(ﬁp HEWLETT

PACKARD

QML: A Language for Quality
of Service Specification

Svend Frelund, Jari Koistinen
Software Technology Laboratory
HPL-98-10

February, 1998

specification To be competitive, future software systems must provide not only the correct

languages, QoS, functionality, but ?lso an adquate level of quglity'of service (QoS). By QoS, we

distributed object refer to non-functional properties, such as reliability, performance, timing, and
security. To provide an adequate level of QoS, software systems need to include

systems capabilities such as QoS negotiation, monitoring, and adaptation. These
capabilities all require the expected and the provided QoS levels to be explicitly
specified. QoS can be specified statically at the time of implementation, design,
or dynamically at deployment or runtime.

To facilitate QoS specification, we present a general Quality of service Modeling
Language (QML) for defining multi-category QoS specifications for components
in distributed object systems. QML is designed to support QoS in general,
encompassing QoS categories such as reliability, performance, security, and
timing.

We use QML to describe the QoS properties of software components—QML
specifications cannot be executed to implement the specified QoS. In this sense,
QML is similar to interface definition languages that describe the functional
properties of software components, but in contrast to interface definition
languages, QML describes the non-functional properties of software components.

QoS specification in QML facilitate the static decomposition of a software system
into components with precisely specified QoS boundaries. They also facilitate
dynamic QoS functions, such as negotiations, monitoring, and adaptation. QML
is designed for a good fit with object-oriented distributed architectures and
concepts such as interfaces and inheritance. It also allows specification at a
fine-grained level for operations, operation arguments, and attributes. QML
enables user-defined QoS categories, and allows specifications within those
categories to be associated with component interface definitions. In addition,
checks can be made dynamically to determine whether one QML specification
satisfies another. This mechanism allows us to dynamically match QoS
requirements and offers.

Categories and Subject Descriptors: D.2.1 [Software Engineering]:
Requirements/Specification—languages; D.3.2 [Programming Languages]:
Language Classifications—design languages; F.3.1 [Theory of Computation]:
Specifying and Verifying and Reasoning about Programs—specification
techniques

Internal Accession Date Only

© Copyright Hewlett-Packard Company 1998

Contents

1

2

8

Introduction

Fundamental Concepts

2.1 Dimensions et e e e e e e
2.2 Abstraction Mechanisms

Language Concepts

3.1 Contracts and Contract Types
3.1.1 Domains, Orders,and Units
3.1.2 Conformance

313 Aspects e
3.2 Definition of Contracts and Contract Types
33 Profiles e

3.4 Definitionof Profiles
3.5 Refinement
3.5.1 Contract Refinement
3.5.2 Profile Refinement
3.6 Profile Conformance
3.6.1 Comparing Dimension Constraints

An Extension of the Unified Modeling Language

Example

5.1 System Architecture
52 Reliability oo
5.3 DiSCUSSION . . . « .« v i e e e e e e e e e e e e e e e

Semantics

6.1 Notation v i i e e e e e e e e e
6.2 A TypeSystemfor QML
6.3 Semantics of Contract Declaration
6.4 Constraint Conformance
6.5 Semantics of Profile Declaration
6.6 Profile Conformance

Related Work

7.1 QoS Specification Mechanisms and Languages
7.2 Software Metrics

Conclusion

A APPENDIX: Concrete Syntax Definition

10

11
11
12
13
15
16
19
20
21
21
22
24
25

27

28
29
32
36

38
38
38
44
48
50
54

55
55
57
59

60

1. INTRODUCTION

A computer system must deliver acceptable guality of service (QoS) to its users or
its environment. By QoS, we refer to non-functional properties such as performance,
reliability, availability, timing, and security. For some applications acceptable QoS
is best effort; while other types of applications require guaranteed levels of QoS to
function properly. In real-time systems, for example, timing is essential for cor-
rectness. In banking systems, security is necessary and must not be compromised.
Although QoS has been a concern in particular domains for quite a while, there is a
clear trend that users in general will increasingly require adequate and flexible QoS
in addition to proper functionality. The move towards widely distributed systems
makes providing desired QoS even more critical.

To design, implement, and manage distributed systems to deliver their intended
QoS, we need a way to precisely specify QoS properties.

In distributed systems, clients often rely on services to provide a certain level
of QoS. For example, a client may rely on a service response time of less than 50
milliseconds to provide its own response time of less than 100 milliseconds. If these
QoS requirements are not explicitly specified, it is hard for software systems to
evolve because it is hard to determine the QoS dependencies between the various
components. Once components have precisely defined QoS properties, we can safely
replace old components with new components as long as the new components satisfy
the QoS specification.

We also need QoS specifications to monitor the satisfaction of QoS requirements
at runtime. Compliance monitoring allows a system to adapt to its runtime envi-
ronment, and it allows a QoS management system to diagnose which components
are at fault if a system does not satisfy the user-level QoS requirements.

We want to facilitate services that can provide different modes of QoS, for exam-
ple, high availability with medium performance, or medium availability with high
performance. By offering different QoS modes, services can allow their clients to
make appropriate trade-offs. Not only do multi-mode services require QoS specifica-
tions to characterize various modes, they also require multi-category specifications
that incorporate different QoS categories, such as performance, availability, secu-
rity, and timing in the same QoS specification.

In open distributed systems, clients and services can be added and removed
dynamically. Moreover, no single entity is in control of system evolution. When
deploying a client in an open system, we may not know which services it will use
over time. Nevertheless, the client may still have certain QoS requirements. We
need to specify these requirements and use them as part of the client-server binding
process to ensure that clients bind to services that satisfy their QoS requirements.
The binding process could be accomplished by a trader service [Object Management
Group 1997a] that matches QoS requirements of clients with QoS properties of
services, or it may involve more elaborate negotiation protocols between clients and
services to arrive at a QoS agreement. To enable QoS-based design, trading and
negotiation, we need a language to specify QoS requirements. Moreover, we need
to communicate QoS specifications as first class values between clients, services,
and traders.

To support the specification of QoS properties, we introduce a language called

QML (QoS Modeling Language). We use a simple example to illustrate the use of
QML for QoS specification.

Ra icel
RateService

——()T/

TradingStation

TradingService

|
|
1
|
!
!

__>O__7

TradingServicel

Fig. 1. UML class diagram for the currency trading system

Consider the currency trading system in Figure 1. We use UML [Booch et al.
1997] to depict the system structure. Human currency traders interact with the
trading station, which provides a user interface. To provide its functionality,
the trading station uses a rate service and a trading service. The rate
service provides rates, interests, and other information important to foreign ex-
change trading. The trading service provides the mechanism for making trades
in a secure way. Since an inaccessible currency trading system might incur signifi-
cant financial loss, it is essential that the system be highly available. It must also
peform adequately enough to provide recent information.

Consider the CORBA IDL [Object Management Group 1995] interface definition
for the rate servicein Figure 2. A rate service provides one operation for retriev-
ing the latest exchange rates with respect to two currencies. The other operation
performs an analysis and returns a forecast for the specified currency. The interface
definition specifies the syntactic signature for a service but does not specify any se-
mantics or non-functional aspects. In contrast, we concern ourselves with how to
specify the required or provided QoS for servers implementing this interface.

QML has three main abstraction mechanisms for QoS specification: contract
type, contract, and profile. QML allows us to define contract types that represent
specific QoS aspects, such as performance or reliability. A contract type defines the
dimensions that can be used to characterize a particular QoS aspect. A dimension
has a domain of values that may be ordered. There are three kinds of domains: set
domains, enumerated domains, and numeric domains. A contract is an instance of
a contract type and represents a particular QoS specification. Finally, QML profiles
associate contracts with interfaces, operations, operation arguments, and operation
results.

interface RateServicel {
Rates latest(in Currency ci,in Currency c2) raises (InvalidC);
Forecast analysis(in Currency c) raises (Failed);

}s

Fig. 2. The RateServicel interface

The QML definitions in Figure 3 include two contract types Reliability and
Performance. The reliability contract type defines three dimensions. The first one
represents the number of failures per year. The keyword “decreasing” indicates
that a smaller number of failures is better than a larger one. Time-to-repair (TTR)
represents the time it takes to repair a service that has failed. Again, smaller values
are better than larger ones. Finally, availability represents the probability that
a service is available. In this case, larger values represent stronger constraints while
smaller values represent lower probabilities and are therefore weaker.

We also define a contract named systemReliabilty of type Reliability. The
contract specifies constraints that can be associated with, for example, an operation.
Since the contract is named it can be used in more than one profile. In this case,
the contract specifies an upper bound on the allowed number of failures. It also
specifies an upper bound, a mean, and a variance for TTR. Finally, it states that
availability must always be greater than 0.8.

Next we introduce a profile called rateServerProfile that associates contracts
with entities in the rateServicel interface. The first requirement clause states that
the server should satisfy the previously defined systemReliability contract. Since
this requirement is not related to any particular operation, it is considered a default
requirement and holds for every operation, unless stated otherwise. Contracts for
individual operations are allowed only to strengthen (refine) the default contract. In
this profile there is no default performance contract; instead we associate individual
performance contracts with the two operations of the RateServicelI interface. For
latest we specify in detail the distribution of delays in percentiles, as well as a
upper bound on the mean delay. For analysis we specify only an upper bound and
can therefore use a slightly simpler syntactic construction for the expression. Since
throughput is omitted for both operations, there are no requirements or guarantees
with respect to this dimension.

We have now effectively specified reliability and performance requirements on any
implementation of the rateServicel interface. The specification is syntactically
separate from the interface definition, allowing different rateServicel servers to
have different QoS characteristics.

QoS specifications can be used in many different situations. They can be used
during the design of a system to understand the QoS requirements that must be
imposed on individual components to enable the system as a whole to meet its
QoS goals. QoS specifications can also be negotiated dynamically between clients
and servers in distributed systems. Such negotiations can be performed either
through a QoS-enabled trader service [Object Management Group 1997a] or by
using advanced QoS negotiation protocols. If we use a trader service, ervices may
register themselves and their QoS characteristics with that trader service. This
enables clients to search for matching services that supports a specific interface
with a minimal level of QoS. It is essential in such searches to have the ability to
determine whether the QoS characteristics of the advertised service in fact satisfy
the characteristics required by the client. As an example, satisfying the constraint
“delay < 10 msec” implies that we also satisfy “delay < 20 msec”. We call this
procedure conformance checking, which is supported by QML.

Once we have QoS agreement we must be able to monitor the adherence to
such deals. Thus, we anticipate that QoS specifications will also be used as input

type Reliability = contract {
number0fFailures : decreasing numeric no / year;
TTR : decreasing numeric sec;
availability : increasing numeric;

}s

type Performance = contract {
delay : decreasing numeric msec;
throughput : increasing numeric mb / sec;

b

systemReliability = Reliability contract {

number0fFailures < 10 no / year;
TIR {

percentile 100 < 2000;

mean < 500;

variance < 0.3

IH

availability > 0.8;

I

rateServerProfile for RateServicel = profile {
require systemReliability;
from latest require Performance contract {
delay {
percentile 50 < 10 msec;
percentile 80 < 20 msec;
percentile 100 < 40 msec;
mean < 15 msec
}i
}i

from analysis require Performance contract {
delay < 4000 msec

IE
}:

Fig. 3. Contracts and Profile for RateServicel

for monitoring and charging mechanisms. Due to the vast number of ways QoS
specifications might used, we consider the agreement and binding to an agreed
upon QoS specification outside the scope of the specification language. This paper
focuses on how to specify QoS, not on how to use QoS specifications.

QML specifications are similar to traditional interface specifications in the sense
that they describe behavior—they cannot be executed to implement behavior. In
fact, we can consider QML specifications as abstraction boundaries that extend the
traditional notion of interface to also cover QoS properties. Notice, however, that
the association between functional interfaces and a QML specification is flexible
and possibly dynamic.

QML is a general-purpose QoS specification language; it is not tied to any par-
ticular domain, such as real-time or multi-media systems, or to any particular QoS
category, such as reliability or performance. QML captures the fundamental con-
cepts involved in the specification of QoS properties. Although special-purpose
QoS languages do exist, there has been a lack of general-purpose languages that
allow engineers and users to express the wide variety of QoS aspects used in open
distributed systems.

QML is designed to be a general QoS specification language for the development
of distributed object-oriented systems. We want QML to integrate seamlessly with
existing object-oriented concepts. This overall goal results in the following specific
requirements for QML:

—QoS specifications should be syntactically separate from other parts of service
specifications, such as interface definitions. This separation allows us to specify
different QoS properties for different implementations of the same interface.

—1It should be possible to specify both the QoS properties that clients require and
the QoS properties that services provide. Moreover, these two aspects should be
specified separately so that a client-server relationship could have two QoS specifi-
cations: a specification that captures the client’s requirements and a specification
that captures the service’s provisioning. This separation allows us to specify the
QoS characteristics of a component and, the QoS properties that it provides and
requires, without specifying the interconnection of components. This separation
is essential if we want to specify the QoS characteristics of components that are
reused in many different contexts.

—There should be a way to determine whether the QoS specification for a service
satisfies the QoS requirements of a client. These requirements are a consequence
of the separate specification of both the QoS properties that clients require and
the QoS properties that services provide.

—QML should support refinement of QoS specifications. In distributed object sys-
tems, interface definitions are typically subject to inheritance. Since inheritance
allows an interface to be defined as a refinement of another interface, and since
we associate QoS specifications with interfaces, we need to support refinement of
QoS specifications.

—1It should be possible to specify QoS properties at a fine-grained level. As an
example, performance characteristics are commonly specified for individual oper-
ations. QML must allow QoS specifications for interfaces, operations, attributes,
operation parameters, and operation results.

To specify QoS one needs to identify an appropriate vocabulary—dimensions.
QML allows user-defined dimensions. If these dimensions are independent of their
underlying mechanisms, QML allows the specification of QoS properties indepen-
dently of how these properties are implemented, for example, the QML specification
of a certain level of availability without reference to a particular high-availability
mechanism, such as primary-backup or active replication. Having a language to
specify QoS properties abstractly gives a clean separation between deciding which
properties should be provided and implementing these properties.

We organize the rest of this paper in the following way. In Section 2, we introduce
the fundamental concepts that QML supports. The purpose of Section 2 is to
provide an intuitive description of QoS specifications in a syntax-neutral way. In
Section 3, we introduce the syntax for QML and describe its semantics precisely,
but informally. To illustrate the use of QML in practice, we show how to use it at
design time in the context of UML [Booch et al. 1997]. We introduce a set of UML
extensions to support QML in Section 4. We show how to use these extensions
in particular and QML in general, by describing the design of a computer-based
telephony using QoS specifications. We present the formal semantics for QML in
Section 6. The topic of Section 7 is related work, and, finally, in Section 8 we draw
our conclusions.

2. FUNDAMENTAL CONCEPTS

We characterize QoS along named dimensions, such as latency, throughput, fail-
ure semantics, and encryption level. Moreover, we group related dimensions into
categories. For example, we could group the dimensions latency and throughput
into a category called performance. In Section 2.1, we describe the fundamental
concepts underlying our notion of QoS dimensions. In Section 2.2, we outline the
mechanisms we use to create new abstractions that contain dimensions.

2.1 Dimensions

A dimension consists of a name and a domain of values. A QoS specification along
a given dimension is a constraint over the dimension’s domain. For example, we
could have a dimension called latency, which captures the time it takes for a service
to reply to method calls. The domain for this dimension would then be values
that capture elapsed time. The non-negative real numbers would be one possible
domain for latency. A QoS specification along the latency dimension could be that
the latency is less than 10 seconds, which could be expressed by the constraint
“latency < 10 seconds.” This is a constraint over the non-negative real numbers.
The constraint is satisfied by a subset of the domain, namely the non-negative
real numbers that are strictly less than 10. The domain that we use for numeric
constraints is called the numeric domain. It contains the real numbers.

It is not always meaningful to use numeric domains. For example, assume that we
want to specify QoS along a dimension, called failure semantics, that characterizes
how services behave after a failure. We can identify a number of different behaviors,
such as halt, initial state, and roll back. Halt means that the server stays down,
initial state means that the server comes up in its initial state; and roll back means
that the server comes up in some previous, consistent state. A particular service
will behave in one of these three ways. A QoS specification could point out one of

these behaviors as in “failure semantics == halt.” The domain used for the failure
semantics dimension is called an enumerated domain. Its elements are user-defined
values specified as names, such as halt.

