
Somersault Software Fault-Tolerance

Paul Murray, Roger Fleming, Paul Harry, Paul Vickers
Internet Communication Services Department
HP Laboratories Bristol
HPL-98-06
January, 1998

software
fault-tolerance,
process replication
failure masking,
continuous
availability,
topology

The ambition of fault-tolerant systems is to provide
application transparent fault-tolerance at the same
performance as a non-fault-tolerant system. Somersault is a
library for developing distributed fault-tolerant software
systems that comes close to achieving both goals.
We describe Somersault and its properties, including:
1. Fault-tolerance — Somersault implements “process

mirroring” within a group of processes called a recovery
unit. Failure of individual group members is completely
masked.

2. Abstraction — Somersault provides loss-less messaging
between units. Recovery units and single processes are
addressed uniformly as single entities. Recovery unit
application code is unaware of replication.

3. High performance — The simple protocol provides
throughput comparable to non-fault-tolerant processes at
a low latency overhead. There is also sub-second failover
time.

4. Compositionality — The same protocol is used to
communicate between recovery units as between single
processes, so any topology can be formed.

5. Scalability — Failure detection, failure recovery and
general system performance are independent of the
number of recovery units in a software system.

Somersault has been developed at HP Laboratories. At the
time of writing it is undergoing industrial trials.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

1

Somersault Software Fault-Tolerance

The ambition of fault-tolerant systems is to provide application transparent fault-

tolerance at the same performance as a non-fault-tolerant system. Somersault is a

library for developing distributed fault-tolerant software systems that comes close to

achieving both goals.

We describe Somersault and its properties, including:

• Fault-tolerance – Somersault implements “process mirroring” within a group of

processes called a recovery unit. Failure of individual group members is

completely masked.

• Abstraction – Somersault provides loss-less messaging between units. Recovery

units and single processes are addressed uniformly as single entities. Recovery

unit application code is unaware of replication.

• High performance – The simple protocol provides throughput comparable to non-

fault-tolerant processes at a low latency overhead. There is also sub-second

failover time.

• Compositionality – the same protocol is used to communicate between recovery

units as between single processes, so any topology can be formed.

• Scalability – failure detection, failure recovery and general system performance

are independent of the number of recovery units in a software system.

Somersault has been developed at HP laboratories. At the time of writing it is

undergoing industrial trials.

1 Introduction

Highly available software systems for business applications have been available for

some years now. There are cluster products that manage a collection of computers to

automatically restart failed applications, e.g Hewlett-Packard’s MC/ServiceGuard

[13], and Microsoft’s Wolfpack NT Server Cluster. There are also middleware

software systems that support messaging paradigms from which fault-tolerant

software can be built. Perhaps the most notable of these is the ISIS toolkit [3].

When choosing a technology base for a highly available application there are several

factors to consider: the required level of availability, the required performance, and

the cost (both development and operational). Different components will have more or

less impact on the overall system when they fail. Replacing standard components with

2

custom-built components incurs a higher development cost. We believe that by

considering each component of a distributed system individually a different trade-off

will be discovered and a different technology is appropriate.

This paper describes Somersault: a library for developing distributed fault-tolerant

software systems. Somersault is aimed at replicating software components to achieve

continuous availability without introducing complexity for the programmer or altering

the overall system design. Somersault introduces fault-tolerance in a component-wise

manner, only where it is needed. Like micro-kernel approaches such as [2], we

encapsulate fault-tolerance mechanisms within a middleware layer below the

application.

One of the key aspects of Somersault is the simplicity of its protocols, permitting high

throughput and low latency in replicated processing. Failover can be achieved in sub-

second timing.

Communication is asynchronous and uses an identical protocol for a replicated group

of processes (called a recovery unit) as for a single process, isolating the rest of the

system from the effects of making one component fault-tolerant.

Replication and communication are also independent of system size, allowing

Somersault to scale to any number of units without affecting performance.

Somersault is an ideal complement to other technologies, such as clustering for high

availability. Developed at Hewlett-Packard Laboratories, it has been implemented and

tested on both HP-UX and Windows NT. At the time of writing Somersault is

undergoing industrial trials.

