
An Adaptive Choice of Messaging
Protocol in Multi-Agent Systems

Chris Preist, Siani Pearson
Living the Vision Department
HP Laboratories Bristol
HPL-98-08
January, 1998

E-mail: [cwp,siani]@hplb.hpl.hp.com

decentralised
systems,
communication
protocols

There are a variety of choices which need to be made when
setting up a multi-agent community. In particular, which
agents communicate with which, what protocols they use,
and what information flows from one to another. Such
design choices will affect the efficiency of the community
with respect to several parameters – accuracy, speed of
solution, and message load.
In this paper, we consider one class of problem in which
multi-agent systems engage – service provision. Using a
simple, abstract, form of this problem, we use a
mathematical analysis to show that three different
messaging protocols result in varying message loads,
depending on certain parameters such as number of agents
and frequency of request.
If the parameters are fixed, we can conclude that one of
these three protocols is better than the others. However,
these parameters will usually vary over time, and hence the
best of the three protocols will vary. We show that the
community can adopt the best protocol if each individual
agent makes a local decision based on which protocol will
minimise its own message load. Hence, local decisions lead
to globally good behaviour. We demonstrate this both
mathematically and experimentally.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

2

1. INTRODUCTION

The designer of a multi-agent system needs to make various choices as to how
the agent community is organised: in particular, how the agents communicate
and co-ordinate with each other. A variety of different approaches have been
proposed in the literature, such as the contract net [12], the facilitator approach
[5], distributed blackboard architectures [7,9] and market-based control [2].

Increasingly, flexible multi-agent toolkits and languages are being developed
which do not constrain the developers to any one of these approaches [1,3,8,11].
They must make a choice between the alternatives proposed. Such a choice
involves making decisions about:

• How to partition the tasks performed by the system between different agents
and what reasoning each agent can perform.

• How to partition the information used by the system between different agents,
and whether to allow information to be duplicated.

• What messages one agent can send to another, and in what circumstances.

When comparing alternative approaches, it is unlikely that any one will be the
‘best’. Instead, the system designer needs to make trade-offs between various
criteria for assessing the performance of the system, depending on the
characteristics of their application.

These criteria include, amongst others;

• Quality of solution - how well the system task is done, according to some
measure.

• Communications efficiency - how much communication takes place to
produce a solution.

• Time - how long it takes to produce a solution.

A more extensive list of such criteria is given in [10].

If a designer knows that, for problems similar to their application, one set of
design choices leads to a fast system, while another set leads to a system which is
communications efficient, they can choose which to adopt, based on what is
important in their circumstances. In a time-critical application, the system
designer would be prepared to use more communication if it produces a solution

3

more quickly. They may even be prepared to accept a poorer quality solution in
less time. In other circumstances, time may not be a major issue.

For this reason, we believe that systematic comparative analysis of how different
design choices affect different performance criteria is necessary. In this paper, we
present work of this nature.

We present a simple form of the service provision problem in section 2, and three
different messaging protocols in section 3. In section 4, we assess the
communications efficiency of these protocols with respect to this problem. As
we argue above, other factors must be taken into account when deciding which
protocol to use. However, for the purpose of this paper, we will assume that,
(providing the protocol produces a quality solution), communications efficiency
is the priority. For brevity, we will refer to the most communications efficient
protocol in a given circumstance as “optimal”.

Given certain parameters of the problem, such as rate of service requests and
number of service providers, we determine the number of messages agents would
send under each protocol. Hence, for given parameter values we can determine
which protocol is optimal.

However, the parameters of the problem are rarely static. New agents may join,
increasing the amount of activity in the system. Agents may become increasingly
loaded, and so less available to perform tasks. For this reason, the optimal
protocol at one time may not be optimal at another. It will change as the
environment the system is in changes. It may therefore be better to allow the
system to make such choices dynamically, rather than fixing them at design time.
As circumstances change, the system can adapt, choosing a new protocol as its
current one ceases to be optimal.

In section 5, we demonstrate mathematically that a decentralised adaptive
approach can be used by a system carrying out our simple form of service
provision. Local decisions, taken by each individual agent, can lead to the agent
community adopting a protocol that is optimal. Section 6 presents an overview
of experimental results to support this mathematical analysis.