For some dimensions, we want domain elements to be sets of names rather than
names. For example, consider a dimension, called failure masking, that character-
izes the types of failures that a service exposes to its clients. We can introduce
names that capture the various types of possible failures. Possible candidate names
are lost reply, lost request, and invalid reference. A particular service will then
expose a subset of these possible failure types. Thus, a QoS specification along the
failure masking dimension could point out a set of names as in “failure masking ==
{ lost reply, lost request }.” A domain whose elements are sets of names is called
a set domain.

It is often the case that one domain element reflects a higher level of service
than another domain element. For example, for the failure semantics dimension,
a service that comes back up provides a higher level of service than a service that
stays down. Thus, the names initial state and roll back capture a higher level
of service than halt. In another example, for the latency dimension, the domain
element 8 captures a higher level of service than the domain element 10 because it
corresponds to a smaller response time. We want to capture this notion of better
than or stronger than for domain elements.

The first step towards a stronger than relation on domains is an ordering rela-
tion on domains. The numeric domain already comes with a “built-in” ordering
“<.” For enumerated and set domains, we need to specify a user-defined order-
ing over the domain elements. Once we have an ordering, we also need to specify
if larger elements are stronger than smaller elements or whether smaller elements
are stronger than larger elements. For example, for latency smaller numbers are
stronger than larger numbers, but for throughput larger numbers are stronger than
smaller numbers. We say that a domain is increasing, if larger elements are better,
and we say that a domain is decreasing, if smaller elements are better.

For an enumerated domain, an order specified for the names will also describe
an order for the domain elements, since the names are the domain elements. This
is not the case for set domains. For set domains, the elements are sets of names.
For a set domain, we specify an ordering on the names used, and we use this name
ordering, in conjunction with subset inclusion, to define an ordering on the sets of
names.

If we specify an ordering for a set or enumerated domain, we can also express
inequality constraints over that domain. For example, we could write a constraint
like “failure semantics > halt.” This constraint is satisfied by either initial state
or roll back. For a domain that does not have an ordering, we can only express
equality constraints.

We use the stronger than relation on domains to define the conformance relation
for QoS specifications. Intuitively, a “stronger” QoS specification conforms to a
“weaker” QoS specification. We use conformance to check the legality of client-
server connections: the specification that captures the server QoS properties must
conform to the specification that captures the client QoS requirements. We do not
want to insist that the client and server specifications be equal; they may have been
written by different people at different times. The server may provide stronger QoS

properties than that required by the client. We also use conformance to provide
substitutability of service implementations. We can substitute an old service im-
plementation with a new service implementation as long as the QoS properties of
the new implementation conform to the QoS properties of the old implementation.

We also use the term conformance for domain elements. We say that a domain
element conforms to another domain element if that former element is stronger than
the latter.

In the above discussion, we have described only dimensions that have a single
constraint. In some cases, we need to allow a dimension to specify multiple con-
straints. Multi-constraint dimensions are necessary when a dimension can capture
a QoS property that varies over time and when we want to express statistical con-
straints over this variation. For example, the latency dimension captures a property
that varies over time: the response time for calling a method in a service. Rather
than expressing a single constraint, such as “latency < 10,” we may want to express
constraints over the variance and mean for response times. We want to express con-
straints of the form “latency { variance < .2; mean < 7 }.” We consider variance
and mean to be aspects of a dimension. We introduce aspects such as average,
mean, percentile, and frequency.

2.2 Abstraction Mechanisms

The goal of this section is to provide an overview of the abstraction mechanisms
that we use to construct QoS specifications in QML.

A contract type represents a QoS category such as performance, availability, secu-
rity, or timing. A contract type describes the dimensions of a category, it specifies
the name, domain, and possibly a user-defined ordering for each dimension. For
example, we could define a contract type, called performance, that describes a la-
tency and throughput dimension. These dimensions would have numeric domains,
and the latency dimension would be specified as decreasing whereas the throughput
dimension would be specified as increasing.

A contract is an instance of a contract type and represents a particular QoS
specification within a given category. For example, a performance contract could
specify particular constraints for the throughput and latency dimensions defined in
the performance contract type. A contract aggregates a number of constraints.

We use contracts to capture QoS specifications for interface elements, such as
operations, attributes, operation parameters, and operation results. An interface
element will typically have multiple contracts: one for each QoS category of interest.
For example, the same operation may have a contract that specifies its performance
properties and a contract that specifies its availability properties.

A profile describes the associations between contracts and interface elements for
a particular interface. A profile provides an aggregation mechanism for contracts.
Where contracts are used for interface elements, profiles are used for interfaces.
Since different implementations may have different QoS properties, we can define
different profiles for the same interface. As a notational convenience, a profile can
specify a default contract, which applies to all interface elements. In addition, the
profile can associate more stringent contracts with individual interface elements. As
an example, we could associate a default performance contract with the operations
of an interface and then add stronger contracts for operations that are required to

10

have better performance than that stated by the default contract.

A contract can be specified as an incremental refinement of another contract.
The result of refinement is a QoS contract with more stringent QoS properties.
For example, we could define a performance contract that specifies a latency of 10
milliseconds as a refinement of a performance contract that specifies a latency of 20
milliseconds. Refinement is a notational convenience for the common case in which
one contract is derived from another contract. A contract can only refine another
contract of the same type. Since we insist that refinement results in a stronger
contract, refinement implies conformance.

Profile refinement is defined in terms of contract refinement. Essentially, a profile
is refined by refining its contracts. As for contracts, profile refinement also results
in a profile with more stringent QoS properties.

Refinement is a statically defined relationship between two profiles, much like
inheritance in most object-oriented languages. Sometimes, we need to be able to
determine if two statically unrelated profiles can be ordered. More specifically,
we are interested in whether one profile imposes stronger QoS requirements that
another. If so, we can conclude that a service providing the former can in fact
replace a service providing the latter. If a profile P is stronger than a profile Q we
say that P conforms to Q. QML introduces a definition of when a profile conforms
to another if the two profiles are associated with the same interface.

3. LANGUAGE CONCEPTS

In the following sections we introduce an abstract syntactic description and addi-
tional language detail for QML. Section 6 presents a more precise semantic descrip-
tion.

3.1 Contracts and Contract Types

To capture the structure of contracts within a given QoS category C, a contract
type specifies a dimension type for each dimension within C. The dimension type
for a dimension D determines how individual contracts specify the QoS properties
along the D dimension. Figure 4 gives an abstract syntax for contract types, and
Figure 5 gives an abstract syntax for individual contracts that are instances of
contract types.

A dimension type specifies a domain for the dimension; QoS properties are spec-
ified as constraints over this domain. The domain may be ordered, and it may
have an associated unit. We use three different domain types: set, enumeration,
and numeric. Set and enumeration domains are user-defined domains; the numeric
domain is a built-in domain. For example, consider a dimension called latency that
captures response time. The domain for latency would be numeric, and constraints
would be of the form “latency < 15.” As illustrated by this example, a constraint
has an operator “<” and a domain element “15”. In general, we use the following
set of operators: “{==,<,<=,>,>=}." We allow only inequality operators for
ordered domains.

In the syntax description we use italics for production names such as conType.
Keywords are written in boldface while other terminal symbols are underlined.
We use dots (.. .) to indicate a sequence of structurally similar entities. We assume
the existence of a set Name . The elements in Name are the names of dimensions or

11

conType := contract {dimName; : dimType, ;... ; dimNamey : dimType;;}
dimName := n
dimType := dimSort
| dimSort unit
dimSort = enum {ni,...,ng}
| relSem enum {n;,..., ng} with order
| set{ni,...,ng}
| relSem set {n1,...,ng}
| relSem set {n1,..., ni} with order
| relSem numeric
order := order {n; <nj,...,ng <nm}
unit = unit/unit | % | msec| ...
relSem := decreasing | increasing
Fig. 4. Abstract syntax for contract types
contract u= contract {constrainty ;... ; constrainty;}
constraint ::= dimName constraintOp dim Value
| dimName {aspect, ;... ; aspect,;}
dim Value = literal unit
| literal
literal n=n
] {nl PR "k}
| number
aspect ::= percentile percentNum constraintOp dim Value
| mean constraintOp dim Value
| variance constraintOp dim Value
| frequency freqRange constraintOp number%
freqRange = dimValue
| IRangeLimit dimValue , dimValue rRangeLimit
IRangeLimit = (|[
rRangeLimit :=)|]
constraintOp == == | >= | <= | < | >
percentNum == 0|1]...]99]100
dimName = defined in Figure 4
unit = defined in Figure {

the names of elements used in set and enumeration domains. We use n and name
to refer to an element of Name. The number production represent regular numeric
literals. A more strictly define syntax can be found in appendix A where we use

Fig. 5. Abstract syntax for contracts

Extended Backus-Naur Form.

3.1.1 Domains, Orders, and Units. We specify set domains with the following
syntax: “set {ni,...,ni}.” The names “ny,..., n;” are the names of the do-
main. The domain contains all possible subsets of these names. Each element in
the domain is a subset of names; each domain element captures a possible service
behavior. For example, each name could reflect a possible failure symptom that
services in general may expose to their clients. The domain would then contain sets

12

of failure symptoms. We can use a particular set of failure symptoms (a domain
element) to characterize the failure masking behavior of a particular service.

We use “enum {n,..., ng}” to specify an enumeration domain. The names
“{ny,..., ng}” are the domain elements. Each name captures a possible service
behavior. As an example, we can use an enumeration to specify QoS properties
along a data policy dimension. There are two possible data policies: either data is
always valid following a failure or data is always invalid following a failure. We can
specify the possible policies as the enumeration enum {valid, invalid}.

The numeric domain contains the real numbers. We specify QoS properties
along a numeric dimension as numeric constraints—constraints for which the value
is a number. An example of a numeric dimension is availability. The availability
of a service is specified as the probability that the service is responding to re-
quests (i.e., not down). In reliability contracts, we would specify 99% availability
as availability >= 99%.

The numeric domain comes with a built-in total order. For set and enumeration
domains, we need to specify ordering explicitly. We describe ordering of names in
the following way: “with order {n; < nj,..., nx < nn}.” Thus, an ordering is
specified as a set of pairs, where each pair defines the relative order between two
names. The defined ordering is transitive. This means that if we have asserted an
ordering {a < b,b < c}, we also assert that a and ¢ are mutually ordered.

The order clause specifies only an order on names. For set domains, we need to
extend this order to apply to sets of names. If A and B are subsets in the same set
domain, we extend the name ordering in the following way:

A<B&Vae(A\B):Ibe(B\A):a<bd

Here, a and b are names, and the expression “a < b” refers to the ordering defined
for names.

The ordering on sets amounts to set inclusion if the names are not ordered. If
the names are ordered, A does not have to be included in B, but the names in A
that are not in B must be smaller than at least one name in B.

A dimension declaration can be given a unit. The unit can be simple, such as
seconds or percent (%), or it can be a combined unit such as failures/hour. If a
unit is specified in a contract type, QML requires that all instances of that contract
type use the same unit.

3.1.2 Conformance. We want to define a conformance relation for contracts.
To define conformance for contracts, we first need to define conformance for the
various types of constraints that can be written as a part of contracts. We define
conformance for constraints that are defined for the same dimension.

For a set dimension we want to determine whether one subset conforms to another
subset. Conformance between two subsets depends on their ordering. In some cases,
a subset represents a stronger commitment than its supersets. As an example, let
us consider the failure-masking dimension. If a value of a failure-masking dimension
defines the failures exposed by a server, a subset is a stronger commitment than its
supersets (the fewer failure types exposed, the better). If, on the other hand, we
consider a payment protocol dimension for which sets represent payment protocols

13

contract {
s1 : decreasing set { el, e2, 3, e4 } with order {e2<el, el<e3, e3<ed};
82 : increasing set { f1, f2, 3 };
el : increasing enum { al, a2, a3 } with order {a2<a1, a3<a2};
e2 : enum { b1, b2, b3 };
nl : decreasing numeric msec;
n2 : increasing numeric mb / sec;

Fig. 6. Example contract type expressions

supported by a server, a superset is obviously a stronger commitment than any
of its subsets (the more protocols supported, the better). Thus, to be able to
compare contracts of the same type we need to define whether subsets or supersets
are stronger.

A similar discussion applies to the numeric domain. Sometimes, larger numeric
values are considered conceptually stronger than smaller. As an example, think of
throughput. For dimensions such as latency, smaller numbers represent stronger
commitments than larger numbers.

In general, we need to specify whether smaller domain elements are stronger than
or weaker than larger domain elements. The decreasing declaration implies that
smaller elements are stronger than larger elements. The increasing declaration
means that larger elements are stronger than smaller elements. If a dimension is
declared as decreasing, we map stronger than to less than (<). Thus, a value
is stronger than another value, if it is smaller. An increasing dimension maps
stronger than to greater than(>). The semantics will be that larger values are,
considered stronger.

We want conformance to correspond to constraint satisfaction. For example, if
we have a decreasing dimension d we want the constraint d < 10 to conform to the
constraint d < 20. Since the values that satisfy the first constraint also satisfy the
second constraint, we want to consider the first constraint stronger than the second.
But d < 10 only conforms to d < 20 if the domain is decreasing (smaller values
are stronger). To achieve the property that conformance corresponds to constraint
satisfaction, we allow only the operators {==, <=, <} for decreasing domains, and
we allow only the operators {==, >=, >} for increasing domains.

The desire to have conformance correspond to constraint satisfaction is based
on the assumption that most programmers would consider it counter intuitive for
d < 5 to not conform to d < 3. Thus, we regard those situations as errors.

The example in Figure 6 gives a few examples of how dimensions can be declared
in a contract type. sl is a partially ordered decreasing set. This means that smaller
sets are better and that only some of the names in the set can be related. The
second set is called s2 and is an unordered increasing set.

el and e2 are both enumerated dimensions, but only el has a partial order de-
fined. Finally, we have two numeric dimensions. For n1, smaller values are consid-
ered stronger while for n2 larger values are consider stronger. Numeric dimensions
are always totally ordered.

A contract may omit specifying QoS properties along a particular dimension listed

14

in its contract type. Omission of a specification indicates that the QoS property
along that dimension is undefined and may take any value with any distribution
with the specified domain.

3.1.3 Aspects. As indicated by Figure 5, the general way of specifying a con-
straint for a dimension is by defining an aspect. An aspect can be a statistical
characterization such as a percentile or mean. It can also be a contract-type spe-
cific, user-defined characterization previously unknown in the QML language. QML
currently includes four generally applicable aspects: percentile, mean, variance, and
frequency.

The percentile aspect defines an upper or lower value for a percentile of the mea-
sured entities. The statement percentile P denotes the strongest P percent of
the measurements or occurrences that have been observed. As an example, as-
sume that we are measuring delay and that we have obtained the following ten
measurements: 2,3,3,4,4,4,5,6,6,8. The expression “percentile 60” would de-
note the six lowest values, since these are considered the strongest for delays. The
expression “percentile 80 < 6” is not satisfied by the measurements above, but
the constraint “percentile 100 <= 8” is. We can use percentiles to express con-
straints that restrict the proportions of different ranges of values. We allow a set of
aspects for a dimension to contain more than one percentile constraint, as long as
the same percentile P does not occur more than once. QML implementations are
not required to check for inconsistencies among the constraints; thus, consistency is
solely the responsibility of the specifier. We only allow percentile characterizations
for dimensions with numerical domains.

Sometimes, there is a need to specify the frequency of individual values or val-
ues in certain ranges. QML allows the specification of frequency constraints for
individual values which is useful with enumerated types, and for ranges, which is
useful with numeric dimensions. Rather than specifying specific numbers for the
frequency, QML allows us to specify the relative percentage with which values in
a certain range occur. The constraint “frequency V > 20%” means that in more
that 20% of the occurrences we should have the value V. The literal V can be a
single value or if the dimension has an ordering, and only then, it may be a range.
If a frequency is defined for a range rather than a specific value, we use parenthe-
sis and square brackets for open and closed boundaries respectively. If we use an
open boundary, the boundary value is included, while closed boundaries exclude
the boundary value. The values included in a range (a,b) with open boundaries
are those larger than or equal to a and smaller than or equal to b. I a boundary
is closed the boundary value itself in not included in the range. The constraint
“frequency [1,3) > 35%” means that we expect 35% of the actual occurrences to
be larger than 1 and less than or equal to 3.