In the following section we describe the approach we have taken to modelling a fault-

tolerant system. In section 3 we describe the operation and performance of

Somersault. Section 4 describes features of replication that the application

programmer needs to be prepared for. The final section briefly reviews the main

features of Somersault and how it relates to crash-restart cluster technologies .

3

2 Model

2.1 System Model

A regular distributed system has
communicating processes

A Somersault distributed system has
communicating units – units are single
processes or groups of replicated processes

Figure 1 Somersault System Model

Somersault uses a model of processing units that communicate via messages. There

are two types of unit: the simple unit, which contains a single process; and the

recovery unit, which contains a collection of processes. A unit is always viewed as a

single entity and all communication is between units.

The replicated processes in a recovery unit are redundant copies of one another. A

process is a member of exactly one unit1.

Although a simple unit can be viewed as the special case of a recovery unit that

contains only one process, we prefer to consider it separately.

2.2 Replication

We model an application process as a state machine driven by non-deterministic

events. We assume that the only visible behaviour of a process is its message

communication. Two processes are replicas of one another if they input and output the

same messages in the same order.

From a process’ point of view, input messages are non-deterministic events, but there

may also be other non-deterministic events – reading a real-time system clock, for

example.

1 We avoid the term “group” to emphasise that fact that a unit is strictly a collection of

replicated processes. Group communication systems often use a model in which a

process can be a member of more than one group, can receive messages broadcast to

any of its groups, and can communicate as an individual. ISIS is an example of a

group communication system [3].

4

Output messages are deterministic events. As a process executes it may input

messages and output messages in some sequence. Some non-deterministic events will

determine that sequence and hence determine the observable behaviour of the process.

Some non-deterministic events will not influence the observable behaviour at all.

Two copies of the same process will be replicas, if they:

1. Receive the same input messages.

2. Experience the same non-deterministic events that determine observable

behaviour.

A recovery unit contains replica processes.

2.3 Failure

We assume processes have fail-stop semantics (fail by halting [8], [15], [16]).

A recovery unit will replace a failed process by making a copy of a surviving process.

If all processes in a unit fail the unit will cease to exist. This will be apparent to other

units only due to an inability to communicate with it. In particular, a unit does not fail

due to an inability to communicate with other units.

2.4 Reliable Messaging

Messaging between units is defined in by properties that relate the send and receive of

messages to and from a unit, to the send and receive of the unit’s replicas. The way

we present these properties is biased by our implementation described later.

1. If unit A sends a message to unit B then every replica in unit A is certain to

generate the message.

2. Unit B has received a message from unit A when every replica in unit B has

received it.

3. If unit A receives two messages then every replica in unit A receives them in the

same order.

Notice that these properties allow one replica to receive and generate a sequence of

messages before other replicas receive any messages.

3 Inside Somersault

In the following we will use two sets of terms for talking about message passing. We

will use “send” and “receive” to refer to the actual transfer of a message using a

transport protocol such as TCP. Send and receive will always be performed by the

Somersault layer.

5

We will use “consume” and “generate” to refer to the transfer of an application

message to and from the application code within a process.

Somersault uses three mechanisms: failure detection, replication, and reliable

messaging. Failure detection is distinct from the other two, whereas replication and

reliable messaging interact.

A unit is a number of processes that together monitor each other for failures. Some of

these processes, but not necessarily all, contain application level replicas. The failure

detection mechanism decides a consistent view of which processes are alive. It

performs no other function.

Replicated application processing is achieved by process mirroring. Process mirroring

enforces replication by managing non-deterministic events. However, delivery of

messages is handled by the reliable messaging protocol. Hence process mirroring is

closely tied in to the messaging protocol.

Our reliable messaging protocol is called Secondary sender. Secondary sender

supports the guarantees required for process mirroring and failure recovery. Together,

these two provide failure masking.

In describing Somersault we will consider the minimum recovery unit, with three

processes. All of these processes are involved in failure detection, only two in

application replication.

At the end we comment on how this generalises to more than two replica processes.

3.1 Failure Detection

We want processes to be fail-stop [8]. It has been shown in [15] that fail-stop

processes can be simulated on asynchronous communications using group

membership consensus algorithms.