2. THE SERVICE PROVISION PROBLEM

We have chosen to use the service provision problem as the initial focus of our
work. In the abstract, service provision consists of matching client agents with

4

certain needs with service provider agents able to meet those needs. The service
provider agents may themselves act as clients, and subcontract parts of the
service they provide to other agents.

Examples of service provision problems could be:

1. Connecting an agent requiring the fax number of a customer with any
database able to provide that information.

2. Connecting an agent wishing to purchase a CD with an Internet supplier able
to provide it at the best price.

3. A nurse’s patient has a cardiac arrest. The nurse’s agent contacts the first
cardiac specialist available in the area, asking for their assistance.

The different characteristics of these examples will have an affect on the choice
of protocol (and other design decisions). An efficient protocol for example 3 is
not likely to be the most efficient for example 1; it will be too complex for such a
simple problem. Hence, we cannot analyse the effect of choosing different
protocols with respect to service provision in general. Instead, we must analyse
it with respect to various service provision problems with different
characteristics.

In this paper, we focus on a relatively simple service provision problem. We use
this to demonstrate our approach, as even this case is quite rich. There is no
single ‘best’ protocol choice in it, so we can consider how the agent community
can swap protocols in response to changes in the environment.

The characteristics of the problem are;

• All service providers give the same service, with the same quality.

• Service providers get no benefit from providing the service.

• Service providers can be unavailable; they all have a probability p of being
unavailable at any given time.

We consider an abstract service provision problem with these characteristics, and
analyse the communications efficiency of three different messaging protocols. By
performing the analysis in the abstract, it can be applied to any service provision
problem with these characteristics. One example would be the routing of a client
request to one of a team of people on an information helpline.

5

3. THE PROTOCOLS TO BE COMPARED

For the purposes of this analysis, we assume that certain design decisions have
been made about the system. In particular, we assume that there is a single
facilitator with which all service providers must register. It operates in
recommend mode [4], giving clients lists of service providers when they request
it to.

We consider three alternative protocols, to explore the effect of two design
decisions. Firstly, whether to broadcast requests, or to send requests to
individual agents one at a time. Secondly, whether to provide the facilitator with
updated information on the availability of service providers. We call the three
protocols embodying these design decisions naïve broadcast, naïve one-to-one,
and informed one-to-one.

(a) Naïve broadcast

The recommender contains a list of all service providers offering this service, and
no other information. It provides a list of providers to a requesting client. The
client contacts all providers on the list by broadcasting a message which does not
require a response. Providers reply if they are currently available, and the client
selects one. This can be viewed as a simple variant of the contract net operating
in general broadcast mode [12].

(b) Naïve one-to-one

Again, the recommender simply provides a list of service providers to a client on
request. This time, the client contacts one of these1 with a request for service,
using a message which requires a reply. The service provider either replies that it
is available, or that it is busy. In the latter case, the client contacts another,
repeating the process. This is a variant of the contract net operating in point-to-
point mode [12].

1 Here, and in the informed one-to-one subsequently, we assume that if a client makes a selection
of one of a set of alternative providers which appear equivalent, then it makes this choice
randomly.

6

(c) Informed one-to-one

This time, the recommender contains information about whether each service
provider is currently available or busy. The service providers must keep this up
to date by sending a message to it whenever their state changes. On request from
a client, the recommender gives a list of all service providers currently available.
The client contacts one of them.

4. ANALYSIS OF THE PROTOCOLS

Each of these protocols is designed in such a way that, if there is a service
provider available, it will be found. However, the number of messages required
will vary. To consider in what circumstances each is optimal, we must see what
the average message load in each system is, and how it varies as the parameters
of the problem vary.

 The parameters we consider are:

N - The number of providers of this service.

 p - The probability of a service provider being available.

tu - The average time a service provider is unavailable.

M - The average number of service requests made by clients per
second.

We now derive formulae that give the average number of messages used to
satisfy one client request, for each of the three protocols.

(a) Naïve broadcast

The client sends a message to the recommender and receives a reply. It then
broadcasts a message to all N service providers. Each service provider has a
probability p of being available and replies only if it is. Hence, the average
number of replies is Np.

Therefore, the average number of messages generated by the naive broadcast
protocol for the client to get an offer of service, c(nb), is given by;

c nb N Np() = + +2

7

Note that, as p can range between 0 and 1, c(nb) can range between N+2 and
2N+2.

