based upon the sOCKs4 .protocol. However, an
extended, though less widespread, version of the SOCKS protocol, version 5, is also avail-
able [8]. Work currently being carried out by the author includes development of a trusted
SOCKS server based on the SOCKs5 protocol. The SOCKS5 protocol has several major
enhancements over SOCKS4. It includes support for UDP as well as TCP network clients.
Hostnames can be passed by the sOCKs clients to the SOCKS server for resolution, thus
alleviating a major problem with socks4. Support for authentication schemes such as ker-
beros is included. Shared libraries for most platforms are available, hence avoiding the need
for client re-compilation. Performance has also been improved by the use of multithreaded

code.

References

[1] MILLEN, J.K. and BODEAU, D.J. (1990). A Dual-Label Model for the Compart-
mented Mode Workstation. MITRE Paper M90-51, The MITRE Corporation.

[2] NEC USA, Inc. Introduction to SOCKS. http:/, fwww.socks.nec.com/introduction. html.

[3] DALTON, C.I. and GRIFFIN, J.F. (1997). Applying Military Grade Security to the
Internet. Computer Networks and ISDN systems, volume 29, number 15, November

1997.

[4) HEWLETT-PACKARD CO. (1996). Virtual Vault Transaction Server Concepts
Guide.

[5] CHAPMAN, D.B. and ZWICKY, E.D. (1995). Building Internet Firewalls, pp 278~
296. O’Reilly and Associates, Inc.

(6] CHESWICK, W.R. and BELLOVIN, S.M. (1994). Firewalls and Internet Security, pp
137-208. Addison Wesley.

[7] HEWLETT-PACKARD CO. (1996). HP-UX 10.16 CMW Security Features Program-
mer’s Guide.

[8] LEACH, M., GANIS, M., LEE, Y. and KURIS, R. (1996). SOCKS Protocol Version
5. RFC 1928.

10