We implement fail-stop processes in two steps. The first step is based on heartbeats.

The processes pass heartbeat messages to one another at regular intervals. If one

process misses its deadline for delivering heartbeat messages, another process will

suspect it has failed. This step is particularly sensitive to the throughput, latency and

load on the network. Delay in message delivery can lead to “false positive” failure

detection ([6], [14]) so the heartbeat interval has to be adjusted to reflect the profile of

network traffic.

When one process suspects another of failing it invokes a group membership

consensus protocol. There are various group membership protocols that could be

6

used, including those reported in [4], [5], [9], [11] and [18]. We do not claim to be

original here.

During the membership protocol each process identifies other processes that it can

communicate with and form a group. If a group of processes find they form a majority

of the unit, they declare themselves to be the new unit membership.

The requirement for a majority decision on unit membership is what determines the

minimum unit of three processes. If the unit reduces to two processes failure detection

can not be achieved reliably.

When consensus has been reached the unit membership is made available to the

secondary sender protocol, which will mask the failure.

Generally processes in a recovery unit contain replicas of the application code, but

some may not. Those that do not are present purely for failure detection and are called

“witnesses”. Replication is covered in the next section.

3.2 Replication – Process Mirroring

In process mirroring, two copies of the same application code are forced to act as

replicas by allowing one (called the “primary”) to perform non-deterministic events

arbitrarily and then making the other (called the “secondary”) perform the same

events. Hence the secondary reflects the actions of the primary.

Process mirroring is achieved by placing a logging channel between the primary and

secondary. Non-deterministic events are logged on the channel and fed to the

secondary process in order.

Exactly how to feed a non-deterministic event depends on the type of event. There are

basically two types to consider:

1. Those that are initiated from outside the process, e.g. input messages, timers.

2. Those that are initiated by the process, e.g. system calls (we refer to this type as a

non-deterministic choice.)

Somersault controls event scheduling in the application process. It determines the

delivery of timers and messages, and it controls thread execution. Event scheduling is

a matter of managing the occurrence of events to which the application responds.

Non-deterministic choices are more difficult because they occur as part of the

execution of application code. Somersault uses a mechanism to capture the result of a

non-deterministic choice in the primary and inject it at the secondary. This requires

the co-operation of the application programmer as described in section 4.

7

As we mentioned earlier, it is not necessary to replicate all non-deterministic choices

for the two processes to behave as replicas. If it is possible to identify which choices

do not affect process mirroring then the programmer may decide not to log the choice.

Minimising the replication in a recovery unit can improve its robustness. Memory

leaks in heap allocation are good example. If only the content of a heap is replicated,

rather than its actual structure, then the primary and secondary can allocate memory

differently and run out at different times. This is particularly true if one replica has

been running longer than the other has (i.e. the secondary was created later).

3.3 Secondary Sender

The secondary sender protocol manages reliable FIFO messaging between units.

Previous work by Alsberg and Day, described in [1], promotes the use of a primary

site server for performing updates in a replicated resilient server group. The secondary

sender algorithm is similar to the approach taken by Alsberg and Day. There are two

main differences between our work and theirs. Principally we have applied our work

to a peer-to-peer asynchronous message-passing environment, whereas they use a

synchronous message-passing client-sever environment in which only servers are

resilient. Secondly, the protocol we describe here has been designed to support

process mirroring.

In the following we describe the secondary sender protocol in regular operation,

actions during failover, and actions during recovery.

3.3.1 Messaging

Inputs

Outputs

Logging

Somersault Connection

P

S

P = Primary process
S = Secondary process

Figure 2 Somersault connection

A connection between two units is implemented using two reliable FIFO connections:

one for receiving messages and one for sending them, as shown in Figure 2. The

application code at both primary and secondary consumes the same input messages

and generates the same output messages.

8

For the sake of descussion we describe messaging situations that occur in

request/response scenarios. We do not wish to imply that Somersault adopts a request

response paradigm. Somersault uses peer-to-peer asynchronous messaging between

units.