The mean and variance aspects are used to define the mean and variance, respec-
tively, of measured values over some time period. As for simple dimensions, mean
can be used to define a constraint only for the weakest acceptable value. Thus, for
increasing numeric dimensions we can define a lower boundary for mean, but we
can not define an upper bound. Likewise, for a decreasing numeric dimension we
may define only an upper bound for mean.

The variance is defined as the expected value of a random variable (the dimension)

15

which is subtracted from its mean and squared. The variance is a positive number
that indicates how much occurrences may vary from the mean. We allow only
inequalities that specify upper bounds for variance.

Not all of the allowed statistical characterizations make sense for every dimension.
In general, we need to understand the scale type [Fenton 1991] before we know
whether a particular statistical method can be applied to a dimension. The scale
type is determined by the dimension characteristics defined in a contract type and
the semantics of the dimension. By semantics, we mean how dimension values are
interpreted by functions such as a monitoring function.

To make a statistical characterization with a known confidence we need a suffi-
ciently large sample. This aspect of QoS characterization must be taken care of by
the components that use QML specifications. An example of such a component is
the monitoring component that measures delivered QoS at runtime.

Figure 7 shows some examples of constraints in contract expressions. The con-
tract expression is preceded by the name of its corresponding contract type. We
show how to define contract types in Section 3.2. The first example shows simple
constraints. The constraint on s1 illustrates our use of comparison for set values.
In this case we require that actual s1 values are stronger than or equal to the set
literal value {e1,e2}. For s2 we require that the actual value is equal to { f1 }.
The remaining constraints are for enumerated and numeric dimensions.

The second contract expression in Figure 7 is more complicated. For s1 we define
one constraint for the 20th percentile. The meaning of this is that the strongest
20% of the value must be less than the specified set value.

For el we define the frequencies that we expect for various values. For the value
al we expect a frequency of less than or equal to 10%. For a2 we expect a frequency
greater than or equal to 80%, and so forth.

The constraint on n2 defines bounds for values in different percentiles over the
measurements of n2. In addition, we define an upper bound for the mean and the
variance.

3.2 Definition of Contracts and Contract Types

Here we introduce a syntax for defining contracts and contract types. The definition
of a contract type binds a contract type to a variable; the definition of a contract
binds the result of a contract expression to a variable. Figure 8 gives an abstract
syntax for contract and contract type definition.

In the syntax, we assume the existence of a set Var of variables. We use z., z,,
and y as typical elements of Var (., zp,y € Var). z. denotes a variable that holds
contract values, x, denotes a variable that holds profile values, and y denotes a
variable that holds contract types.

We use the syntax “type Performance = contract {...}” to define a contract
type called Performance. When we define a contract, we explicitly specify the type
of the contract. The definition “traPerf = Performance contract{...}” defines
a performance contract with the name traPerf. This definition requires that the
variable Performance has previously been bound to a contract type in a definition
of the form “type Performance=....”

We use explicit typing to allow different contract types to have similar dimension
names. For example, assume that two types T3 and T, both have a dimension

16

contractTypeName contract {

sl <= { el, €2 };
82 == {f1 };

el < a2;

e2 == b2;

n2 < 23;

n3 > 45;

};

contractTypeName contract {
s1 { percentile 20 < { el, e2 }};

el {
frequency
frequency
frequency
frequency

}:

e2 == b2;

n2 {
percentile
percentile
percentile
percentile

al <= 10 %;
a2 >= 80 %;
a3 < 20 %;
a3 >= 5 ¥%;

10 < 20;
650 < 45;
90 < 85;
100 <= 120;

mean >= 60;

.
variance <

}s
n3 {

0.6;

mean > 100;

variance <
1
}s

0.4;

Fig. 7. Example contract expression

decl 1= conTypeDecl | conDecl
conTypeDecl ::= typey = conType
conDecl = x, = conEzp

conEzp

conType
contract

y contract

| zc refined by {constraint; ;... ; constrainty ; }

defined in Figure 4

= defined in Figure 5

constraint = defined in Figure 5

Fig. 8. Abstract syntax for definition of contracts and contract types

17

type Reliability = contract {

failureMasking : decreasing set { omission, lostResponse, noExecution,
response, responseValue, stateTransition };

serverFailure : enum { halt, initialState, rolledBack };

operationSemantics : decreasing enum { atLeastOnce, atMostOnce, once }
with order { once < atLeastOnce, once < atMostOnce } ;

rebindingPolicy : decreasing enum { rebind, noRebind }
with order {noRebind < rebind};

dataPolicy : decreasing enum { valid, invalid }
with order { valid < invalid };

number0fFailures : decreasing numeric failures/year;

MTTR : decreasing numeric sec;

MTTF : increasing numeric day;

reliability : increasing numeric;

availability : increasing numeric;

Fig. 9. Example contract type definition

called D. If a contract C specifies only a QoS property along D and omits the
specification of other dimensions, we need explicit typing to determine if C is of
type T or T».

We can define a contract A to be a refinement of another contract B using the
construct “A = B refined by {...}” where B is the name of a previously defined
contract. The contract that is enclosed by curly brackets ({...}) is a “delta” that
describes the difference between the contracts A and B. We say that the delta
refines A and that B is a refinement of A. For a refinement to be semantically
valid we require that the result of the refinement, A, is more stringent than the
contract being refined, B. For example, the delta can specify QoS properties along
dimensions for which specifications were omitted in B. Moreover, the delta can
strengthen the QoS properties specified in B. We discuss contract refinement in
more detail in Section 3.5.

To illustrate our definition syntax and informally describe its semantics, we
give an example of a contract type in Figure 9 and examples of contracts in Fig-
ure 10. The contract type Reliability has the dimensions for reliability identified
in [Koistinen 1997].

The contract systemReliability is an instance of Reliability; it captures
a system wide property, namely that operation invocation has “exactly once” (or
transactional) semantics. The systemReliability provides only a guarantee about
the invocation semantics; it does not provide guarantees for the other dimensions
in the Reliability contract type.

In Figure 10, the contract nameServerReliability is defined as a refinement
of another contract, namely the contract bound to the name systemReliability.
In this example, we strengthen the systemReliability contract by providing a
specification along the serverFailure dimension, which was left unspecified in the
systemReliability contract.

18

systemReliability = Reliability contract {
operationSemantics == once;
}i

nameServerReliability = systemReliability {
serverFailure == rolledBack;
b

type Performance = contract {
latency : decreasing numeric msec;
throughput : increasing numeric kb/sec;

b

traderResponse = Performance contract {
latency { percentile 90 < 50 msec };

} ’
Fig. 10. Example contract definitions
profile := profile {req,;...; req,;}
req := require contractList
| from entityList require contractList
contractList ::= conEzp,,..., conEzp,
entityList = entity,,..., entily,
entity ::= opName
| attrName
| opName.parName
| result of opName
opName = identifier
attrName := identifier
parName = := identifier
conEzp := defined in Figure 8
Fig. 11. Abstract syntax for profiles
3.3 Profiles

A service specification contains an interface and a QoS profile. The interface de-
scribes the operations and attributes exported by the service; the profile describes
the QoS properties of the service. A profile is defined relative to a specific inter-
face and specifies QoS contracts for the attributes and operations described in the
interface. We can define multiple profiles for the same interface, which is neces-
sary since the same interface can have multiple implementations with different QoS
properties.

Here we describe a syntax for profile values, and in Section 3.4 we describe a
syntax for profile definition. Figure 11 gives an abstract syntax for profiles. A
profile is a list of requirements, each of which specifies one or more contracts for
one or more interface entities. An interface entity is an operation, an attribute,
an operation parameter, or an operation result. If a requirement is stated without
an associated entity, the requirement is a default requirement that applies to all

19

declaration ::= conTypeDecl
| conDecl
| profileDecl
profileDecl := zp for intName = profileEzp
profileEzp = profile
| zprefilned by {req;;...; regq,;}
intName := identifier
conTypeDecl ::= defined in Figure 8
conDecl := defined in Figure 8
profile := defined in Figure 11
req := defined in Figure 11

Fig. 12. Abstract syntax for definition of profiles

entities within the interface in question. Our intention is that the default contract
be the strongest contract and that it apply to all entities within the interface. We
can then use refinement to explicitly specify a stronger contract for individually
selected entities.

Contracts for individual entities are defined by introducing a delta that strength-
ens the default contract by the profile. This way we avoid introducing new named
contracts for each refinement within a profile.

A profile may contain at most one default contract of a given contract type.
That is, we cannot specify multiple default contracts for performance, but we can
omit the specification of a default contract. Similarly, at most one contract of
a given type can be explicitly associated with an individual interface entity. If,
for a given contract type T, there is no default contract and there is no explicit
specification for a particular interface entity, no QoS properties within the category
of T are associated with that entity. In the syntax definition below z, denotes
profile names.

3.4 Definition of Profiles

A profile definition binds the result of a profile expression to a variable. A profile
definition is given relative to a particular interface; the profile can only be used
in conjunction with that interface and with the interfaces that inherit from the
specified interface. The syntax for profile definition is given in Figure 12. The
definition “z, for intName = profileEzp” binds the variable z, to the profile
that is the result of evaluating the profile expression profileExp with respect to the
interface intName.

A profile expression (profileEzp) can be a profile or a variable with a “{...}”
clause. If a profile expression contains a variable with a “{...}” clause, the variable
must be bound to a profile, and the “{...}” clause is then a delta that refines this
profile. The definition gives a name to this refined profile and associates it with the
interface. We discuss the semantics for profile refinement in Section 3.5.2.

A general requirement is that the interface entities referred to by the profile must
exist in the related interface.

To exemplify the notion of profile definition, consider the interface of a name
server in Figure 13. The profile called nameServerProfile is a profile for the

20

interface NameServer {
void init();
void register(in string name,in object ref);
object lookup(in string name);

}

nameServerProfile for NameServer = profile {
require nameServerReliability;
from lookup require Reliability contract {
rebindPolicy == noRebind;
}
}

Fig. 13. The interface of a name server

NameServer interface; it associates various contracts with the operations defined
with the NameServer interface. The nameServerProfile defines the contract called
nameServerReliability (introduced in Figure 10) to be the default contract, and
it associates a refinement of the nameServerReliability contract with the lookup
operation.

Notice that the contract for the lookup operation must refine the default contract
(in this case, the default contract is nameServerReliability). Since the contract
for operations must always refine the default contract, it is implicitly understood
that the contract expression in an operation contract is, in fact, a refinement.

3.5 Refinement

There we give an informal semantics for profile and contract refinement; Section 6
contains a formal definition of refinement semantics.

The main motivation for profile refinement is that, in an object-oriented setting,
interfaces are typically subject to sub-typing or inheritance relationships. Since
interfaces can be defined through derivation and since there is a close coupling
between profiles and interfaces, we want to enable derivation of profiles; we do not
want to insist that all profiles be defined from scratch.

Refinement results in a stronger profile. The reason for this semantic property is
that we want to maintain sub-type substitutability. Most object-oriented languages
support a notion of sub-type substitutability for functional interfaces. We want to
support a similar notion in the area of QoS specifications. Although it is possible
to define two independent profiles so that one is stronger than the other, refinement
provides a more disciplined way to achieve this.

Profile refinement is defined in terms of contract refinement. Another motivation
for contract refinement is to support the notion of a default contract within a profile
and to allow stronger contracts to be specified for selected interface entities.

3.5.1 Contract Refinement. There are two issues in contract refinement: which
contract A can refine a contract B and what is the result of a contract A refining
contract B. The first issue is concerned with legality of refinement, and the second
issue is concerned with the result of the refinement given that the refinement is

21

A = Reliability contract {
failureMasking <= { omission, response };
dataPolicy == valid;
availability > 99.9 ¥%;

};

B = A refined by {
failureMasking <= { omission }; //legal
dataPolicy == invalid; //illegal
availability > 98 %; //illegal
rebindPolicy == rebind; //legal

Fig. 14. Examples of legal and illegal contract refinement

semantically legal.

The first criterion for legality is that the contracts A and B must be of the
same type; thus, a reliability contract cannot refine a performance contract. If
the contracts are of the same type, we need to examine each constraint in both
contracts.

The intuition behind contract refinement is that A can add new constraints,
replacing the constraints in B with stronger constraints. More precisely, we can
capture refinement by the following rules:

—If only one of the two contracts specifies a constraint along a given dimension,
refinement is legal along that dimension, and the result of the refinement is the
single constraint specified.

—1If both A and B specify a constraint along a given dimension, the constraint
in A must conform to (be stronger than) the constraint in B, and the result of
refinement is the constraint in A.

The examples in Figure 14 illustrate our rules for contract refinement. In the
figure, the contract A is refined, and the result of the refinement is bound to B.
Refinement along the failureMasking dimension is legal because the delta con-
tains a stronger constraint: the singleton set {omission} is stronger than the set
{omission,response} because the domain is decreasing. Refinement along the
dataPolicy dimension is illegal. We cannot strengthen a constraint which uses an
equality operator. The availability dimension is also refined illegally because
the constraint in the delta is not stronger than the constraint in A. Finally, it is
legal to add a constraint for the rebindPolicy dimension.

3.5.2 Profile Refinement. We first illustrate the profile refinement for a specific
example, and then we give precise, but informal, rules for the general case. In
Section 6, we give a formal definition of the rules for profile refinement.

Figure 15 shows an example of profile refinement. The profile P2 is described
as a refinement of a profile P1. P1 is refined by a profile delta that specifies the
difference between P1 and P2. The interface I2 in turn is derived from the interface
I1. E is an entity in I1 and due to interface inheritance also an entity in I2.

The contract for E in P1 is the default contract D1 refined by the individual

22

P1 for I1 = profile {
require D1;
from E require C1;

}i

P2 for I2 = Pi refined by {
require D2;
from E require C2;

1

Fig. 15. Example of profile refinement

contract C1. The contract for E in P2 is the result of several refinement operations:
it is defined as D1 refined by C1, D2, and C2.

To describe the profile refinement rules for the general case, we need to clarify
some terminology. The specified contract is the literal contract that is specified as
part of a requirements clause. For example, C1 is the specified individual contract
for E in P1, and D2 is the specified default contract in P2. An effective contract
is a contract that applies to a profile after profile refinement has been performed.
For example, the effective individual contract for E in P2 is C1 refined by C2, and
the effective default contract for P2 is D1 refined by D2. For a profile that is not
specified using refinement, the effective and specified contracts are the same.

In the general case, a profile A refines a profile B, and the result of the refinement
is a profile C. The profile B is defined for an interface I, and the profile C is defined
for an interface Ic. The profile A is the refinement delta. We define the rules for
profile refinement in terms of A, B, and C. The goal is to specify, in general terms,
which contracts apply to an entity E in the profile C. We can specify this in terms
of effective default and effective individual contracts as follows:

—The contract for E in C is the effective default contract for C, if any, refined by
the effective individual contract for E in C, if any.

Notice that this rule is relative to a specific contract type T, so, for example, when
we say the default contract, we mean the default contract of type T. Notice also
that some of the contracts may be “missing,” for example, there may not be a
default contract. A refinement operation without a contract has no effect. If both
contracts are missing, the result is an “empty” contract.

For this definition to be complete, we need to give the general rules to determine
the effective individual and effective default contracts:

—The effective default contract in C is the effective default contract in B, if any,
refined by the specified default contract in A, if any.

—The effective individual contract for E in C is the effective individual contract
for E in B, if any, refined by the specified individual contract for E in A.

It may not always be legal for a profile A to refine a profile B. For profile
refinement to be legal, all the contract refinements involved must be legal.

Consider the definitions in Figure 16. Both the nameServerProfile and the
maskingProfile apply to the NameServer interface. The profile maskingProfile
attempts to refine the nameServerProfile. The profile refinement is illegal: the

23

nameServerReliability = Reliability contract {
operationSemantics == once;
serverFailure == rolledBack;

}i

masking = Reliability contract {
failureMasking == { response, stateTransition };
serverFailure == halt;

};

nameServerProfile for NameServer =
profile {
require nameServerReliability;
from lookup require Reliability contract {
rebindPolicy == noRebind;
b
}s

maskingProfile for NameServer =
nameServerProfile {
require masking; // Illegal
from lookup require Reliability contract { dataPolicy == valid;};

}n

Fig. 16. Example profile refinement

default contract, masking, in the delta, does not refine the default contract in
nameServerProfile because they both specify an equality constraint for the di-
mension called serverFailure, and the values are not equal.