(b) Naïve one-to-one

Again, the client sends a message to the recommender and receives a reply. It
then contacts any one of the providers which the recommender proposed. The
provider replies that it is able to perform the service, with probability p, or that it
is not, with probability (1 - p). In the latter case the client contacts another
provider, and so on.

Hence the average number of messages generated by the naive one-to-one
protocol, c(no), is a probablistic summation;

c no ip p N p
i

N
i N() () ()= + − + −

=

−∑2 2 1 2 1
1

1

The last term represents the messages generated in the case that no provider is
available.

For simplicity of notation, we let

E N p ip p N p
i

N
i N(,) () ()= − + −

=

−∑ 2 1 2 1
1

1

Hence the equation becomes:
c no E N p() (,)= +2

Solving the summation, we can show that, for p ≠ 0,

E N p
p

p

N

(,)
(())= − −2 1 1

As p ranges from 0 to 1, E(N,p) is a monotonically decreasing function which
ranges between 2N and 2. Hence, c(no) can range between 4 and 2N+2.

(c) Informed one-to-one

In the case of informed one-to-one, there are two kinds of message exchange to
be considered; messages sent to connect a client with a service provider, and

8

messages sent by the service provider to keep the status information in the
recommender up-to-date.

When a client wishes to connect with a service provider, it firstly contacts the
recommender and receives a reply listing the service providers currently
available. It then contacts one of these and receives a reply. Therefore, 4
messages are generated.

We now consider the number of status updates a provider sends. A provider has
a probability 1-p of being unavailable at any given time, and is unavailable for tu

seconds on average. Hence it will become available once every tu/(1-p) seconds,
and similarly, will become unavailable once every tu/(1-p) seconds. Therefore,
each service provider sends, on average, 2(1-p)/tu update messages per second to
the recommender.

To compare this protocol with the others, we need to calculate the number of
update messages sent per client request. There are N service providers sending
update messages, and there are M client requests per second. Hence, there are
2N(1-p)/Mtu update messages per client request.

Hence, the average number of messages generated by the informed one-to-one
protocol per client request, c(io), is given by;

uMt
pN

ioc
)1(2

4)(
−+=

We now have equations which give the average number of messages to connect a
client with a service provider for each protocol. Hence, given specific parameter
values, we can determine which protocol is most communications efficient.

Based on these equations, we can make some general observations;

As p tends towards 1, c(nb) will increase, tending towards 2N + 2. However,
c(no) will decrease, tending towards 4. As 4 < 2N+2 for all N>1, we can
conclude that, for high values of p, the naïve one-to-one protocol will be more
communications efficient than the naïve broadcast strategy in any system with
more than one service provider.

As p decreases towards 0, c(nb) will decrease tending towards N + 2, c(no) will
increase tending towards 2N + 2. Hence, for low values of p, the naïve broadcast

9

strategy will be more communications efficient than the naïve one-to-one
strategy.

c(io) increases as N increases and p decreases, but the most significant factor in
c(io) is the size of Mtu . As Mtu tends to zero, then 2N(1-p)/ Mtu tends to infinity
(provided p≠1), and therefore c(io) does too. Hence, one of the other strategies
will be more communications efficient.

However, if Mtu>N then c(io) ≤ 4 + 2(1-p). Furthermore, as Mtu increases, c(io)
rapidly decreases towards 4. Hence, in almost all circumstances where Mtu>N,
informed one-to-one will be the most communications efficient strategy.

Mtu can be viewed as a measure of the busyness of the system; Busyness
increases as the number of requests per second increases, and also as the
downtime of service providers increases. Hence, informed one-to-one is most
communications efficient when a system is reasonably busy. If a system is not
very busy, then another protocol is better.

Hence, even with the simplifying assumptions we have chosen, no one protocol
is the most efficient in all circumstances. Any one of the three may be most
efficient, depending on how many providers there are, how many requests are
made, and how often and for how long providers can be unavailable.

For given parameter values, the equations derived above can be used to
determine which of the three protocols would be most efficient. However, the
parameters that determine this decision may vary with time. New service
providers may arrive, or existing ones may leave, resulting in a change of N. The
probability, p, of a provider being unavailable is likely to fluctuate dramatically,
as client demand varies. Hence, it is not possible to decide which protocol is
most efficient at design time. Rather, it is necessary to allow the decision to be
made dynamically by the agent community, in response to changing
circumstances. We will now consider a possible mechanism for doing this.