The Roles

The secondary sender protocol defines two roles: sender and receiver. The primary

process always adopts the receiver role, because message receipt is a non-

deterministic event. If there is a secondary it adopts the sender role (hence the name

secondary sender), otherwise the primary is also the sender.

The receiver and sender roles differ in how they obtain input messages and what they

do with output messages.

The receiver (primary process):

1. Receives input messages on the input link from another unit.

2. Consumes input messages at the application level.

3. Generates output messages at the application level.

4. Maintains a re-send queue for output messages.

5. Passes input messages on the logging channel (if there is a secondary process).

The sender (primary or secondary process):

1. Receives input messages on the logging channel (if the sender is a secondary

process).

2. Consumes input messages at the application level.

3. Generates output messages at the application level.

4. Maintains a re-send queue for output messages.

5. Sends output messages on the output link to another unit.

When the secondary sender protocol sends an application message it adds a header to

include its own control information. This includes message acknowledgements, which

are used to garbage-collect re-send queues.

If there is only one process in a unit it takes both receiver and sender roles; there is no

logging channel and there is only one re-send queue. This is the case for simple units

and recovery units that are reduced to one replica.

9

The properties

P

S

m1

m1

m1

The secondary sends messages, so both the
primary (P) and the secondary (S) have a copy

Figure 3 Message Sent Property

If a unit sends a message it is sent by the secondary. Process mirroring ensures that

the secondary reflects the primary, so both the primary and secondary will generate

the message. Hence the first property in section 2.4 is satisfied.

P

S

ack

ack

m1

The secondary sends the ack, so both the primary
(P) and the secondary (S) have received m1

ack

m1

Figure 4 Message Received Property

When a message is received by a primary, it is passed to a secondary. At some point

the secondary will send an acknowledgement for the message (typically in the header

of an output message). So, if a unit receives an acknowledgement it can be sure that

each process in the sending unit has received the message that is being acknowledged.

Hence the second property in section 2.4 is satisfied.

P

S

m1

The primary (P) logs m1, m2, m3 to the secondary
(S) in the order that they were consumed

m1, m2, m3

m2

m3

Figure 5 Message Order Property

10

All input messages are received by the primary and logged to the secondary. Message

consumption is a non-deterministic event, so the secondary will consume messages in

the same order as the primary. The last property in section 2.4 is satisfied.

3.3.2 Failover

When a process fails the failure detection mechanism will establish the new unit

membership. The secondary sender protocol reacts by reallocating roles. If a sender or

receiver role has to be moved then a connection has been lost. The failover procedure

reconnects units and re-sends messages that may have been lost due to the failure. By

reconnecting the units and recovering lost messages, the secondary sender protocol

preserves its messaging properties across a failover, masking the failure.

To look at failover in more detail we will examine what happens when different

processes fail.

Primary fails

The primary process has the receiver role. The primary is an endpoint for the input

link of each connection to other units. The loss of the primary results in the loss of the

input links. Messages that the primary was in the process of receiving or had not yet

passed down the logging channel will also be lost.

The secondary process will respond by promoting itself to primary, retaining the

sender role and adopting the receiver role. A new input link is established for each

connection and the far end re-sends messages. This will replace any messages that the

secondary had not received; any duplicate messages can be ignored.

At this point the unit has completed failover. This procedure regains all connections

and recovers any lost messages.

Secondary fails

The secondary process has the sender role and is therefore the endpoint for the output

link of each connection to other units. The loss of the secondary will result in the loss

of the output connections. The secondary may have failed in the process of sending a

message or before it sent a message that the primary thinks has been sent. So output

messages may have been lost.

The primary will respond to the failure by adopting the role of sender as well as

receiver. A new output link is established for each connection and output messages in

the re-send queue are sent again. The far-end receiver ignores duplicate messages.

11

At this point the unit has completed failover. This procedure regains all connections

and recovers any lost messages.

Witness fails

The witness is not a replica and is not involved in the secondary sender protocol. Its

failure is of no consequence to application processing, but the unit may be unable to

perform failure detection without it. It should be replaced as soon as possible.