3.6 Profile Conformance

Conformance is different from refinement in that conformance allows us to compare
two syntactically unrelated profiles. We say that a profile P conforms to another
profile @ if satisfying P also implies satisfying). We can only determine confor-
mance for profiles associated with the same interface.

There is an obvious relation between refinement and conformance. The relation
is that if a profile P’ is a refinement of another profile P, P’ will also conform to P.
Conformance is, however, more general and can be applied to any pair of profiles
as long as they are profiles of the same interface.

Profile conformance is defined in terms of contract conformance. Essentially, a
profile P conforms to another profile @ if the contracts in P associated with an
entity e conform to the contracts associated with e in the profile Q.

Contract conformance is in turn defined in terms of conformance for constraints.
Constraint conformance—which we also call the stronger than relation—defines
when one constraint in a contract can be considered stronger or as strong as another
constraint for the same dimension in another contract of the same contract type.
The notion of constraint conformance is treated informally in the next section and
more formally in section 6.6.

24

aspect conformance rule

frequency For every constraint of type frequency R x P in D there
must be a constraint with the same aspect signature in S that
is stronger or equally strong with respect to the value P.
percentile For every constraint of type percentile P x V in D there
must be a constraint with the same aspect signature in S that
is stronger or equally strong with respect to the value V.

mean If D has an mean constraint, the mean constraint for S must
be stronger or equal to the one in D.
variance If D has a variance constraint, the variance constraint of S

must be smaller or equal to the variance of D.

Fig. 17. Conformance rules for aspects

3.6.1 Comparing Dimension Constraints. For refinement as well as conformance
we need a notion of a dimension constraint being stronger than another dimension
constraint. In this section we will informally define the rules that we use in QML
to determine when a constraint is stronger that another constraint. Although this
relation is used in both contract refinement and conformance, we call the relation
dimension conformance. We will sometimes say that a stronger value conforms to
a weaker value, or simply that one constraint is stronger than another.

Earlier in this paper we stated that a dimension has a domain, which may have
an ordering and a relation semantics declaration. The ordering defines how the
elements of the domain are ordered, and relation semantics defines how the stronger
than relation is mapped to the ordering. The mapping differs slightly for the three
basic domain types that QML allows. As an example, for an increasing numeric
dimension, the value 3 is considered stronger than 1. For a decreasing numeric
dimension it is the other way around. For sets, however, increasing means both
that larger sets are stronger and that larger element values are stronger.

In a QML description we can use various operators to express constraints. The
set of allowed operators is different depending on how the stronger than relation
is mapped to the ordering. For example, we do not allow the < operator for an
increasing domain. In the following discussion, we use * as a place holder for any
semantically valid comparison operator.

To define constraint conformance, we need to consider the different types of
domains and all of the aspects that can be specified for a particular domain type.
The first requirement for constraint conformance is that the domains are of the
same type. More specifically, we allow conformance only for constraints of the
same dimensions in two contract instances of a specific contract type.

To define conformance for aspects, we need to define the concept of aspect signa-
ture. An aspect signature is defined as the the tuple consisting of the aspect key,
operator, and aspect the parameter if any. According to this we define the signature
for the aspect percentile P < V as the tuple (percentile, <, P) and the signature
for the aspect frequency R > P% as (frequency, >, R). Aspect signatures of
mean and variance are defined as (mean, x) and (variance, *) respectively. Let
us assume that a constraint S conforms to another dimension constraint D of the
same type. Then the rules in Figure 17 must hold.

The conforming constraint may introduce aspects that do not exist in the other

25

type ctName = contract {
sd : decreasing set { el, e2, e3, e4 } with order {e2<el, el<e3, e3<ed};
ed : decreasing enum { al, a2, a3 } with order {ai<a2, a2<a3};
nd : decreasing numeric msec;

b

A = ctName contract {
sd == {e2, e3};
ed {
frequency ai > 10 %;
frequency a3 < 10 ¥%;
}i
nd {
percentile 90 < 18;
percentile 100 < 23;
mean <= 40;
variance < 0.7;

B = ctName contract {
sd == {el};
ed {
frequency al > 20 %;
frequency a3 < 10 %;
|5
nd {
percentile 10 < 5;
percentile 50 < 10;
percentile 90 < 18;
percentile 100 <= 20;
mean <= 40;
variance < 0.6;

}:

Fig. 18. Conforming dimensions

constraints as long as it conforms to all the existing ones according to the above
rules.

The example in Figure 18 shows a contract type and two contracts A and B of that
same type. In this particular example, B conforms to A since each of the dimension
constraints in B conform to the corresponding constraints in A.

The sd constraint in B conforms to sd in A since the element el in the set is
a stronger the weakest element (e3) of sd in A. The dimension ed in B conforms
since the aspect signature matches and since the lower bound of the constraint is
increased. Finally, nd conforms because the distribution requires stronger values
for each percentile that also exists in A and because the variance is lower. The mean
is the same, which also gives rise to conformance.

Figure 19 shows another contract C of type ctName. The contract C does not
conform to A. As a matter of fact, none of the constraints in C conform to the

26

C = ctName contract {
sd == {e2, e4};
ed {
frequency a1 > 20 %;
frequency a3 < 30 %;
}s
nd {
percentile 100 <= 23;
mean <= 40;
variance < 0.8;

};

Fig. 19. Non-conforming dimensions

corresponding constraints in A. sd does not conform since the value contains an
element that is weaker than any of the elements of the sd value in A. The ed value
does not conform since we allow a higher frequency of the a3 value. Finally, for nd
we set only an upper bound and remove the constraint in the 90th percentile, which
results in a weaker constraint. The constraint over the mean aspect does conform,
but we introduce a higher variance, which does not conform.

4. AN EXTENSION OF THE UNIFIED MODELING LANGUAGE

Profiles can be used to characterize QoS requirements and guarantees in many
different situations. One example is run-time negotiation and monitoring of QoS
agreements. In such situations we establish QoS agreements dynamically for limited
time-periods, such as, in a session, or for a specified number of invocations. In other
situations we define statically—as part of the design—the QoS that is required by
various components in the system. Both situations require that a profile can be
bound to a relation between a client and a server. In the dynamic case we bind to a
deal as a result of a negotiation, while the static case requires that we bind as part
of the design model. We consider the binding constructs quite context dependent.
In this paper we will describe only a binding mechanism for object-oriented design.

In order to make QoS considerations an integral part of the design process, de-
sign notations must provide the appropriate language concepts. We have already
presented a textual syntax to define QoS properties. Here, we extend UML [Booch
et al. 1997] to support the definition of QoS properties. Later, we will use CORBA
IDL [Object Management Group 1995] and our extension of UML [Booch et al.
1997] to describe an example design that includes QoS specifications.

In UML, classes are represented by rectangles. In addition, UML has a type
concept that describes abstractions without providing an implementation. A type
is drawn as classes with a type stereotype annotation (jjtype;;) added to it. In
UML, classes may implement types. The UML interface concept is a specialized
usage of types. Interfaces can be drawn as small circles that can be connected
to class symbols. A class can use or provide a service specified by an interface.
Figure 20 shows a client using (dashed arrow) a service specified by an interface
called I. We also show a class Implementation implementing the I interface, but

27

in this example the interface, circle has been expanded to a class symbol with the
type annotation.

Our extensions to UML allow QoS profiles to be associated with the uses and
implements relationships between classes and interfaces. A reference to a profile is
drawn as a rectangle with a dashed border within which the profile name is written.
This profile box is then associated with a uses or implements relationship.

Client
— — — =
I
-
Lgequired?rofile J
<<type>> Implementation
I
I
\
R D

Fig. 20. UML extensions

In Figure 20, the client requires a server that implements the interface I and
satisfies the QoS requirements stated in the associated RequiredProfile. The
Implementation on the other hand promises to implement interface I with the
QoS properties defined by the ProvidedProfile profile. The profiles are defined
textually using QML.

Our UML extensions allow object-oriented design to be annotated with profile
names that refer to separately defined QoS profiles. Notice that our UML extensions
associate profiles with specific implementations and usages of interfaces. This allows
different clients of the same interface to require different QoS properties, and it
allows different implementations of the same interface to provide different QoS
properties.

Having a separate graphical entity for QoS profiles allows us to clearly show
when the same profile is referenced to from multiple places. For example, if a
client requires the same profile that a service provides, we can graphically connect
both the client and the service to the same profile box. In addition, we can show
refinement relationships between profiles by introducing a graphical representation
of these relationships.

5. EXAMPLE

To illustrate QML and demonstrate its utility, we use it to specify the QoS prop-
erties of an example system. The example shows how QML can help designers
decompose application level QoS requirements into QoS properties for application

28

1
PhoneServiceSystem
|
T |
\ |
I |
| |
I I
EventService TraderService

Fig. 21. High-level architecture

components. The example also demonstrates that different QoS trade-offs can give
rise to different designs.

This example is a simplified version of a system for executing telephony services,
such as telephone banking, ordering, etc. The purpose of having such an execution
system is to allow rapid development and installation of new telephony services.
The system must be scalable in order to be useful both in small businesses and for
servicing several hundred simultaneous calls. More importantly—especially from
the perspective of this paper—the system needs to provide services with sufficient
availability.

Executing a service typically involves playing messages for the caller, reacting to
key strokes, recording responses, retrieving and updating databases, etc. It should
be possible to dynamically install new telephone services and upgrade them at
runtime without shutting down the system. The system answers incoming telephone
calls and selects a service based on the phone number that was called. The executed
service may, for example, play messages for the caller and react to events from the
caller and events from the resources allocated to handle the call.

Telephone users generally expect plain old telephony to be reliable, and they
commonly have the same expectations for telephony services. A telephony service
that is unavailable will have a severe impact on customer satisfaction, in addition,
the service company will lose business. Consequently, the system needs to be highly
available.

Following the categorization in [Gray and Reuter 1993], we want the telephony
service to be a highly-available system, which means it should have a total maxi-
mum downtime of five minutes per year. The availability measure for this downtime
would then be 0.99999. We assume the system is built on a general purpose com-
puter platform with specialized computer telephony hardware. The system is built
using a CORBA [Object Management Group 1995] Object Request Broker (ORB)
to achieve scalability and reliability through distribution.

5.1 System Architecture

We call the service execution system module PhoneServiceSystem. As illustrated
by Figure 21, it uses an EventService module and a TraderService module.
In Figure 22 we open up the PhoneServiceSystem module to see its main

29

TraderService: :TraderI
TraderService::
Trader ’ O

_____ A i ——
SEProfil —| TraderProfile_R
Lst Trofile I [~ T|TraderProfile R J
| | I E:ve::s:rvice: s
CallHandlerI i PushConsumer
a. CallHandlerImpl J | ::;:Z\lx::r O
()_,—— —— — — — —() T
Servicel e
_41 | ESPCProfile_p | Eventservice::
| CallHandler_P | | _____ PushSupplier
AAAAAA | —_————
! 7 1
\ L S R
\ /TN ESPSProfile R |
\ N T

<<type>> [ResourceProfileR |
CallHandle Resourcel I_ - =
-

/

R |

<<type>> PlayerImpl <<type>> DatabaseImpl

PlayerI Databasel

| PlayerProfile_p
RecorderImpl prTR————
RecorderI ‘ erDatabaseImp.

______ J
<<type>>
|
|

T
\
,,,,,, g
\
EventService::
PushConsumer

Fig. 22. Class diagram for PhoneServiceSystem

classes and interfaces. Classes are drawn as rectangles and interfaces as circles.
Classes implement and use interfaces. The upper right part of Figure 22 shows
that ServiceExecutor implements Servicel and uses TraderI. In the diagram
we have included references to QML profiles—such as PlayerProfile P (lower left
corner)— of which a subset will be described in section 5.2. To ease the reading
of the diagram we have named required and provided profiles so that they end with
the letters R and P respectively. We have omitted drawing some interrelationships
to keep the diagram simple.

CallHandlerI, Servicel, and Resourcel are three important interfaces of the
system. The model also shows that the system uses interfaces provided by the
EventService and TraderService (upper right corner).

When a call is made, the Cal1HandlerImpl receives the incoming call through the
CallHandlerlI interface and invokes the ServiceExecutor through the Servicel

30

interface. CallHandlerImpl receives the telephone number as an argument and
maps that to a service identity. When CallHandlerImpl calls the ServiceExecutor
it supplies the service identifier and a CallHandle as arguments. The CallHandle
contains information about the call—such as the speech channel—that is needed
during the execution of the service. A new instance of CallHandle is created and
initialized by the CallHandler whenever an incoming call is received. The infor-
mation stored in the CallHandle remains unchanged for the remainder of the call.

In order to execute a service, the ServiceExecutor retrieves the service de-
scription associated with the received service identifier. It also needs to allo-
cate resources such as databases, players, recorders, etc. To obtain resources, the
ServiceExecutor calls the Trader. Each resource offer its services by contacting
the trader and registering its offer when the resource is initially started. To reduce
complexity of the diagram we omit showing that the resources use the trader.

ServiceExecutor uses the PushSupplier and implements the PushConsumer in-
terface from the EventService module. Resources connect to the event service by
using the PushConsumer interfaces. The communication between the service execu-
tor and its resources is asynchronous. When the service executor needs a resource
to perform an operation, it invokes the resource, which returns immediately. The
service executor will then continue executing the service or stop to wait for events.
When the resource has finished its operation, it notifies the service executor by
sending an event through the event service. This communication model enables the
service executor to listen for events from many sources at the same time, which is
essential if, for example, the service executor simultaneously initiates the playing
of menu alternatives and waits for responses from the caller.

The diagram in Figure 22 also includes references to QoS profiles. In new designs,
clients and services are usually designed to match each others needs; therefore, the
same profile often specifies both what clients expect and what services provide.
When clients and services refer to the same profiles, it becomes trivial to ensure that
the requirements by a client are satisfied by the service. To point out an example,
CallHandlerImpl requires that the Servicel interface is implemented with the
QoS properties defined by SEProfile P and at the same time ServiceExecutor
provides Servicel according to the same QoS profile.

Other components, such as the Trader, are expected to pre-exist and therefore
have previously specified QoS properties. With these components, one contract
specifies the required properties and another contract specifies what is provided.
Consequently we need to make sure the provided characteristics satisfy the required
characteristics; this is referred to as conformance and is discussed in section 3.6.

We will now present simplified versions of three main interfaces in the design. The
Servicel interface described in Figure 23 provides an operation, called execute,
to start the execution of a service. The service identifier is obtained from a table
that maps phone numbers to services. The CallHandle argument contains channel
identifiers and the other data necessary to execute the service.

Figure 24 defined the TraderI that is implemented by traders. The TraderI
allows resources to offer and withdraw their services. Service executors can in-
voke the find or findA1ll operations on the TraderI to locate the resources they
need. Using a trader allows us to decouple ServiceExecutors and resources. This
decoupling make it possible to smoothly introduce new resources and remove mal-

31

interface ServiceI {
void execute(in Serviceld si, in CallHandle ch) raises (InvalidSI);
boolean probe() raises (ProbeFailed);

};

Fig. 23. The Servicel interface

interface TraderI {
OfferId offer(in OfferRec or, in Object obj) raises (invalidOffer);
Match find(in Criteria cr) raises (noMatch);
MatchSeq findAll(in Criteria cr) raises (noMatch);
void withdraw(in OfferId oi) raises (noMatch);

};

Fig. 24. The Traderl interface

functioning or depreciated resources. Observe that this is a much simplified trader
for the purpose of this paper.

Finally, in Figure 25 we have the PlayerI that represents a simple player resource.
Players allow the service execution to play a sequence of messages on the connection
associated with the supplied CallHandle. The idea is that a complete message can
be built up by a sequence of smaller phrases. The interface allows the service
executor to interrupt the playing of messages by calling stop.

5.2 Reliability

We have already shown in Figure 22 how profiles are associated with uses and
implements relationships between interfaces and classes. We will now discuss in
more depth what the QoS profiles and contracts should be for this particular design.
For the contracts we will use the dimensions proposed in Figure 9 of section 3.2.
We will not present any development process by which the important profiles and
their content can be identified.

To meet end-to-end reliability requirements, the underlying communications in-
frastructure, as well as the execution system, must meet reliability expectations.
Making the simplifying assumption that the communications infrastructure is reli-
able, we focus on the reliability of the service execution system. In a real design
we would take infrastructure reliability into account by comparing what a client
requires with the composite reliability of the infrastructure and the server.