5. DYNAMIC CHOICE OF MESSAGING PROTOCOL

5.1 Local choices lead to an optimal global choice

The decision to change from one protocol to another could be either centralised
or decentralised. In a centralised approach, a monitoring agent would make the

10

decision to change protocol on behalf of the entire community, and then inform
all the agents. This has the advantage that the monitoring agent could make
decisions based on what is best for the community as a whole, but has the
disadvantage that it would need to gather vast amounts of data, and would need
to handle agents joining and leaving the system. In a decentralised approach,
agents alter their protocol in response to what is happening locally to them, and
to what task they are performing. This has the advantage that no single agent
needs to gather vast amounts of data, and hence the decision process should be
simpler. However, it has the disadvantage that no agent takes a global view, and
hence their decisions may not be best for the community as a whole. We will
consider the latter approach, and show that, in this case, local decisions do lead
to an optimal choice globally.

Firstly, we consider the choices available to each agent. A client agent has a
choice between adopting a naïve broadcast protocol, or a naïve one-to-one
protocol. Once it has sent messages of the given type, the service providers are
constrained in how they react. However, the service providers have the choice of
whether to provide availability information or not; they control the decision of
when to move to an informed one-to-one protocol. (The client, of course, still has
the option of using one of the other protocols).

Now we will look at what information is available locally to each agent. We
focus on the number of messages an agent sends and receives, and compare this
with the total number of messages sent and received in the community. We will
show that if each agent chooses the protocol which will result in it minimising
the number of messages it sends and receives, then the community overall will
adopt the protocol which is most efficient. In section 5.2, we will look at how an
agent can determine this.

For the naive broadcast and naive one-to-one protocols, a client agent either
sends or receives every message involved in the provision of its service. Hence,
if the client chooses the protocol which minimises the number of messages it
sends and receives, this choice will be the better for the community as a whole.

The situation is more complex when the third protocol, informed one-to-one, is
also considered. We would like the service providers to offer availability
information only if the informed one-to-one protocol would be the most efficient
for the agent community. Furthermore, we would like the client agents to adopt

11

the informed one-to-one protocol as soon as the providers offer availability
information. If the providers are offering the information and it is not being
used, then the messages which update this information are wasted.

Assume that service providers offer availability information only if the informed
one-to-one protocol would result in them sending and receiving less messages,
on average, than either of the other two protocols. We now show that, at such a
time, the informed one-to-one protocol would be the most efficient for the
community to adopt.

We do this by considering the average number of messages a provider sends and
receives per client request. We consider this for each protocol;

• Under the naïve broadcast protocol, each service provider agent sends and
receives, on average,1 + p messages per client request.

• Under the naïve one-to-one protocol, each service provider agent sends and
receives, on average, E(N,p)/N messages per client request. As 2 ≤ E ≤ 2N,
this varies from between 2/N to a maximum of 2.

• Under the informed one-to-one protocol, each service provider agent sends
and receives, on average, 2/N + 2(1-p)/Mtu messages. The first term
represents the average number of messages it sends and receives to/from the
client, while the second represents the number of update messages it sends to
the facilitator.

Firstly, we consider the choice between the informed one-to-one protocol, and
the naive one-to-one protocol.

A single service provider agent will choose the informed one-to-one protocol if;

uMt
p

NN
pNE)1(22),(−+>

As E(N,p) ≥ 2, and N ≥ 1, this is equivalent to;

uMt
pN

pNE
)1(2

2),(
−>− (Equation 5.1)

We now consider the total number of messages. The informed one-to-one
protocol is more communications efficient if c(no) > c(io).

12

Hence, this gives the inequality;

uMt
pN

pNE
)1(2

4),(2
−+>+

Subtracting 4 from each side gives:

uMt
pN

pNE
)1(2

2),(
−>−

This is identical to equation 5.1. Therefore, a service provider will select the
informed one-to-one protocol in preference to the naive one-to-one protocol only
if it is more efficient for the community as a whole.

We now consider the naïve broadcast, and compare it to the informed one-to-one
protocol. A service provider will select the informed one-to-one protocol in
preference to the naive broadcast protocol if;

uMt
p

N
p

)1(22
1

−+>+

Multiplying this by N, (N ≥ 1) , and adding 2 to each side gives:

uMt
pN

NpN
)1(2

42
−+>++

Recalling the equations from section 4, this is equivalent to c(nb) > c(io).