Additional notes

In the case of primary failure it is possible that the primary has performed some work

that the secondary never found out about. After failover the secondary will receive the

same input messages and repeat the work, possibly with a different outcome due to

unreplicated non-deterministic events, including the message receipt order.

This is not a problem because of the reliable messaging properties. If input messages

have not been logged, the unit has not received them and they can not affect messages

output by the unit.

If two units experience simultaneous failures they can lose both links of a connection

between them. The recovery will involve re-establishing the connection and both

sides re-sending messages. Complete loss of a connection due to simultaneous failures

at each end does not affect the messaging properties.

3.3.3 Recovery

Once a failover has occurred, the number of processes in a recovery unit is reduced

and the unit’s ability to survive further failures is compromised. It is necessary to

replace the lost process to recover the desired level of fault-tolerance. Somersault

handles automated replacement of process.

Failure of primary or secondary process results in the need to replace a secondary (if

the primary failed the secondary will have become a primary). So there are only two

cases to consider: replacing a secondary or a witness.

The witness is the easiest case because it is not involved in the secondary sender

protocol. A new witness process is started and its first action is to contact the unit and

invoke a change in the unit membership. If this step is not successful after a few

attempts the witness will give up. If the step is successful the unit is back to full

strength.

The first step of creating a new secondary is the same as for the witness. Once it has

joined the unit it must become a replica. This involves copying runtime state from the

12

primary to the secondary and then synchronising to join the secondary sender

protocol.

A logging channel is opened from the primary to the new secondary. The primary

serialises its state and passes it down the logging channel to the new secondary, which

rebuilds the state.

When all the state has been passed, the secondary adopts the sender role. A new

output link is established for each connection. This time there is no need to re-send

any messages because the role hand-over can be performed gracefully without

messages being lost.

The primary proceeds with logging all input messages and non-deterministic choices

to the secondary. The unit is now back to full strength.

The whole procedure preserves the reliable messaging properties.

The above description assumes that the state of the primary is so small that it can be

passed to the new secondary without compromising availability of the unit.

Sometimes this is not the case.

The state transfer can be fragmented and interleaved with regular application

processing. This is called a fuzzy state transfer (or fuzzy checkpoint).

Fuzzy state transfers introduce two requirements:

1. The state can be transferred more quickly than it changes.

2. The secondary eventually has an exact copy of the primary’s state.

These requirements demonstrate a race condition that can occur in fuzzy state

transfers. The condition represents a trade-off between regaining fault-tolerance and

service availability. Several approaches to fuzzy state transfers have been developed;

a small selection can be found in [2], [10] and [12].

3.4 Performance - Early message logging verses late message logging

P S
t t t

ss

The processes in a recovery unit exhibit
pipeline parallelism. t = message transfer
time, s = processing time.

Inputs OutputsLogging

Figure 6 Breakdown of Recovery Unit Processing

In the last section we stated that the secondary sender protocol passes input messages

from the primary to the secondary process via a logging channel. This establishes a

pipeline, allowing the primary and the secondary to process input requests in parallel.

13

The logging channel also passes over other non-deterministic events to implement

process mirroring.

The order in which events are logged with respect to one another and the deterministic

processing affects the performance characteristics of the pipeline. Here we consider

two obvious cases that we refer to as late message logging and early message logging.

Late message logging

When a message arrives at a primary it will be consumed at the application level and

then logged. As a consequence, all processing invoked by the message is performed

before it is logged to the secondary. The secondary will not be able to process it in

parallel with the primary, although it will process it at the same time as the primary

processes subsequent messages.

Let us say that the time taken to transfer a message across a link is uniform and

denoted by t and that the time taken to consume a message and perform the

subsequent processing is denoted by s (as shown in Figure 6). Then a request-

response message pair will take 3t+2s. Any non-deterministic event logs at the

primary can be buffered and sent together with the input message, so this figure is a

worst case.

The throughput of late logging is theoretically as high for a recovery unit as for a

simple unit.

Early message logging

In early message logging the primary logs input messages before consuming them.

The objective is to reduce latency by processing the message at the primary and the

secondary at the same time.

Using the same denotation as above we find the latency for a request-response

message pair to be 3t+s.