From a telephone user’s perspective, the interface CallHandlerI represents the
peer on the other side of the line. Thus, to provide high-availability to telephone

interface PlayerI : Resourcel {
void play(in CallHandle ch, in MsgSeq ms) raises (InvalidMsg);
void stop(in CallHandle ch);

}

Fig. 25. The Playerl interface

32

CallServerReliability = Reliability contract {
MTTR {
percentile 100 <= 2;
variance <= 0.3
}s
TTF {
percentile 100 > 0.05 days;
percentile 80 > 100 days;
mean >= 140 days;

availability >= 0.99999;
contAvailability >= 0.99999;
failureMasking == { omission };
serverFailure == initialState;
rebindPolicy == noRebind;
num0fFailure <= 2 failures/year;
operationSemantics == atMostOnce;

};

CallHandlerProfile P for CallHandlerI = profile {
require CallServerReliability;
}

Fig. 26. Contract and binding for CallHandler

users, the CallHandlerI service must be highly available.

To provide a highly available telephone service, the CallhandlerImpl must have
a very short recovery time and a long time between failures. Due to the shopping
behavior of telephone service users, we must require both the repair time (MTTR) to
not significantly exceed two minutes and the variance to be small.

The CallHandler does not provide any sophisticated failure masking, but it has
a special kind of object reference that does not require rebinding after a failure.
We are prepared to accept 2 failures per year on average. If the service fails, any
executing and pending requests are discontinued and removed. This means we have
a at most once operation semantics. The contract and profile of CallHandlerI
as provided by CallHandlerImpl is described in Figure 26.

From Figure 22 we can see that the reliability of CallHandlerI depends directly
on the reliability of service defined by ServiceI. The contract and profile used for
Servicel are described in Figure 27.

The ServiceExecutor component cannot provide any services without resources.
Unless ServiceExecutor can handle failing traders and resources, the reliability
depends directly on the reliability of TraderI and any resources it uses. In this
example we want to keep the ServiceExecutor as small and as simple as possible;
therefore, we propagate high-availability requirements from CallHandlerI to the
trader and the resources. This is certainly a major design decision that will affect
the design and implementation of the other components of this system.

We expect the ServiceExecutor to have a short recovery time since it holds no
information that needs to be recovered. When it fails, the service interactions it was

33

ServiceExecutorReliability = Reliability contract {

MTTR < 20 sec;
TTF {

percentile 100 > 0.05 days;

percentile 80 > 20 days;

mean > 24 days;

}

availability >= 0.99999;
contAvailability > 0.999999 ;
failureMasking == { omission };
serverFailure == initialState;
rebindPolicy == rebind;
numOfFailure <= 10 failures/year;
operationSemantics == atMostOnce;

b

SEProfile for Servicel = profile {
require ServiceExecutorReliability;
require Reliability contract { dataPolicy == invalid; };

}:

Fig. 27. Contract and binding for service

executing will be discontinued. We assume that users consider it more annoying
if a session is interrupted by a failure than if they are unable to connect to the
service. We therefore require the ServiceExecutor to be reliable in the sense that
it should function adequately over the duration of a typical service call. Calls are
estimated to last three minutes on average with 80% of the calls lasting less than
five minutes. With this in mind, we will require that the service executor provides
high, continuous availability, which is reflected in the fact that a TTF of less than
five minutes is unacceptable.

Since the recovery time is short, we can allow more frequent failures without
compromising the availability requirements.

The ServiceExecutor recovers to a well defined initial state and will forget
about all executions that where going on at the time of the failure. The contract
states that rebinding is necessary, which means that when the service executor is
restarted, the CallHandler receives a notification that it can obtain a reference to
the ServiceExecutor by re-binding. Pending requests are executed at most once
in case of a failure; most likely they are not executed at all, which is considered
acceptable for this system.

Although the ServiceExecutor itself can recover rapidly, it still depends on the
Trader and the resources.

We expect the Trader to have a relatively short recovery time, which relaxes the
mean time-to-failure requirements slightly. We insist that all types of telephony ser-
vices be capable of executing when the system is up, which means that all resources
must be available and must consequently satisfy the high-availability requirements.

The reliability contract for the Trader (defined in Figure 28) is based on a general
contract (HAServiceReliability) for highly-available services. This contract is

34

HAServiceReliability = Reliability contract {
availability >= 0.99999;
failureMasking == { omission };
serverFailure == initialState;
rebindPolicy == rebind;
num0fFailure <= 10 failures/year;
operationSemantics == once;

};

TraderProfile_P for TraderI = profile {
require HAServiceReliability refined by {
MTTR {
percentile 100 < 60 ;
variance <= 0.1;
}
}s

from offer.0fferId, result of find, findAll require Reliability contract {
dataPolicy == valid;

};

from find, findAll require Performance contract {
latency { percentile 90 < 50 };

from offer, withdraw require Performance contract {
latency { percentile 80 < 2000 };

};

Fig. 28. Contract and binding for the Trader

abstract in the sense that it states only the availability requirements and leaves
several of the other dimensions unspecified. The Trader profile refines it by stating
that the recovery time should be short, and consequently the number of failures
can be allowed to be slightly higher.

In addition, we specify that offer identifiers and object references returned by the
trader be valid even after a failure. This means that the offer identifier returned
before a failure can be used to withdraw an offer, once the Trader has recovered.
Also, any references returned by the Trader are valid during the Trader’s down
period as well as after it has recovered, assuming, of course, that the services
referenved have not failed.

The start-up time for a service execution is very important; the time between
answerng a call and executing the service, must be short and must definitely not
exceed one second. A start-up time that exceeds one second can make users be-
lieve there is a problem with the connection and therefore hang-up the phone, the
consequence being both a dissatisfied customers and lost business opportunities.

Having analyzed and estimated the execution times in the start-up execution
path, we require that the find and findAll operations on the Trader respond

35

quickly. We do not anticipate throughput to constitute a bottleneck if this is done.

We can relax the performance requirements for the offer and withdraw opera-
tions on the Trader. The reason being that these operations are not time critical
from the service execution point of view. Performance requirements are specified
in Figure 28 as part of the TraderProfile P profile.

The performance profile makes it clear that the implementation of TraderI
should give invocations of find and £indAl1l higher priority than invocations of
offer and withdraw.

A resource service represents a pool of hardware and software resources that are
expected to be highly available. If a resource service is down, it is likely that there
are major hardware or software problems that will take a long time to repair. Since
failing resource services are expected to have long recovery times, they need to have,
in principle, infinite average TTFs to satisfy the high availability requirements. This
does not mean that individual resources cannot fail, but it does mean that there
must be sufficient redundancy to mask these failures.

In Figure 29 we define a general contract, called ResourceReliability, for
Resourcel. The contract captures the requirements that resources need to be highly
available. Each specific resource type will specify its individual QoS properties by
refining this general contract.

The PlayerReliability contract in Figure 29 is defined as a refinement of
ResourceReliability. It specifies that PlayerImpl will provide the high-availabi-
lity specified in ResourceReliability by providing a long average TTF. We expect
it to take two hours to repair a major problem with the player service. PlayerImpl
provides extremely good continuous availability. The TTF characterization also in-
dicates that the player very should rarely fail in a way that interrupts a service
execution.

5.3 Discussion

The specification of reliability and performance contracts and the analysis of inter-
component QoS dependencies have given us many important insights and guidance.
For example, they have helped us realize that the Trader needs to support fast fail-
over and use a reliable storage. We have also found that the reliability of resources is
essential, and that, in this example system, resource services should be responsible
for their own reliability.

QML allows detailed descriptions of the QoS associated with operations, at-
tributes, and operation parameters of interfaces. This level of detail is essential to
clearly specify and divide the responsibilities among client and service implemen-
tations. The refinement mechanism is also essential. Refinement allows us to form
hierarchies of contracts and profiles, which allow us to capture QoS requirements
at various levels of abstraction.

Due to the limited space of this paper, we have not been able to include a full
analysis or specification of the example system. In a real design, we also need to
study what happens when various components fail, to estimate the frequency of
failures due to programming errors, to consider communication link reliability, etc.
We also need to ensure that the QoS contracts provided by components actually
allow the clients to satisfy the requirements imposed on them. There are various
modeling techniques available that are applicable to selected types of systems (see

36

ResourceReliability = Reliability contract {
availability >= 0.99999;
failureMasking == { failure };
serverFailure == initialState;
rebindPolicy == rebind;

}:

PlayerReliability = ResourceReliability refined by {
MTTR = 7200 sec;
TTF {
percentile 100 > 2000 days;
percentile 80 > 6000 days;
mean >= 7000 days;

b

availability >= 0.99999;
contAvailability >= 0.999999;
failureMasking == failure;
serverFailure == initialState;
rebindPolicy == rebind;
numOfFailure <= 0.1 failures/year;
operationSemantics == least_once;
dataPolicy == no_guarantees;

}i

PlayerProfile_P for Playerl = profile {
require PlayerReliability;

}i

Fig. 29. Contract and binding for resources

[Reibman and Veeraraghavan 1991] for an overview).

In our example case, high availability requirements for CallHandler result in
strong demands on other services in the application. Another design alternative
would be to demand that components such as the ServiceExecutor could handle
failing resources and switch to other resources when needed. This would require
more from the ServiceExecutor, but allow resource services to be less reliable.

Despite the limitations of our example, we believe that it demonstrates three im-
portant points: QoS should be considered during the design of distributed systems;
QoS requires appropriate language support; QML is useful as a QoS specification
language.

Firstly, we want to stress that considering QoS during design is both useful and
necessary, since it will directly impact the design and make developers aware of
non-functional requirements.

Secondly, QoS cannot be effectively considered without appropriate language
support. We need a language that helps designers capture QoS requirements and
associate them with interfaces at a detailed level. We also need to make first class
citizens out of QoS requirements and offers from a design language point of view.

Finally, we believe the example shows that QML is suitable as a language for

37

specifying QoS constraints. In this example, we have focused on design time char-
acterization, but the same QML concepts are suitable for QoS characterization at
many different point in the system life-cycle.

6. SEMANTICS

Here we will more rigorously define selected areas of QML’s semantics. The goal of
these definitions is to verify the soundness and consistency of the language and to
assist in the language implementation. Concerning language implementation, this
work will primarily support the static semantic check in the compiler, but it will
also support the algorithms for conformance checking.

We follow Tennent’s [Tennent 1991] advice and attempt to provide a rigorous
framework for understanding the semantics of QML in an informal setting:

Mathematical rigor should not be confused with formality, which is cer-
tainly not sufficient for rigor. ... For most purposes it is actually prefer-
able to use relatively informal descriptions, provided these are based on
rigorous theoretical analysis, just as mathematicians normally present
rigorous mathematics in an informal style.

R. D. Tennent

Our semantic definition has two parts. We define a type system for QML. The
inference rules of the type system specify when we can assign a given type to a given
term. The second part of the definition is an interpretation over declarations that
determine their soundness. The primary goal of this interpretation is to capture
the soundness of refinement and conformance.

Notice that we cannot easily capture the rules for contract refinement and con-
formance as part of the type system. The reason is that the contract being refined
and the result of the refinement are of the same type—we do not assign a different
type to a contract defined by refinement. This is in contrast to object-oriented
subtyping for which subtype soundness can be captured in a subtype relationship
between different types. Similarly, conformance rules are checked for pairs of con-
tracts of the same type. Thus, type rules are not sufficient to capture conformance
semantics.

6.1 Notation

In describing the semantics, we use the following notation for sets and maps. P, [X]
is the set of finite subsets of X. The set of maps from X to Y is denoted I;mqp[X, Y],
and Fp,4p[X, Y] is the set of finite maps from X to Y. We use Dom to obtain the
domain of a map.

We use “[n — v]” to describe a one-element map that maps n to v. We use e for
map composition:

. B(i) ifi€ Dom(B)
AeB =
(4 B)(0) {A(z) otherwise.
6.2 A Type System for QML

We describe a type system that assigns a unique type to a contract expression
conEzp (conEzp € ConExp). Figure 30 gives the structure of contract expressions.

38

As in the syntactic definition of QML, z. refers to a variable that holds contract
values, z, refers to a variable that holds profile values, and y refers to a variable
that holds a contract type. The elements z,, z., and y are all typical elements of
the set Var. The term n refers to a name (an element in Name).

To simplify the type system, we ignore the concepts of units because their static
semantics is relatively straightforward and because incorporating them would give
rise to a significant increase in the number of type inference rules.

conEzp := y contract {cl HIS ck;}
| zcrefined by {c1;...;ck;}
c := n cSpec
cSpec = opv
| {aspect,;...; aspect,;}
v = n
[{n1,..., nx}
| number
aspect := percentile percentNum op dim Value
| mean op v
| wvariance op v
| frequency freqRange op percentNum %
freqgRange := dimValue
| 1RangeLimit dimValue , dimValue rRangeLimit
IRangeLimit := (|[
rRangeLimit ==)|]
op === >=|<=|<| >
percentNum == 0|1]|...]|99] 100
number =

Fig. 30. Structure of expressions and values

We consider two kinds of types: dimension and contract. A dimension describes
a dimension’s domain, including the values in the domain and the ordering of the
domain. A contract type gives the common structure of a set of contracts that
are instances of the type. Contract types are elements of ConType (conType €
ConType). The set Type is the set of all types (contract and dimension). We
use the names t and type to refer to elements in Type. The structure of types is
described in Figure 31.

The inference rules state when we can consider a given term to be of a given
type. The terms under consideration are contract expressions (including contract
values) and constraints. Types are assigned relative to a type contezt, called I' in
the inference rules. The notion of a type context reflects the fact that terms are
typed based on previous type assignments. The type context can be thought of as
the “state” of type analysis at any given point.

Type contexts have the following structure:

Pu=z.:t|y=t (1)

The type context of the form “z. : t” reflects a previous type assignment of the
type t to the variable .. In QML, the variable x. would be the name of a contract

39

type = dimType | conType
conType := contract {ny : dimType, ;... ; ny : dimTypey}
dimType ::= enum {ny,..., ng}
| relSem enum {ni,..., ng} with order
| set {ni1,...,ng}
| relSem set {n1,...,ng}
| relSem set {n;,..., ng} with order
| relSem numeric
order := order {n; <nj,...,ng <nm}
relSem ::= decreasing | increasing

Fig. 31. Structure of types

nameServerProfile for NameServer =
profile {
from lookup require Reliability contract {
rebindPolicy == noRebind;
}s
b

Fig. 32. Explicit typing of expression

and t would be the type of this contract. A context of the form “y = t” reflects a
type declaration of the form “type y = t” where y is declared as a type name of
the type t.

We require that two contract type declarations do not use the same type name.
In other words, we require that a typing context has only one typing assignment of
the form “y = ¢” for any name y. To keep the descriptions simple, the typing rules
do not currently express this property of type contexts. They could, however, be
extended to enforce this property.

We do allow literals of different types to be identical. For example, consider two
enums, both with the value v. We allow this because the value v is used only in the
context of a specific dimension for which the type is unambiguously defined; thus,
the type of v can be derived.

The most basic inference rule states that the type of variables is determined by
the type context:

Dze:thx.:t (2)

Informally, the rule states that if the type context contains a binding “z. : t” we
can conclude that the variable z. is bound to the type ¢.

The goal of type inference for QML contracts is to determine the type of a
contract and to determine its correctness with respect to its declared contract type.
The example in Figure 32 shows how a contract value can be defined within a profile
and how to associate an explicit type. In the figure, we explicitly associate the type
Reliability with the contract value “contract {rebindPolicy == noRebind}.”

The typing rules for contract expressions are given below. The first rule (rule

40

(3)) determines when a contract value with k dimensions can be considered to be
of a contract type with k dimensions. The rule states that the dimension names
must be the same in the contract value and the contract type. Moreover, the
constraint specification for a dimension with name n must be of type t, where ¢ is
the dimension type for n in the contract type.

The second rule (rule (4)) captures the property that a contract value can omit
specification along certain dimensions. That is, a contract value may contain fewer
dimensions than its contract type as long as the dimension constraints have the
correct type.

The third rule (rule (5)) defines how we can determine type correctness for an
explicitly typed contract expression. We can infer that “y contract{...}” is of
type t, if y has been previously bound to ¢t and “contract{...} is of type t. The
typing rules assign unique types to contract expressions. This property is primarily
due to the explicit typing of contract values in QML. Rule (5) connects the explicit
typing of contract values to a requirement on type declarations reflected in the type
context.