Hence, a service provider will select the informed one-to-one protocol in
preference to the naive broadcast protocol only if it is more efficient for the
community as a whole.

Combining this with the previous result, we have shown that a service provider
will provide the information necessary for the informed one-to-one protocol if
and only if the informed one-to-one protocol is more communications efficient
than the other two protocols.

We must now show that if the service provider agents make the effort to provide
the information necessary for the informed one-to-one protocol, then the client
agents will use it. We assume that they will do so if and only if it will result in
them sending and receiving less messages than either of the two other protocols

13

they could adopt. Recall that, in the other two protocols, all messages are either
sent or received by the client.

Hence, the client sends and receives c(no) messages in the naïve one-to-one
protocol, and c(nb) messages in the naïve broadcast protocol. In the informed
one-to-one protocol, the client sends and receives 4 messages. So we must show
that, if the service providers offer the information for informed one-to-one, then
4 < c(no) and 4 < c(nb).

We have already shown that the service provider agents will offer the
information for informed one-to-one if and only if c(io) < c(no) and c(io) < c(nb).

As c(io) = 4 + 2N(1-p)/Mtu , where N, M and tu are all greater than zero, and 1 ≥ p
≥ 0, it follows that 4 ≤ c(io). Hence 4 < c(no) and 4 < c(nb), as required.

So we have shown that, if service providers offer availability information when
the informed one-to-one protocol is most efficient from their local perspective,
then the protocol will also be most efficient from the perspective of the client.

To summarise, we have shown that;

• If a client agent makes a choice between the naïve broadcast and naïve one-
to-one strategy based on which minimises the number of messages the agent
sends and receives, this choice will also globally be the more
communications efficient of the two alternatives.

• If a service provider agent offers the information needed for the informed
one-to-one protocol only if this protocol would result in it sending and
receiving, on average, fewer messages than either of the other two protocols,
then it will do so only when the adoption of this protocol would globally be
the most communication efficient.

• If a service provider agent offers the information needed for the informed
one-to-one protocol in the circumstances described above, then a client agent
will always make use of it.

From these results, we can draw an important conclusion. If each agent decides
which protocol to adopt based simply on which will minimise the average
number of messages it sends and receives, then the agent community as a whole
will adopt the protocol which is most communications efficient.

14

5.2 How agents choose the protocol

We have shown that in a simple form of the service provision problem, a local
choice of protocol by each agent can lead to a choice which is the best for the
community as a whole. Each agent simply needs to choose the protocol that
minimises the total number of messages it sends and receives. We now consider
how an agent is able to make this decision.

Client agents need to make two decisions; whether to use the informed one-to-
one protocol if some service providers are offering the necessary information,
and whether to use naïve broadcast or naïve one-to-one otherwise. The first
decision is trivial; we showed in section 4.1 that it is always better for a client to
use informed one-to-one if it is offered.

Secondly, the client must decide what to do if informed one-to-one cannot be
used. This can occur either because no service provider is offering availability
information, or because all service providers offering availability information are
currently busy.

In this case, the client can use the two equations which give the number of
messages it will send and receive under the naïve broadcast and naïve one-to-one
protocols;

c nb N Np() = + +2

c no E N p() (,)= +2

Given the estimate of N and p, it can use these equations to give an informed
guess as to which protocol should be adopted.

N can be known for certain - it is the number of service provider agents on the
list given by the recommender agent. If a hybrid protocol is being used, and all
service providers providing information are busy, then we remove these agents
from the list. (This can be done either by the client, or by the recommender
sending the list).

The probability p can be estimated by the agent keeping track of how often a
service provider agent is free when it tries to make contact with it. If, as is likely,
p is expected to vary with time, more recent experience could be weighted more
strongly when calculating the estimate.

15

Alternatively, a client can adopt a more empirical approach. It can try using the
protocol it isn’t currently using every now and then, and swap when it finds that
the other protocol usually results in less message traffic.

A service provider needs to decide whether to offer availability information or
not. It can do this by comparing the number of update messages it would send
with the number of messages it would receive and send when busy if it didn’t
keep this information updated.

For an agent which is not offering availability information, it simply counts how
many times it switches from available to unavailable, or vice-versa, in a given
time period, and counts how many messages it receives and sends while
unavailable. When the number of messages it receives and sends while
unavailable is usually above the number of switches it makes, it is worthwhile
providing availability information.2 Hence, the agent will switch protocol at this
point.