In this case the non-deterministic events processed at the primary will not be logged

to the secondary until some time after the message that lead to them has been logged.

It is possible that the secondary will have to wait for the events to be logged, holding

it up. If the events are passed down the logging channel as they occur, it is possible

that the time taken waiting for them will be greater than the entire processing time.

For early message logging the latency of 3t+s is a best case. The worst case may be

much greater. The logging overhead of early logging may also reduce throughput.

Whether to use early or late message logging depends on the value of s and t and the

occurrences of non-deterministic choices in the application code.

14

In cases where the value of s is insignificant compared to t, early logging will not

significantly improve latency; in fact in some cases the latency will increase.

In cases where the value of t is insignificant compared to s, the advantage of early

logging will be much greater, but still dependent on the occurrence of non-

deterministic events.

3.5 Units with more than two replicas

So far we have described the operation of secondary sender protocol for units with

only two replicas. The utility of units with more than two replicas is questionable.

When more than one replica fail simultaneously it is either because they have a

common failure mode or not. If it is a common failure mode, adding more replicas

does not help. If not, then the dual failure is a very rare occurrence – two replicas will

typically provide enough protection for most applications.

If more protection is required, then we do not want to add any more replicas than we

must. For failure detection purposes, to detect k simultaneous failures, a unit must

have 2k+1 processes [17]. We can use k+1 replicas and k witness processes. Witness

processes incur a low overhead and do not interfere with application processing.

One good reason for more than two replicas is to facilitate deliberate unit migration

for hardware/operating system maintenance purposes.

The secondary sender protocol can be generalised for units with more than two

replicas. Here we briefly describe two alternatives: chaining and fan-out. In each there

is one primary process and a number of secondary processes. The difference between

approaches is the logging topology for process mirroring. There are many other

alternatives.

Chaining

The chaining approach is a straightforward generalisation from the two-replica unit.

In this case there are a number of secondary processes all daisy-chained with logging

channels. The primary is the receiver and the last secondary in the chain is the sender.

This is shown in Figure 7 below.

P SS

Multiple secondary processes can be daisy-chained
with logging channels

Figure 7 Chained Secondary Processes

15

The additional secondary processes consume and generate messages. They also

maintain a re-send queue. The main difference is the need to maintain a re-send queue

for log messages. The chaining approach requires modifications to the failover actions

as follows:

1. Sender fails - previous secondary in the chain adopts sender role and performs

failover.

2. Primary fails - first secondary in the chain becomes primary and adopts receiver

role.

3. Mid-chain secondary fails - the previous process in the chain links with the next

one down and resends log messages that may have been lost.

So long as the sender role belongs to a secondary, there is no need to move it during

recovery. When a new secondary is built it can be inserted into the chain, avoiding the

need to move the sending link for connections with other units.

A similar topology to the above was described in [1], but there responses were not

sent from the end of the chain.

Fan out

In the fan-out approach every secondary receives logs directly from the primary. Only

one secondary process is the sender. This is shown in Figure 8 below.

P S

S

Multiple secondary processes can each receive logs
directly from the primary

S

Figure 8 Fan-out Secondary Processes

As for chaining, the additional secondary processes consume and generate messages,

and maintain a re-send queue. In fan-out, all the processes must maintain a re-send

queue for log messages, even though only the primary sends them.

The fan-out approach requires modifications to the failover actions as follows:

• Sender fails - another secondary is elected to take sender role.

• Primary fails – a secondary is elected to take over as primary. On promotion the

new primary must obtain the most recent log messages from the other secondaries

before accepting re-sent messages from other units.

16

• If a secondary that does not have a sender or receiver role fails it has no impact

and no actions needs to be taken.

The fan-out approach has a lower latency overhead in responding to messages

because only the primary and sending secondary fall in the critical path for processing

inputs. Also, the failure of a spare secondary has no consequence. However, the

failover procedure is more complex and simultaneous failure of sender and receiver

breaks the messaging properties. There is also an additional complexity in deciding

when messages can be dropped from log re-send queues.

4 Isolation of Application code from FT

The secondary sender protocol provides reliable messaging between units. All units

are addressed uniformly as units, providing both location independence and

abstraction from the processes that implement a unit. The secondary sender protocol

hides replication in one unit from another.