The last rule (rule (6)) specifies the circumstances under which we can consider
a refined contract to be of a given type. Both the delta and the contract being
refined must be of the same type ¢.

T'Fniesy:ty ... TFngesg:tx

3
T contract {nj ¢sy;...; ng csg}: contract {ny :t1;...; ng : tx} @)
T'F contract {c;;...; cx}: contract {ny :t1;...; ng: tx} @)
T'F contract {c1;...; ck}:
contract {ny :t1;...; Nkt Nkt t tkt1;.--; nm:tm}
I' - contract {c1;...;ck}:t (5)
I'y=tF (y contract {c1;...;cx}): ¢t
Fhx.:t I' contract {c1;...;ck}: ¢ (6)
't (z; refined by {c1;...;¢c}): ¢t

The above typing rules ignore the following aspects of contracts and contract
types:

—The order in which dimensions appear in contracts or contract types is not sig-
nificant. We do not capture this fact in the above rules. In fact, we assume a
specific dimension order in rules (3) and (4). It would be more precise, but also
more complicated, if these rules handled arbitrary permutations of dimensions.

—We do not capture the constraint that a contract or contract type cannot have
two dimensions with the same name. We could possibly extend the typing rules to
assign types only to contracts for which this constraint is satisfied. To express the
constraint for contract types, we need to specify the semantics for the declaration
of contract types, which is not part of the type system.

To use the rules (3), (4), (5), and (6), we need to determine type correctness for
individual dimension constraints. We introduce rules to determine type correctness

41

for simple constraints such as “delay < 10,” as well as for more complicated con-
straints involving multiple aspects such as “delay {mean < 12; variance < 0.33}.”
Type correctness for constraints is determined by primitive types.

The type inference rules for simple constraints over enumeration domains are de-
scribed below. The rules determine type correctness for an expression involving a
name literal n;. As an example, assume that we are checking correctness of the ex-

pression n == n;, where n is a dimension name. The first rule (rule (7)) states that
if the name n; is in the set “{ni,... ,n;,}” defined in the definition “enum {...}”
of n, we can infer that the expression “n == n;” is of type “enum {n;,... ,np}.”

The following two rules capture the semantic property that the operators allowed
in constraint expressions depend on whether the dimension is increasing or decreas-
ing. These rules may seem ambiguous with respect to the == operator, but are in
fact not. We select rules based on the dimension type, and each rule has a distinct
dimension type.

n; € {nla"' 7nm} (7)
C'Fn==n;:enum {ny,...,n,}
n; € {n1,... ,nm} op € {<,<=,==} (®)
' n op n; : decreasing enum {n;,... ,n,} with order
n; € {nl, . ,nm} op € {>, >=,==} (g)
'+ n op n; : increasing enum {n,,... ,n,} with order

According to these rules, we can use inequality constraints only for ordered enumer-
ation domains. Furthermore, the name (n;) used as part of a dimension constraint
must belong to the domain specified for the dimension.

The following rules determine type correctness for constraints over set domains.
The first rule (rule (10)) states that if we use a set of names in a constraint, those
names must belong to the constraint’s domain. The second rule (rule (11)) states
that we can use only the operators “<,<=,==" for constraints over a decreasing
domain. Moreover, the second rule also ensures that the names in a set constraint
must belong to the constraint’s domain.

Pkn=={ny,...,nk}:set {ny,... ,Ng,Ng41,... ,Am} (10)

op € {<,<=,==} (1)
T'Fnop {ni,...,n}: decreasing set {ni,... ,nk, Nk+1,--- ,Mm}

op € {>,>=,==} (12)
'k nop {ni,...,nk}: increasing set {ny,... ,ng,Nk+1,... ,Am}

op € {<,<=,==}
L'Fnop{ni,...,nk}: (13)
decreasing set {ni,... ,ng, Ngt1,... ,Nm} With order

42

Tknop{ni,...,nk}: (14)

increasing set {ni,... ,ng, Ng+1,... ,Nm} With order

As for enumeration domains, we can use only inequality constraints for set domains
that are ordered. For sets we have three cases: no declarations; increasing or
decreasing set; or ordered increasing/decreasing set.

We consider two types of numeric domains: increasing, for which bigger values are
stronger, and decreasing, for which smaller values are stronger. Numeric domains
are always totally ordered. As for enumeration and set constraints, we allow only
constraints with respect to the weakest allowed value. That is, we can describe only
constraints that can be strengthened: we allow only lower bounds for increasing
and upper bounds for decreasing.

The typing rules for numeric constraints are listed below. The purpose of the
rules is to capture the type correctness of numeric constraints, such as “n < 4,”
relative to a primitive type, such as “increasing numeric.” The first rule (rule
(15)) states that if we have <, <=, or ==, and the dimension is decreasing, we can
infer that the dimension type of the constraint must be decreasing numeric.

op € {<,<=,==} (15)
I' F n op number : decreasing numeric
€ 1>, >=,==

I' F n op number : increasing numeric

Next we introduce the rules to determine type correctness for aspects. The first
rule (rule (17)) states that an aspect clause is of type ¢t if all the constituent aspects
of the clause are of type t. The subsequent rules define the type constraints for
individual aspects.

't aspect, :t ... T} aspecty :t 17
'+ n{aspect,; ... ;aspect,} : t
3 n € Name, 0p, € {<,>,<=,>=,==}:TF (nop, v):t (18)
T+ frequency v op percentNum % : t
A ny,ne € Name, op,, 0p, € {<,>,<=,>=}:
'k (ny opy v1):t I'F(n2 opy v2) it (19)
I' I frequency [RangeLimit v, , v2 rRangeLimit op percentNum % : t
I" I percentile percentNum op number : numRel numeric (20)
op € {<,<=,== (21)
T' F variance op number : numRel numeric
op € {>,>=,==
p {)) } (22)

I' mean op number : increasing numeric

43

op € {<,<=,==}
I' - mean op number : decreasing numeric

(23)

The second and third rule (rule (18) and (19)) deal with type correctness for fre-
quencies. The second rule deals with frequencies of single values. The typing
constraint is that the value v must belong to the domain of the aspect’s dimension.
The type t in the rule is a dimension type, that is, a type for constraints. Thus,
we need to construct a constraint involving v that is of type ¢t whenever v is in the
dimension’s domain. The constraint “n op, v,” for arbitrary dimension name n
and operator op,, is of type ¢t whenever v is in the domain of n.

The third rule deals with frequencies for intervals of values. The typing constraint
is that the values v; and v, must both belong to the dimension’s domain. Further-
more, the domain must be ordered. As for rule (18), we construct constraints that
are of the proper type whenever the frequency aspect is of the proper type. The
constraints are similar to the constraint constructed in rule (18), except that the
operators must be inequality operators. The requirement of inequality operators
ensures that the domain will be ordered—if the domain is not ordered, the con-
straints will not be type correct because we do not allow inequality operators over
unordered domains.

6.3 Semantics of Contract Declaration

To describe the semantics of contract refinement and conformance, we construct a
(denotational) mapping, called contracte,p, from contract expressions to a domain
called ContractRep. Elements in ContractRep represent contracts. We describe
refinement as an operator on elements in ContractRep, and we describe conformance
as a relation on elements in ContractRep.

Elements in ContractRep are finite maps from dimension names to either con-
straints or aspects:

C € ContractRep = Fp,qp[Name, ConstraintSpec U AspectRep U { L }] (24)

Notice that (24) both defines a domain (ContractRep = ...) and specifies a notation
for a typical element in that domain (C' € ContractRep).

A map in ContractRep can map a dimension name to the element L. The element
1 represents an illegally defined dimension. Illegal dimensions result from illegal
use of refinement. We say that a contract is illegal if it contains at least one illegal
dimension.

We represent constraints as elements in the domain ConstraintSpec:

¢s € ConstraintSpec = Operator x DimValue (25)
op € Operator = {==,>=,<=,<,>} (26)

An element cs in ConstraintSpec is a pair consisting of an operator and an element
in DimValue. For example, we could represent the constraint “delay < 10” by the
pair “(<,10).”

The set DimValue contains the values over which we describe constraints. The
DimValue set has three subsets: one that contains names (Name), one that contains
sets of names (P,[Name]), and one that contains numeric values (Number).

44

v € DimValue = Name U P,,[Name] U Number (27)

We represent aspects as elements of the domain AspectRep:

ar € AspectRep = Fy,,qp[AspectName, ConstraintSpec U {1}] (28)
AspectName = {variance, mean} U
{percentile} x PercentNum x Bound U (29)

{frequency} x FreqRange x Bound
Bound = {lower, upper} (30)

An element in AspectRep is a map from aspect names to constraints. An aspect
name is a tuple that identifies a particular aspect of a dimension. For example, an
aspect could be the 90th percentile. The constraints over percentiles can specify
both upper and lower bounds (using < and >). Thus, we consider the lower and
the upper bounds to be two different aspects. For mean and variance, we can
specify only an upper or a lower bound, but not both. Our notion of aspect name
corresponds to the notion of aspect signature in Section 3.6.1.

The domain FreqRange is the set of syntactic terms that describe frequency
ranges. Such terms are either single values (elements in DimValue, or they are
intervals of values, such as [3, 7].

Having sketched the domains that represent contracts, we need to define a func-
tion that maps (syntactic) contract expressions to elements in ContractRep. We
can then define contract refinement and conformance as operations and relations
on ContractRep. The function contract.,, maps a contract expression to its repre-
sentation in ContractRep.

contractegp : (ConExp x Enve) — ContractRep (31)
contract g, : (Dimension x Env,) — ContractRep (32)
contract,,, : (Aspect x Env.) — ContractRep (33)

The function contract.;, maps contract expressions to elements in ContractRep
based on the structure of contract expressions. Thus, we need functions that map
sub-structures to elements in ContractRep. The function contractg;,, maps dimen-
sions or constraints to elements in ContractRep, whereas contractg,, maps aspects
to elements in ContractRep.

The set Decl is the set of syntactic terms that capture QML declarations. We
consider only declaration of contracts—the issues concerned with declaration of
contract types are covered by the type system. A declaration is then of the form
“r. = conFxp”.

The set Env. is the set of environments, where an environment is a map from
variables to elements in ContractRep. The notion of environment is necessary to
capture the impact of previous declarations on the current declaration.

45

E, € Env, = Fy;4p[Var, ContractRep] (34)
check : (Decl x Env;) = Bool (35)
legalcon : ContractRep — Bool (36)

The check function checks a list of declarations relative to an environment. It
returns true, if the all declarations are correct, and false otherwise.

check((z. = conEzp; decl), E.) =
legalcon (contractegy (conEzp, Ec)) A 37)
check(decl, E. o [z, — contractezp(conEzp, E.)])

The function legaleo, determines legality for an individual element in ContractRep.

legalcon(C) = Vi € Dom(C) : C(3i) #1 (38)

The strategy is to map the contract expression of an individual declaration to
its representation in the ContractRep set, and then determine the legality of the
declaration by inspecting this representation through legalcon. The rules below
assume that declarations are type correct, and they primarily detect errors with
respect to refinement.

The function contract,y is defined below in terms of pattern matching on the
structure of contract expressions. The first rule matches contract definitions, where
y denotes the name of the associated contract type. The rule essentially states that
to check a contract we need to check every dimension using contractg;,,. Refinement
is captured by rule (41).

contracteg,(y contract {ci;...; ¢k}, E;) =
(39)
contractgim(c1, Ec) @ ... e contractgim (ck, E;)
contractegy (¢, E;) = Ec(zc) (40)
contractegy (z, refined by {c1;...; ek}, Ec) = (41)
E.(z.) < (contractgim(c1,E;) @ ... e contractgim(ck, E;)) wherez,:t
contractgim(n1 op ng, E;) = [n1 — (op,n2)] (42)
contractgim(n 0p {n1,... ,nk}, Ec) = [n - (op,{n1,...,nk})] (43)
contract gim (n op number, E;) = [n — (op, number)] (44)
contractgim(n {a1; ... ;ar}, Ec) = (45)

[n — (contractgsp(ar, E;) o ... contract,sp(ak, Ec))]

The operator <; represents contract refinement relative to a contract type t. We
need to consider contract types because type information, such as the ordering of
elements in enums and sets, influences the semantics of contract refinement. If we
have two elements C; and C; in ContractRep, the expression “C; «; C3” represents
C) refined by C,. We define <; below.

46

The contracty,, rules below define the mapping from aspects to elements in
ContractRep. The domain of an element for frequency and percentile in ContractRep
contains either upper or lower in order to allow both types of constraints to be de-
fined as part of the same contract. The value in an equality constraint (==) defines
both an upper and lower a bound.

contract,p (frequency fr == pNum %, E.) =

[(frequency, v, lower) — (==, pNum)] ¢ (46)
[(frequency, fr, upper) = (==, pNum)]

contract,,, (frequency fr op pNum %, E.) =

[(frequency, fr, lower) — (op, pNum)] if op € {>,>=} (47)
contract,,, (frequency fr op pNum %, E;) = (48)
[(frequency, fr, upper) = (op, pNum)] if op € {<,<=}
contract,,p (percentile pNum == number, E;) =
[(percentile, pNum, lower) — (==, number)] e (49)
[(percentile, pNum, upper) — (==, number)]
contractqsp (percentile pNum op number, E;) = (50)
[(percentile, pNum, lower) — (op, number)] if op € {>,>=}
contract,,p (percentile pNum op number, E;) = 51)
[(percentile, pNum, upper) — (op, number)] if op € {<,<=}
contract s, (variance op number, E.) = [(variance) — (op, number)) (52)
contract,p (n, mean op number, E;) = [(mean) — (op, number)] (53)

Having defined the structural mapping of contract expressions to elements in
ContractRep, we can now capture the rules for refinement. We model refinement as
the operator <; defined on ContractRep; it is defined as follows:

for Cy,Cs € ContractRep, t € ConType, and n € Dom(C}) U Dom(C5) :
Ci(n) ifn € (Dom(C1) \ Dom(C2))

Ca(n) ifn € (Dom(Cs) \ Dom(C}))

Cy (n) if Cy (n) <(n,t) Ch (n)

1 otherwise.

(C1 4 Cr)(n) = (54)

Here, n is the name of a dimension. If there is a dimension value for n in only
one of the involved contracts, then that value is the result of refinement along the
dimension n. If both contracts specify a value for n, then the delta contract (C2 in
the above rules) must specify a stronger constraint than the contract being refined
(C1 in the above rules). If the constraint in the delta is indeed stronger, it will
be the result of refinement. Refinement amounts to replacing weaker constraints

47

with stronger constraints. The stronger than relation is normally referred to as
conformance and is defined in the following section.

6.4 Constraint Conformance

The most semantically intricate aspects of QML are refinement and conformance
of profiles and contracts. To define these we need a precise understanding of when
one constraint satisfies another.

Constraint conformance defines when one dimension constraint conforms to an-
other dimension constraint. A dimension constraint conforms to another dimen-
sion constraint only if it is stronger than, or equally strong as, the other con-
straint. Here stronger than is relative to the type declaration and ordering given
for the dimension. As an example, consider a dimension defined as “delay :
decreasing numeric.” Then the constraint “delay {mean < 10}” also satisfies
the weaker constraint “delay {mean < 20}.”

First, we define conformance for aspects. Remember that we represent an aspect
clause as a map from aspect names (AspectName)to operator-value pairs. The
rule (55) states that an aspect clause A; conforms to another aspect clause Aj, if
the domain of Az is a subset of the domain of A; and if each individual aspect in A;-
conforms to the corresponding aspect of A;. Thus, a conforming aspect clause can
add new aspects and strengthen only those aspects that exist in the aspect clause
to which it is conforming.

The statement A; <(n) A2 denotes conformance of A; to Az with respect to
dimension n of contract type t.

for A;, A; € AspectRep :
Vacé€ Dom(Az) t Ay (a) '<(n,t) Az(a)
Ay <(ny) A2

(55)

We define aspect conformance in terms of conformance for simple constraints
represented by operator-value pairs. We now define conformance for simple con-
straints. For simple constraints that have identical values, the following rules apply:

for v € DimValue :

(op,v) *(n,t) (OP’U) (56)
(==,v) <(n,0) (>=,7) (87)
(>,v) <(n,t) (>=,v) (58)
(==,v) <(n,t) (<=,v) (59)
(<30) <(ny) (<=,) (60)

The first rule (rule (56)) states that a constraint conforms to another identical con-
straint. The rules (57) to (60) define conformance for constraints with identical
values but different operators. If the values are not identical, we have to describe
conformance in terms of the domain ordering. We specify those rules for enumera-
tion, set, and numeric domains below.