If an agent is offering availability information, then it needs to determine when it
is no longer worth it doing so, i.e. at what time the number of messages it sends
to keep the availability information updated is greater than the number of
messages it avoids having to send and receive while unavailable.

From the agent’s perspective, assuming all service provider agents are also using
the informed one-to-one protocol, it receives M/N service requests, on average,
per second. It can get a value for N from the recommender agent. (Possibly, it
would keep a note of N, and whenever N changes, the recommender would
inform it). Hence, it can calculate M. It can estimate p by observing what
proportion of the time it is unavailable. It can then compare the actual number of
messages it currently receives per second, with an estimate of what it would
expect to receive under the other protocols.

It would expect to send and receive M(1+p) messages per second under the naïve
broadcast. Under the naïve one-to-one, it would expect to send and receive
ME(N,p)/N. If either of these is consistently lower than the actual number of
messages sent and received, then the agent should stop giving availability
information.

2 Exactly how to define ‘usually above’ in this context will require experimentation.

16

Hence, in this way, a service provider agent can monitor its behaviour, and
decide when it wishes to swap from providing availability information to not
providing it. In an idealised homogenous agent community, all providers will
make this decision at the same time, as they will all be receiving and handling the
same number of service requests. However, in practice, this will not occur. Some
providers may wish to change, while others do not. For the purposes of this
paper, we assume that we wish to ensure that the community as a whole adopts
the same protocol.3

To ensure this, we add a co-ordination agent, which acts as a vote collector from
the service providers. If a provider wants to change strategy, it registers a vote.
When enough votes are registered, the co-ordination agent sends a message to all
service providers, and they swap protocol. Hence, we can maintain a
homogenous protocol among service providers, using a loose form of centralised
control.

6. Experimental Comparison of Protocol Efficiency

We have carried out experiments to provide empirical support for the
mathematical analysis provided above. Our methodology is similar to that used
in [6]. We have developed a system that can generate a community of agents for
given values of the parameters N, p, tu and M, with a given protocol. The
community consists of a single client, a single facilitator, and N service
providers, each which are available with a probability of p and have a down time
of tu time units. The client issues 100 task requests, at a rate of M requests per
time unit4. The system then counts the total number of messages that are
generated in the community by these requests.

We present here the results of three series of experiments. In each case, we fix
three of the four parameters, and consider a sequence of values of the fourth. For
each value, we run the experimental system 100 times, and plot the mean number

3 If we do not place this restriction, a hybrid protocol can develop, with some agents providing
availability information and others not. This can be more communications efficient than any of
the three protocols discussed, but needs careful management to prevent oscillation of behaviour.
4 As the rate of requests by all clients is the factor which determines how many messages are
generated, rather than the number of clients, we can safely use only one client agent without loss
of generality.

17

of messages as a point on a graph. We repeat this for the different protocols, to
get graphs of how the efficiency of the different protocols varies as the fourth
parameter changes.

In experiment 1, we use the parameter values N = 5, tu = 2 and M = 1. We allow p
to range from 0.05 to 1 in increments of 0.05. Chart 1 gives the resulting graphs
for each of the three protocols. These graphs corroborate the mathematical
equations of section 4 The average difference between the theoretical predictions
and the mean values found by experimentation is 0.22% for naïve broadcast,
1.22% for naïve one-to-one and 1.11% for informed one-to-one.

Chart 1

0
200
400
600
800

1000
1200
1400

0 0.5 1

Probability

io
nb
no

18

In experiment 2, we use the same parameter values, but introduce a fourth
protocol: the vote collector. Service providers vote if they wish the community to
swap from informed to naïve or vice-versa, using the techniques described in
section 5.2 to make their decision. This vote takes place every 10 time units. The
facilitator acts as the vote collector. The initial protocol is informed one-to-one.
If a majority of service providers vote for a protocol swap, it sends a message out
to indicate that the swap should take place. Chart 2 plots the resulting graphs.
Both vote and swap messages are included in the message count.

We can see from chart 2 that the vote collector protocol tends to choose more
efficient protocols at different probability values. The community chooses to use
the naïve broadcast for values of p between 0.05 and 0.2. It wavers between all
three protocols in the range 0.2 to 0.4, though tends to choose informed one-to-
one in general. Finally, it choose informed one-to-one consistently for the range
0.4 to 1. In this last range, the most efficient protocol is naïve one-to-one;
however, because the difference between this and informed one-to-one is small,
the system remains on informed one-to-one.