Process mirroring hides replication within a unit. The application programmer uses

Somersault as a point-to-point connection-oriented communication transport between

units. All replicated events, such as messaging, thread scheduling, flow control, timers

etc. are handled by Somersault transparently to the application programmer.

However, there are two features of process mirroring that the application programmer

must support:

• Non-deterministic choices must be made visible to Somersault.

• State transfer must be provided.

These facilities are made as syntactically transparent as possible, but it is up to the

application programmer to use them.

Non-deterministic choices are performed by effectively telling Somersault to call a

function with a non-deterministic result on behalf of the application. If the application

code is in a primary process, Somersault calls the function, logs the result and returns

it to the application. If the application code is in a secondary process, Somersault does

not call the function; instead it looks up the result logged by the primary, and returns

that to the application. At no point is the application code aware that the result of a

non-deterministic function is being captured or substituted. Hence the same

application code is used in both the primary and secondary and the same path through

the code is followed in all cases.

17

State transfer is basically a checkpoint of application state. The programmer is best

placed to decide what the application state is and how to copy it. The transfer involves

serialising the application state at the primary, passing it to the secondary and

reconstructing it there.

When a process is started Somersault decides if it is a completely new unit or a new

process for an existing unit. If the later is the case the first event that Somersault

schedules is a state transfer.

State transfer functions are provided by the programmer and registered with

Somersault. When a new process is started, Somersault will invoke the functions to

send a state transfer in an existing process and those to receive a state transfer in the

new process.

The application code does not direct the transfer, it does not determine when it is time

to transfer, and it does not know about the process that is receiving the state.

State transfer and non-deterministic choice logging are the only replication facilities

that the application programmer needs to support. Logging and state transfer only

occur in recovery units, so simple units do not require them. The only requirement for

simple units is to use the Somersault transport when communicating with recovery

units.

5 Discussion

The secondary sender protocol uses a synchronous logging algorithm. The secondary

sends output messages, so logging from primary to secondary occurs before messages

are sent. As a consequence the properties described in section 2.4 can be maintained

with minimal messaging. The protocol is very simple and efficient.

The primary and secondary processes of a recovery unit exhibit pipeline parallelism.

The time taken for a recovery unit to process a message is slightly greater for a unit

than for a single process, but the throughput is roughly the same in each case because

of the pipeline processing.

The time taken for a recovery unit to process a message is longer because the

secondary will process it slightly behind the primary. In section 3.4 we showed that

late logging provided a round trip time of 3t+2s for a request-response pair of

messages, as compared 2t+s for a single process performing the same task. An

appropriate early logging recovery unit could achieve a round trip latency of 3t+s. A

18

recovery unit can achieve the same throughput as a simple unit using either late-

logging and early-logging.

A benefit of the secondary sender protocol is the uniformity of connections between

units having any number of processes. The protocol and the overhead of

communicating between units are the same in all cases. This makes it easy for a single

process to be replaced by a recovery unit in a distributed system.

Somersault presents units to the application programmer as single entities. Also, great

effort has been made in isolating fault-tolerance mechanisms from application code,

especially in the case of recovery units talking to other recovery units. These factors

make fault-tolerant application programming relatively simple.

Clusters

The crash restart approach to high availability is used in cluster systems such as

Hewlett-Packard’s MC/ServiceGuard and Microsoft’s Windows NT Server Cluster.

The objective of these systems is to reduce downtime by automatically restarting

applications when software or hardware failures occur.

Some distributed system components have greater consequence if they fail. For

example, in a distributed transaction processing system:

• Loss of a process executing a single user transaction may be noticed by a single

user and require a transaction rollback;

• Loss of a naming/location service may result in processes being unable to find one

another, but may not effect those that are already communicating;

• Loss of a centralised lock manager may require rollback of all running

transactions and total system unavailability until recovery is completed.

Somersault increases system availability by avoiding failure of software components.

A system designer may determine that the Somersault approach is overkill in general,

but may be useful in the case of critical system components, such as the lock manager

case above.