48

For enumeration domains, conformance for operators other than equality is pos-
sible only for ordered enums. In addition, one constraint is stronger than another
only if the elements involved in the constraints are ordered and if the value in the
conforming constraint is stronger than the value in the other constraint. Notice
that we have different rules depending on the operator. We need to determine only
the direction of op, since the type correctness requirement ensures op; has the same
direction.

for ny,no € Name :
(n1,n2) € order(n,t)
(oplynl) '<(n,t) (0p2,n2)

op, € {<, <=} (61)

(n2,n1) € order(n,t)
(0p1,11) <(n,t) (0P2,n2)

ops € {>,>=} (62)

The following functions extract information about orders and set types from
contract types along a given dimension. We represent orders as relations on Name.
The function order constructs a canonical representation of the order specified for a
dimension n in a contract type t. The function then returns the transitive closure
of this canonical representation (we use “+” to denote a transitive closure).

Order = P, [Name x Name] (63)
order : (Name x ConType) — Order (64)
order(n,t) =

({(ni,n)}U...U{(nk,nm)})t iforder{n; <nj, ... ,nx < ngn} (65)

is the order specified for n in ¢
0 otherwise.

For set values, the rules for conformance are different for decreasing sets and
increasing sets:

for A, B € P,[Name] :
Va€ (ANB):3be (B A): (a,b) € order(n,t)
(0p1,A) <(n,t) (04, B)

op, € {<, <=} (66)

Vbe (BN A):3a € (AN B): (a,b) € order(n,t)
(OPI’A) <(n,t) (0p2,B)

op, € {>,>=} (67)

For two sets A and B of a decreasing dimension, A conforms to B if the elements
in A\ B are stronger than at least one element in B \ A. Similarly, for increasing
sets, all elements in B \\ A must be stronger than at least one element in A \ B.

For numeric constraints, we define conformance in terms of the canonical ordering
of the real numbers.

49

profileDecl ::= zp for intName = profileEzp
profileEzp := profile

| zp refined by {req; ;... ; reg,;}
profile := profile {req,;...; req,;}
req := require conList

| from entityList require conList
contractList ::= conEzp,,..., conEzp,,
entityList = entity,,..., entity,
entity := opName

| attrName

| opName.parName

| resultof opName

Fig. 33. Abstract syntax for profiles

number(v;) < number(vsz)
(opl,'vl) <(n,t) (0p27v2)
number(v;) > number(vz)
(0p1,v1) <(n,t) (0P2,v2)

The function number returns the mathematical value that corresponds to a syntactic
representation of a number.

op, € {<, <=} (68)

op, € {>,>=} (69)

6.5 Semantics of Profile Declaration

We give a semantics for profiles and their declarations. For the reader’s convenience,
we repeat the abstract syntax for profiles and their declaration in Figure 33.

The emphasis of the semantics is to capture the concepts of a default contract
within a profile, profile refinement, and profile conformance. The semantics for
profiles assume that the syntactic terms satisfy the following static semantic prop-
erties:

—A profile can have at most one default contract of a given contract type.

—A profile can specify at most one individual contract of a given contract type for
a specific entity.

We could possibly capture these constraints as part of the way we build up com-
posite elements in ProfileRep from primitive elements returned by defContracts,.,
and defContracts,e;. One could, for example, define a modified map composition
operator that does not allow the domains of maps in ProfileRep to overlap. We
ignore these issues because we want to focus on the semantics of profile refinement
and conformance.

As for contracts, we define a semantic domain in which profiles may be rep-
resented mathematically, and we define a (denotational) mapping from syntactic
terms into that domain. The domain for profile representation is called ProfileRep.

P € ProfileRep = Fp,,p[Entity x Type, ContractRep) (70)

50

In ProfileRep, a profile is represented as a map. The map for a particular profile p
takes an entity e and a contract type ¢, and returns the contract of type ¢ that applies
to e within p. Remember that an entity is a common term for interface constituents
such as operations, attributes, and parameters. Although strictly speaking elements
of ProfileRep represent profiles, we sometimes refer to them simply as profiles.

The reason for mapping profile syntactic terms into elements in ProfileRep is
that we can more conveniently describe the semantics of conformance as a relation
on elements in ProfileRep. However, we do not describe refinement as an opera-
tion on elements in ProfileRep. To capture refinement, we need to distinguish, in
the semantic domain, between default contracts and individual contracts within a
profile.

We specify an individual contract in the following way: “from e require c.”
This requirements clause specifies a contract for the individual entity e. A default
contract is specified as “require c.” With this clause, ¢ applies to all entities within
the interface for which the profile is defined.

To capture the distinction between individual and default contracts, we define a
semantic domain, called ProfContracts, in which profiles are represented a pais of
maps. The first map in a pair represents the individual contracts and the second
map in a pair represents the default contracts.

ProfContracts = IndContracts x DefContracts (71)
IP € IndContracts = ProfileRep (72)
DP € DefContracts = F,,,4,[Type, ContractRep] (73)

The map for default contracts only takes a contract type. The map for individual
contracts takes both an entity and a contract type.

Our approach in defining the semantics of profiles is to map profile expressions
into the domain ProfContracts. The function called profContracts.,, captures this
mapping. We describe refinement as an operation on elements in ProfContracts. We
then define a function, profileOf, that takes an element in ProfContracts and returns
an element in ProfileRep. If profileOf is applied to an element PC in ProfContracts,
it will combine the default and individual contracts in PC. The element returned by
profileOf will simply map entities to their contracts regardless of how the contract
was specified (default or individual). We define conformance in terms of elements in
ProfileRep. We also define a function, legalp,f, that determines legality of elements
in ProfileRep.

First we define the function profContracts.,, that maps profile expressions into
ProfContracts. A profile expression is mapped relative to an environment. The en-
vironment represents the context for the mapping. For example, if we are mapping
a refinement expression, we need to access previously defined profiles.

51

E, € Envy = Fpyqp[Var, ProfContracts] (74)

profContracts,gp : (ProfExp x Envy) — ProfContracts (75)
profContracts.g,(profile {ry;...; rn}, Ep) =
(indContractsyeq(r1) @ ... @ indContracts,eq(rr), (76)
defContracts,eq(r1) @ ... @ defContractsyeq(rr))
profContractsezp(Zp, E) = Ep(zp) (77)
profContractsesp(zp refined by {ry;...;rn}, Ep) =
Ep(zp) < (indContracts,eq(r1) @ ... o indContracts eq(rr), (78)

defContracts,eq(r1) @ ... o defContracts,eq(75))

The function indContracts,., returns an element in IndContracts that represents
the individual contracts of a requirements clause. The function defContracts,eq
returns an element in DefContracts that represents the default contracts of a re-
quirements clause.

indContracts,., : Require = IndContracts (79)
defContracts,.q : Require — DefContracts (80)
indContracts,q(require c) = || (81)
indContracts,q(from e require c) = [(e,t) — contractesp(c)] wherec:t (82)
defContracts,q(require c) = [t — contractezp(c)] wherec:t (83)
defContracts,q(from e require ¢) = || (84)

In the definition of indContracts,.q and defContracts,, we use the fact that contracts
have unique types in our type system. For a given requirements clause, we can
derive a unique type for the contract

In equation (78), we describe refinement in terms of an operator, <, on elements
of ProfContracts. This operator is defined as follows:

for (IPy,DP,),(IP3, DP;) € ProfContracts :
(IPl,Dpl)d(I.Pz,D.Pz):(IPl <IP2,DP1<DP2) (85)

We define refinement on the elements in ProfContracts as pair-wise refinement over
default and individual contracts. To specify pair-wise refinement, we need to define
the operator < on IndContracts and DefContracts. First, we define < on the domain
DefContracts.

52

for DP,, DP, € DefContracts with t € Dom(DP;1) U Dom(DP5) :
(DP1 < DP2)(t) =

DP,(t) if t € (Dom(D;) \ Dom(D3))

DP,(t) if t € (Dom(D2) \ Dom(D7))

DP,(t) <4 DP2(t) otherwise.

(86)

If only one of the maps is defined on a particular contract type, then the mapping
for that type is unchanged. If the maps overlap on a contract type t, then the
mapping for ¢ is defined in terms of contract refinement: we apply the maps to ¢,
and do the refinement on the results of this application.

The definition of refinement in the IndContracts follows a similar pattern:

for P,, P, € ProfileRep and for P, P, € IndContracts

with (e, t) € Dom(P,) U Dom(P,) :

(PLaPy)(et) =
P (e,t) if (e,t) € (Dom(Py) \ Dom(P,))
Py(e,t) if (e,t) € (Dom(P2) \ Dom(P))
Pi(e,t) <4 Py(e,t) otherwise.

(87)

Notice that this definition of refinement extends to the ProfileRep domain since the
IndContracts and ProfileRep domains have identical structure.

The next step in our semantic definition is to define the function profileOf that
takes an element in ProfContracts and combines the default and individual contracts
into an element in ProfileRep. If the element in ProfContracts contains a default
contract of type t, the returned element in ProfileRep will be a map that is defined
on (e, t) for any entity e in the interface for which the profile was defined. Thus,
profileOf is defined relative to a set of entities.

The set Entity is the set of all possible entity names; the set Interface is the set of
all interfaces. We use Ents to refer to sets of entities, and we assume the existence
of a mapping, called entities, that maps an interface to a set that contains all its
entities.

e € Entity (88)
Interface (89)
FEnts € P, [Entity] (90)
entities : Interface — P, [Entity] (91)

We can now formally define the function profileOf as follows:

53

profileOf : (ProfContracts x P, [Entity]) — ProfileRep (92)

extend : (DefContracts x P, [Entity]) — ProfileRep (93)

profileOf ((IP, DP), Ents) = extend(DP, Ents) < IP (94)

extend(DP, Ents) = P (95)
where

P(e,t) = DP(t) for e € Ents and t € Dom(DP) (96)

The function extend takes as arguments an element in DefContracts and a set of
entities. The element in DefContracts represents the default contracts of a profile.
extend returns a profile in which entities are mapped to their default contracts.

As for contract declarations, we use a function called check to specify the legal-
ity of profile declarations. Check, in turn, uses a function legalyof to determine
the legality of individual profiles. The function legalpof is defined on elements in
ProfileRep—we cannot determine legality until the default and individual contracts
have been combined, because the combination itself may be illegal.

check((z, for int = profEzp; decl), E,) =
legalprof (profileOf (profContracts.qp, (profEzp, Ep)), entities(int)) A (97)
check(decl, Ep, o [z, — profContracts,, (profExp, Ep)])

The function legal,of defines a profile to be legal if all its constituent contracts
are legal.

legalprof : ProfileRep — Bool (98)
legalprof (P) = V (e,t) € Dom(P) : legalcon(Ple, t)) (99)

Having specified the rules for profile legaility, the following section specifies con-
formance for legal profiles.

6.6 Profile Conformance

Refinement is a static operation that provides notational convenience. For example,
we use contract refinement to define a new profile in terms of an existing profile, and
we specify only how the new profile is different (stronger than) the existing contract.
In contrast, conformance is a dynamic operation that allows us to determine if a
profile P, is stronger than a profile P,.

Here we describe the semantics of profile conformance. We use the symbol < to
denote conformance; P; < P, means that the profile P, conforms to the profile P,.
The following rule gives a sufficient condition for conformance:

for Py, P; € ProfileRep :

Dom(P,) € Dom(P;)

V(e,t) € Dom(P2) : Pi(e,t) < Py(e,t)
P, <P

(100)

54

A profile P; conforms to a profile P, if P, specifies a contract for all the name and
type pairs for which P, specifies a contract. Moreover, if the domains of P; and
P, overlap, and (e, t) is an element in the domain intersection, then P, must map
(e,t) to a contract that conforms to the contract to which P, maps (e, t).

We define profile conformance in terms of contract conformance. In the definition
of contract conformance, we employ the notion of constraint conformance that was
defined in section 6.4. Contract conformance is subject to the following rule:

for C;,Cs € ContractRep :
Vn € DO‘”L(C2) : Cl(n) =(n,t) Cz(n)
C, < Cs
The domain of a contract is the set of dimension names for which the contract
specifies a dimension value. As for profiles, C; < C; requires that the domain of
C, is contained in the domain of C;. Furthermore, the dimension constraints in

C: must conform to the dimension constraints in Cs for corresponding dimensions.
The conformance rules for constraints are defined in section 6.4.

(101)

7. RELATED WORK

A fundamental concern of QML is to precisely specify properties of software compo-
nents, namely their required or delivered QoS. In Section 7.1 we discuss some other
approaches involving specification QoS and other aspects. The field of software
metrics creates a theory for the formal representation of software properties. We
compare our approach to the general theory of software metrics in Section 7.2. The
section on software metrics relate to the domains that we use in our specifications.
which we express specifications over these domains.

7.1 QoS Specification Mechanisms and Languages

Generally, interface definition languages, such as OMG IDL [Object Management
Group 1995], specify functional properties, but lack any notion of QoS. Some in-
terface definition languages do address various QoS aspects.

TINA ODL [Telecommunications Information Networking Consortium 1995] al-
lows a programmer to associate QoS requirements with streams and operations. A
major difference between TINA ODL and our approach is that TINA ODL include
QoS requirements syntactically within interface definitions, and thus, cannot asso-
ciate different QoS properties with different implementations of the same functional
interface. Moreover, TINA ODL does not support refinement of QoS specifications,
which is an essential concept to support object-oriented specification. Neither does
TINA ODL have any concept of confo

Similarly, Becker and Geihs [Becker and Gheis 1997] extend CORBA IDL with
constructs for QoS characterizations. Their approach suffers from the same problem
as the TINA ODL approach; they statically bind QoS characterizations to interface
definitions. They also allow QoS characteristics to be associated only for interfaces
not individual operations. Their language allows a QoS specification to include
any IDL type. They do not provide additional ways of specifying the sematics of

55

QoS attributes. Finally, they allow inheritance between QoS specifications but it
is unclear which constraints they enforce to ensure conformance.

There are a number of languages that support QoS specification within a single
QoS category. The SDL language [Leue 1995] has been extended to include spec-
ification of temporal aspects. The RTSynchronizer programming construct allows
modular specification of real-time properties [Ren and Agha 1995]. In [Gupta and
Pontelli 1997], a constraint logic formalism is used to specify real-time constraints.

These languages are all tied to one particular QoS category. In contrast, QML
is general purpose; QoS categories are user-defined types in QML and can be used
to specify QoS properties within arbitrary categories.

The specification and implementation of QoS constraints have received a great
deal of attention within the domain of multimedia systems. In [Ren et al. 1997],
QoS constraints are given as separate specifications in the form of entities called
QoS Synchronizers. A QoS Synchronizer is a distinct entity that implements QoS
constraints for a group of objects. The use of QoS Synchronizers assumes that QoS
constraints can be implemented by delaying, reordering, or deleting the messages
sent between objects in the group. In contrast to QML, QoS Synchronizers not
only specify the QoS constraints, but also enforce them. The approach in [Staehli
et al. 1995] is to develop specifications of multimedia systems based on the sepa-
ration of content, view, and quality. The specifications are expressed in Z [Spivey
1992]. The specifications are not executable per se, but they can be used to derive
implementations. In [Blair et al. 1997], multimedia QoS constraints are described
using a temporal, real-time logic, called QTL. The use of a temporal logic assumes
that QoS constraints can be expressed in terms of the relative or absolute timing
of events.

Campbell [Campbell 1996] proposes pre-defined C-language structs that can be
instantiated to QoS specifications for multi-media streams. The characterizations
are limited to what is possible to express in the C-language; thus, there are no-
tions of statistical distributions, etc. Campbell does, however, introduce separate
attributes for capturing statistical guarantees. It should be noted that Campbell
does not claim to address the general specification problem. It is clear, however,
that there is a need for specification and statistical characterizations.

The approaches to multimedia QoS all assume that QoS constraints can be ex-
pressed in terms of the relative or absolute timing of events, such as sending and
receiving messages. This assumption does not hold for QoS constraints in general.
For example, it is not clear how to express a constraint over a service’s failure
masking property in terms of temporal constraints.