In experiment 3, we plot all four protocols for parameter values N = 10, p = 0.25

Chart 2

0

500

1000

1500

0 0.5 1

Probability

io
nb
no
vc

Chart 3

0
500

1000
1500
2000

0 5 10
Average time service providers

unavailable (units)

To
ta

l m
es

sa
ge

s

io
no
nb
vc

19

and M = 1. We allow tu to vary from 1 to 10 time units. We see in chart 3 that, as
the equations predict, the number of messages used by naïve one-to-one and
naïve broadcast remains constant, while the message count for informed one-to-
one is very high for low values of tu, but reduces rapidly as tu increases. The vote
collector successfully chooses naive one-to-one if tu ≤ 2, and informed one-to-
one otherwise. On the graph, the vote collector message count is higher for tu ≤ 2
than the naïve one-to-one. This is because of the large number of messages sent
in the first 20 time periods before it gets a chance to swap away from informed
one-to-one, and the messages used in the vote collection process. If the
experiment were run for more tasks (say 1000), we would expect this
discrepancy to become less significant.

Conclusions and Future Work

In this paper, we have demonstrated that mathematical and experimental analysis
of multi-agent system protocols can provide useful information to guide design
choices when developing such systems. We have shown that some of these
choices may best be made at runtime by the system in response to changes in the
demands placed on it. Furthermore, we have shown that this decision can be
made in a decentralised way, by allowing client agents to swap their protocol
freely, and service provider agents to vote on the protocol to be used by their
community.

We hope to be able to allow such decision making to be taken in an even more
decentralised way, without the use of a vote collector. Such a protocol, the hybrid
protocol, allows some service providers to provide availability information,
while others do not. We believe that such a system will be more efficient than
any of the other protocols, though care needs to be taken to ensure it settles in a
stable state.

We believe that the approach of allowing an agent community to make
architecture decisions dynamically, in a decentralised fashion, can lead to
systems which are robust and efficient in the face of change. We hope to extend
this approach to other architecture decisions, such as the number of facilitators
and the mode in which they operate, and to more complex forms of the service
provision problem.

20

Acknowledgements

Thanks to Martin Merry, Janet Bruten, Miranda Mowbray and Lin Jones for their
assistance.

References

1. J. L. Alty, D. Griffiths, N.R. Jennings, E. H. Mamdani, A. Struthers, and M. E. Wiegand. ADEPT -
Advanced Decision Environment for Process Tasks: Overview & Architecture. In Proc. BCS Expert
Systems 94 Conference (Applications Track), Cambridge, UK, 359-371, 1994.

2. Market-Based Control: A Paradigm for distributed resource allocation. ed S.H.Clearwater. World
Scientific, 1996.

3. dMARS product brief. http://www.aaii.oz.au/proj/dMARS-prod-brief.html

4. T. Finin and R. Fritzson. KQML as an Agent Communication Language. In Proceedings of the Third
International Conference on Information and Knowledge Management (CIKM’94), ACM Press, November
1994.

5. M.R. Genesereth and S.P. Ketchpel. Software Agents. Communications of the ACM, 37:7, 48-53, 1994.

6. C.Gu and T.Ishida. Analyzing the social behavior of the contract net protocol. Agents Breaking Away,
Proc. MAAMAW 96. pp 116-127, 1996.

7. B.Hayes-Roth. A Blackboard Architecture for Control. Artificial Intelligence Journal 26, pp 21-321.
1985

8. H. Jean. JATlite overview. http://java.stanford.edu/java_agent/html/

9. L.V.Leao and S.N.Talukdar. An Environment for rule-based blackboards and distributed problem
solving. International Journal for Artificial Intelligence in Engineering, 1(2): 70-79, 1986.

10. T.Sandholm. Agents in Electronic Markets. Tutorial notes, Autonomous Agents 97 conference.

11. A.Sloman. The SIM_AGENT toolkit. http://www.cs.bham.ac.uk/~axs/cog_affect/sim_agent.html

12. R.G. Smith. The contract net protocol: high-level communication and control in a distributed problem
solver. IEEE Trans. Comput., 29, 1104-1113, 1980.