Presentation
Tier

Middle Tier Data Tier

Somersault FT Cluster HA

19

Figure 9 Highly Available Three Tier Architecture

The combination of cluster-based crash-restart for general protection and Somersault

fault-tolerance for system-critical components creates a useful environment for highly

available systems. This is particularly the case in two or three tier architectures, where

presentation tier elements are permitted to fail, the middle tier contains critical

services suited to Somersault, and the data tier contains databases suited to cluster

approaches. This is shown in Figure 9.

6 References

[1] P. A. Alsberg, J. D. Day, A Principle for Resilient Sharing of Distributed

Resources, Second International Conference on Software Engineering, October

1976, pp562-570

[2] T. Becker, Application-Transparent Fault Tolerance in Distributed Systems,

Proceedings Second International Workshop on Configurable Distributed

Systems, March 1994, pp36-45

[3] K. Birmen, T. Joseph: Reliable Communications in the Presence of Failures,

ACM Transactions on Computer Systems, 5:1, 1987, pp47-76

[4] R. Blanchini, R. Buskens, An Adaptive Distributed System-Level Diagnosis

Algorithm and its Implementation, Fault-Tolerant Computing: Twenty-First

International Symposium, June 1991, pp222-229

[5] F. Cristian, Agreeing on Who is Present and Who is Absent in a Synchronous

Distributed System, Eighteenth International Symposium on Fault-Tolerant

Computing, FTCS-18, June 1988, pp206-211

[6] M. Davidson, Failure Detection for Somersault Distributed systems, Masters

thesis, MIT

[7] E. N. Elnozahy, D. B. Johnson, W. Zwaenepoel, The Performance of Consistent

Checkpointing, Proceedings 11th Symposium on Reliable Distributed Systems,

October 1992, 39-47

[8] M. Fischer, N. Lynch, M. Paterson, Impossibility of Distributed Consensus With

One Faulty Process, Journal of the ACM, Vol. 32, No. 2, April 1985, 374-382

[9] S. H. Hosseini, J. G. Kuhl, S. M. Reddy, On Self-Fault Diagnosis of the

Distributed Systems, Fifteenth Annual International Symposium on Fault-

Tolerant Computing FTCS 15, June 1984, pp30-35

20

[10] K. L. Jeffrey, P. Naughton, J. S. Plank, Low-Latency, Concurrent Checkpointing

for Parallel Programs, IEEE Transactions on Parallel Distributed Systems, 5:8,

August 1994, pp874-879

[11] K. H. Kim, H. Kopetz, K. Mori, E. H. Shokri, G. Gruensteidl, An Efficient

Decentralised Approach to Processor-Group Membership Maintenance in Real-

Time LAN Systems: The PRHB/ED Scheme, Proceedings 11th Symposium on

Reliable Distributed Systems, October 1992, pp74-83

[12] J. Lyon, Tandem’s Remote Data Facility, Thirty-fifth IEEE Computer Society

International Conference. Intellectual Leverage, Feb. 1990, pp562-567

[13] MC ServiceGuard Product Breif,

http://www.hp.com/gsy/high_availability/mcsg_brief.html

[14] A. Ricciardi, A. Schiper, K. Birman, Understanding Partitions and the “No

Partition” Assumption, Proceedings of the Fourth Workshop on Future Trends of

Distributed Computing Systems, September 1993, pp354-360

[15] L. S. Sabel, K. Marzullo, Simulating Fail-Stop in Asynchronous Distributed

Systems, 13th Symposium on Reliable Distributed Systems, October 1994, 138-

147

[16] R. D. Schlichting, F. B. Schneider, Fail-stop Processes: An Approach to

Designing Fault-tolerant Computing Systems, ACM Transactions on Computer

Systems, 1:3, August 1983, pp222-238

[17] F. B. Schneider, Byzantine Generals in Action: Implementing Fail-Stop

Processors, ACM Transactions on Computer Systems, 2:2, May 1984, pp145-

154

[18] C.-L. Yang, G. M. Masson, Hybrid Fault Diagnosability with Unreliable

Communication Links, FTCS: 16th Annual International Symposium on Fault-

Tolerant Computing Systems, July 1986, pp226-231