Zinky et al. [Zinky et al. 1997; 1995] presents a general framework, called QuO,
to implement QoS-enabled distributed object systems. The notion of a connection
between a client and a server is a fundamental concept in their framework. A
connection is essentially a QoS-aware communication channel; the expected and
measured QoS behaviors of a connection are characterized through a number of
QoS regions. A region is a predicate over measurable connection quantities, such
as latency and throughput. When a connection is established, the client and server
agree upon a specific region; this region captures the expected QoS behavior of the
connection. After connection establishment, the actual QoS level is continuously
monitored, and, if the measured QoS level is no longer within the expected region,

56

the client is notified through an upcall. The client and server can then adapt to
the current environment and re-negotiate a new expected region.

The regions in QuO are similar to QML contracts in that they specify QoS levels.
However, QuO does not contain a structuring concept that is similar to contract
types and that captures the structure of QoS specifications within a particular QoS
category. Moreover, QuO supports only numeric and measurable QoS dimensions.
In contrast, QML allows the construction of user-defined domains. Finally QuO
lack notions of refinement and conformance for QoS specifications.

Within the Object Management Group (OMG) there is an ongoing effort to spec-
ify whatever is required to extend CORBA [Object Management Group 1995] to
support QoS-enabled applications. The current status of the OMG QoS effort is
described in [Object Management Group 1997b], which presents a set of questions
on QoS specification and interfaces. We believe that our approach provides an ef-
fective answer to some of these questions. ISO has an ongoing activity aimed at
the definition of a reference model for QoS in open distributed systems. A recent
working paper [ISO 1997] outlines how various dimensions such as delay and reli-
ability could be characterized. It lacks, however, any proposal or recommendation
for languages in which such constraints could be expressed.

There is an interesting similarity between formal functional specifications of in-
terface semantics and formal QoS specifications. Specification matching is an im-
portant aspect of both types of specifications. In a recent paper, Zaremski and
Wing [Zaremski and Wing 1997] propose a technique for specification matching
with respect to semantics. Three of their main motivations for such a mechanism
are:

—Retrieval : How can components be retrieved from software libraries based on
semantic characterizations?

—Reuse : How can reusable components be adapted to fit a given subsystem?

—Substitution : How can we replace one component with another without changing
the observable behavior?

The concerns with respect to QoS specification are very similar. For QoS we are
concerned both with retrieving and reusing components with predictable QoS and
with replacing existing components with new ones without degrading the QoS of
a system. For QoS we are concerned with dynamic as well as static specification
matching, while the work for semantics seems to focus on static design and imple-
mentation time checking. Nevertheless, there are obvious similarities thay suggest
that a component really has three equally important aspects: syntax, semantics,
and quality of service.

7.2 Software Metrics

Our discussion of software metrics is based on Fenton’s book [Fenton 1991]. We are
interested primarily in comparing our notion of domain to the concepts in [Fenton
1991]. Our intention is to create a context for our notion of domain. We also want
to illustrate that capturing a particular software property, such as a QoS property,
in terms of formal concepts is a general issue with a supporting theory.

We base our discussion on three main concepts from the theory of software met-
rics: empirical relation systems, numerical relation systems, and scales. We can

57

use an empirical relation system to characterize a software property. An empirical
relation system is a set of entities and a set of relations on those entities. For
example, the failure-masking property of a service could be characterized by an
empirical relation system for which the entities are failure types. A relation on this
set of entities could reflect how specific a failure type is. The response time of a
service could be characterized by an empirical relation system for which the entities
reflect response times. A relation for response times could be that one is better
than another.

An important distinction between different empirical relation systems is how they
can be mapped to a numerical relation system—a relation system where the entities
are numbers. The scale of an empirical relation system determines how we can map
it to a numerical relation system; the scale defines the allowed transformations (re
scalings). Having fewer possible re scalings for a given relation system implies that
the scale type is more restrictive. The theory of software metrics define five scale
types: nominal, ordinal, interval, ratio, and absolute. Scales that are nominal are
considered more restrictive than ordinal scales and so forth. We define the scale
types in the following paragraphs.

If the set of allowed transformations consists of one-to-one mappings we say that
the scale type is nominal. Systems for which entities are only labeled or classified
are said to have nominal scales.

A scale type is said to be ordinal when the set of permissible transformations
is the set of monotonically increasing functions. Thus, a transformation needs to
preserve an ordering of the elements, but nothing more.

If we also require that the mapping function preserve the distance between en-
tities, we say that the type of the scale is interval. Time and temperature are
examples of attributes with interval scale types. As an example, think about rescal-
ing the delay dimension from seconds to milliseconds. Such a rescaling needs to
preserve both the ordering and the relative distance between values.

If the empirical system also includes a zero relation, the scale type is said to be
a ratio. This is more restrictive than the interval scale type since it requires that
we map a zero value to the numeric value 0. Length and delay are examples of
attributes of ratio scale type.

Finally, absolute scale types restrict the mapping to the identity function; simple
counting—such as a “number of failures” dimension—is an example of an attribute
with an absolute scale type.

An important implication of scale types is that they determine the applicable
statistical methods. For example, we cannot compute the mean of nominal or
ordinal scale types. In addition, we can compute only the variance of ratio scales.

Domains in QML correspond to empirical relation systems. The names in a
domain correspond to entities in an empirical relation system, and the “stronger-
than” relation on a domain gives rise to a relation in the corresponding empirical
relation system. A user-defined domain without an ordering has a nominal scale
type. A user-defined domain with ordering has an ordinal scale type. Only the
numeric domain has a notion of distance and a zero element, and is therefore
both an interval and a ratio. Since statistical measures such as mean and variance
require an interval scale type, statistical measures are available only for the numeric
domain. Other characterizations such as frequency and percentile are more usable

58

more widely.

One challenge to writing accurate QoS specifications is to construct dimension
domains that accurately capture the inherent nature of the QoS properties that we
are trying to characterize. As we have illustrated, the process of domain construc-
tion is in many ways similar to the process of deriving software metrics.

8. CONCLUSION

To build systems that deliver predictable QoS, we need a way to precisely specify
QoS properties for the system’s components. We need QoS specifications to es-
tablish the non-functional boundaries between components so that we can reason
about QoS correctness on a per-component basis. We also need QoS specifications
to build QoS-enabled systems that can adapt to changes in their environments.
Adaptation is necessary because the same system may be deployed in different en-
vironments and the conditions in those operating environments may change over
time. For example, the same system may be deployed in both local-area networks
and wide-area networks. Moreover, a system’s environment can change dynamically
due to variations in user workload and resource utilization. Finally, we need QoS
specifications to establish client-server bindings in open systems in which services
may come and go dynamically. In such systems, the binding process is dynamic
and must take client QoS requirements into account to ensure that the service will
satisfy those requirements. Thus, explicit specification of QoS necessary in order
to deal with a variety of issues for QoS-enabled applications and systems.

We introduced QML as a language to specify QoS. We intend QML to be used
for QoS specifications throughout the life-cycle of applications. We want to use
QML at design time to establish QoS boundaries for components, and we want to
use QML at runtime to facilitate adaption and QoS-based negotiation.

QML has a number of unique features. It allows multi-category QoS specifi-
cations: the same specification can contain statements about QoS properties in
different categories, such as performance and availability. Multi-category specifica-
tions allow us to relate QoS requirements for multiple categories in one specification.
QML also allows very fine-grained QoS specifications. For example, we can specify
QoS properties for individual operations and attributes in interfaces. Finally, QML
provides notions of both refinement, which allows incremental specification, and
conformance, which allows runtime comparison of QoS specifications to determine
if one satisfies the other.

QoS specifications at runtime must be first-class values that can be communicated
in messages and bound to variables. We are currently working on a mapping from
QML to both JAVA and C++ so that we can represent QML specifications as
JAVA objects at runtime. We use CORBA IDL [Object Management Group 1995]
as an intermediate step for this mapping to facilitate marshaling and demarshaling
of QML specifications in CORBA-based distributed systems.

Besides implementing QML in various contexts, such as JAVA and CORBA, our
future plans include QoS monitoring based on QML specifications. We plan to build
monitors embedded in application infrastructures to provide runtime feedback on
compliance of QML specifications. We envision monitors that are specific to con-
tract types, but which can monitor compliance for all contracts that are instances
of that contract type. For example, we envision having a generic performance mon-

59

itor that can monitor compliance of all possible performance contracts. Another
direction that we are pursuing is to define and implement negotiation protocols that
allow clients and services to reach agreement on the QoS for a specific client-server
connection.

A. APPENDIX: CONCRETE SYNTAX DEFINITION

In this appendix we provide an extended backus-naur definition for the QML syntax.
We will use ::= for production definitions. * and + denotes zero or more and one or
more occurrences, respectively. We use curly brackets ({}) for grouping and square
brackets([]) for optional constructs. Non-terminal symbols are written within angle-
brackets (<>). Semantic annotations are added by placing them in angle-brackets
and underlining them (< my name >). Semantic annotations indicate a semantic
aspect of a construct and should not be considered part of the production name.
Terminal characters are written in quotes (’;’). Reserved words are written in bold
face and are also summarized in the table below:

contract type profile result of
order with set order
enum numeric percentile | require
decreasing | increasing | variance mean
frequency | refined by

Characters in QML should are coded according to the 8-bit coding standard
ISO8859-1. Character sets and literals are defined as follows:

< letter > u=al...|2|4]...|Z

< digit > = 0]1]2/3/4/5/6|7|8|9

< integer > n=< digit > +

< float > u=< digit >' 'digit « [{'e'|' E'}[+'|' -] < digit > +]
< number > :=< integer > | < float >

<identifier > =< letter > {'_'| < letter > | < digit >}*

< name > »=< identifier > +

<percent> =%

Next we define a context-free grammar for QML.

60

< declarations >
< gmlDeclaration > =
I
|

< contrTypeDecl > :=
< contractType > n=
< dimensionDecl > =
< dimensionType > =

< orderSem > =
< enumDef > =

< setDef > n=

< orderDef >
< oneOrder >
< numeric >
< unit >

< contrDecl > n=
< contrDeltaDecl > :=
< contrExp > u=

< dimConstraint > =
< simpleConstr > ==

< valueLiteral > n=

< aspectConstr > =
< statConstr > =

< gmlDeclaration > *

< contrTypeDecl >

< contrDecl >

< profileDecl >

type < contract type name >'='< contractType >
contract’{'< dimensionDecl > *'}’

< dimension name >':'< dimensionType > [unit]’;’
< enumDef >

< setDef >

< numeric >

increasing

decreasing

enum '{ < nameList >'}

< orderSem > enum '{< nameList >'} with < orderDef >
set '{'< element nameList >'}

< orderSem > set '{' < element nameList >'} [with < orderDef >]
order '{'[< oneOrder > {!, < oneOrder >}]'}

< element name >'<’'< element name >

< orderSem > numeric

< unit name >

< unit name >' /' < unit name >

contract '{' < dimConstraint > «'}’

"{'< dimConstraint > *'}’

< type name >< contrDecl >';

< contract name > refined by < contrDeltaDecl >';'

< simpleConstr >';

< aspectConstr >';'

< dimension name >< numOp >< valueLiteral > [< unit >]
< number >

"{’< element nameList >'}

< literal name >

< dimension name > '{'< statConstr > «'}’

percentile < number >< numOp >< valueLiteral >';
frequency < fregRange >< numOp >< number >< percent >';'
mean < numOp >< valueLiteral >';

variance < numOp >< valueLiteral >';'

61

< freqRange > = {'['|'(" } < valueLiteral >', < valueLiteral > { ')’ | '] }

< profileDecl > = < profile name > for < inter face name >'='< profileExp >
< profileExp > ::= profile’{'< regClause > *'}
| < profile name > refined by’ { < reqClause > '}’
< reqClause > = [< fromEntityList >] require < contractList >';
< contractList > i= < contrEzp > {!, < contrEzp >}

< fromEntityList > := from < entityList >

< entityList > < entity > {!, < entity >}

< entity > < operation name >
| < operation name > ' < argument name >
| result of < operation name >

< name > {',) < name >}*

! >=l II >I II <I ll <=I |l —_—

< namelList >
< numOp >

!

ACKNOWLEDGEMENTS

The work presented in this paper has benefited greatly from interaction with and
feedback from our colleagues in the Software Technology Laboratory in HP Labs. In
particular, we thank Evan Kirshenbaum for his insightful and detailed feedback. We
also thank Brad Askins, Pankaj Garg, Mudita Jain, Reed Letsinger, Mary Loomis,
Joe Martinka, Keith Moore, Aparna Seetharaman, and Dean Thompson. We also
wish to acknowledge the feedback from Derek Coleman at Imperial College, Jgrgen
Ngrgérd at Beologic, Christian Becker at the University of Frankfurt; as well as the
detailed comments from Patricia Markee.

REFERENCES

BECKER, C. R. AND GHEIS, K. 1997. Maqs—management for adaptive qos-enabled services. In
Proceedings of IEEE Workshop on Middleware for Distributed Real-Time Systems and Services.

BLAIR, G., BLAIR, L., AND STEFANI, J. B. 1997. A specification architecture for multimedia
systems in open distributed processing. Computer Networks and ISDN Systems 29. Special
Issue on Specification Architecture.

BoocCH, G., JACOBSON, I., AND RUMBAUGH, J. 1997. Unified Modeling Language. Rational Software
Corporation. version 1.0.

CAMPBELL, A. T. 1996. A quality of service architecture. Ph.D. thesis.

FENTON, N. 1991. Software Metrics: A Rigorous Approach. Chapman-Hall.

GRAY, J. AND REUTER, A. 1993. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann.

GUPTA, G. AND PONTELLI, E. 1997. A constraint-based approach for specification and verification
of real-time systems. In Proceedings of Real-Time Systems Symposium. IEEE.

1SO. 1997. Working draft for open distributed processing—reference model-—quality of service.
Result from the SC21/WG7 Meeting.

KOISTINEN, J. 1997. Dimensions for reliability contracts in distributed object systems. Tech. Rep.
HPL-97-119, Hewlett-Packard Laboratories. October.

LEUE, S. 1995. Specifying real-time requirements for sdl specifications—a temporal logic-based
approach. In Proceedings of the Fifteenth IFIP WG6 (Protocol Specification, Testing, and
Verification XV).

Object Management Group 1995. The Common Object Request Broker: architecture and specifi-
cation, revision 2.0 ed. Object Management Group.

Object Management Group 1997a. CORBA Services — Trader Service, formal/97-07-26 ed.
Object Management Group.

62

Object Management Group 1997b. Quality of Service: OMG Green paper, Draft revision 0.4a ed.
Object Management Group.

REIBMAN, A. L. AND VEERARAGHAVAN, M. 1991. Reliability modeling: An overview for system
designers. IEEE Computer.

REN, S. AND AGHA, G. 1995. Rtsynchronizer: Language support for real-time specifications in
distributed systems. In ACM SIGPLAN Workshop on Languages, Compilers, and Tools for
Real-Time Systems. ACM.

REN, S., VENKATASUBRAMANIAN, N.; AND AGHA, G. 1997. Formalizing multimedia qos constraints
using actors. In Proceedings of the Second IFIP International Conference on Formal Methods
for Open, Object-Based Distributed Systems.

SPIVEY, J. M. 1992. The Z Notation: A Reference Manual, Second edition ed. Prentice-Hall.

STAEHLI, R., WALPOLE, J., AND MAIER, D. 1995. Quality of service specification for multimedia
presentations. Multimedia Systems 3, 5/6 (November).

Telecommunications Information Networking Consortium 1995. TINA Object Definition Lan-
guage. Telecommunications Information Networking Consortium.

TENNENT, R. D. 1991. Semantics of Programming Languages. Prentice-Hall.

ZAREMSKI, A. M. AND WING, J. M. 1997. Specification matching of software components. ACM
Transactions on Software Engineering and Methodology 6, 4 (October).

ZINKY, J. A., BAKKEN, D. E., AND ScHANTZ, R. D. 1995. Overview of quality of service for
distributed objects. In Proceedings of the Fifth IEEE conference on Dual Use.

ZINKY, J. A., BAKKEN, D. E., AND SCHANTZ, R. D. 1997. Architectural support for quality of
service for corba objects. Theory and Practice of Object Systems 3, 1.

63

