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We start by listing and briefly commenting on the properties of the Riemann operator
that are suggested by the quantum analogy (see also 5-7). We will call the operator H.

a. H has a classical counterpart (the 'Riemann dynamics’), corresponding to a
hamiltonian flow or a symplectic transformation, on a phase space. This is based on a
formal resemblance between the Von Mangoldt expansion 2 for the logarithm of the Euler
product for {(1/2+iF) and the semiclassical expansion 8.9 of quantum traces as sums over
classical periodic orbits, and also on statistical evidence (see property b below). ‘

b. The Riemann dynamics is chaotic, that is unstable and bounded. This is based on
the observation that the local statistics of the E, are those of the eigenvalues of random
matrices 10-14, and the connection of random-matrix statistics with the quantum mechanics of
classically chaotic motion 6. 15-17, Long-range correlations, between distant E,, differ from
those predicted by random-matrix theory 17,18 "and the differences are characteristic of
quantum systems that have classical counterparts.

c. The Riemann dynamics does not have time-reversal symmetry. This is because the
statistics of the E, are locally those of the gaussian unitary ensemble of complex hermitian
random matrices 10+ 19. 20, rather than the gaussian orthogonal ensemble of real matrices
(which corresponds to systems with time-reversal symmetry). Related to this is the recent
discovery 2!+ 22 of modified statistics of the low zeros for the ensemble of Dirichlet L-
functions, associated with a symplectic structure.

d. The Riemann dynamics is homogenously unstable. This is suggested by the fact
that the instability (Lyapunov) exponents of the periodic orbits are all unity, which follows
from the exponential decay of the terms in the Von Mangoldt formula: q‘”1/2=exp(-Tm,q/2),
where Ty, 4 is the orbit period defined in (3).

e. The classical periodic orbits of the Riemann dynamics have periods that are
independent of energy E, and given by multiples of logarithms of prime numbers, that is

T, 4 =mlogq (m=1.2,...; q prime) 3)

and the associated actions are

S,

mq = Emlogq 4)

This follows from the form of the oscillatory terms in the analogy with the semiclassical trace
formula. In terms of symbolic dynamics, the Riemann dynamics is peculiar, and resembles
Chinese: each primitive orbit is labelled by its own symbol (the prime g) in contrast to the
usual situation where periodic orbits can be represented as words made of letters in a finite
alphabet.

f. The Maslov phases associated with the orbits are also peculiar: they are all 7. This
follows 3 from the negative signs of the terms in the Von Mangoldt formula. The result
appears paradoxical in view of the relation between these phases and the winding numbers of
the stable and unstable manifolds associated with periodic orbits 23, but finds an explanation
in the scheme of Connes3.

g. The Riemann dynamics possesses complex periodic orbits (instantons) whose
periods are

T =imr (5)

complex.m
This is suggested by the small exponentials arising in the large-E asymptotics of {(1/2+iE),
associated with the high orders of the Riemann-Siegel expansion 24 and the high orders of
the Stirling series for the gamma functions representing the smooth part of the counting
function for the zeros =,
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h. For the Riemann operator, leading-order semiclassical mechanics is exact:
{(1/2+iE) is a product over classical periodic orbits without quantum corrections (as in the
case of the Selberg trace formula 26 for geodesic motion on surfaces of constant negative
curvature).

1. The Riemann dynamics is quasi-one-dimensional. There are two indications of this.
First, the number of zeros less than E increases as ElogE (see (9) below); for a d-
dimensional scaling system, with energy parameter o(E) proportional to 1/, the number of
energy levels increases as a(E)d. Second, the presence of the factor ¢-/2 in the Von
Mangoldt formula, rather than the determinant in the more general Gutzwiller formula,
suggests that there is a single expanding direction and no contracting direction.

j- The functional equation for {(s) 2 resembles the corresponding relation - a
consequence of hermiticity - for the quantum spectral determinant 7.

We note immediately that the system (2) represents the simplest form of instability,
because it has a hyperbolic point at x=0, p=0. Hamilton's equations, and their solutions, are

x=x, ie x(t)=x(0)exp(t); p=-p, ie.p(t)=p(0)exp(-t) (6)

Thus classical evolution is simply dilation in x (that is, multiplication) and contraction in p,
and the stretching exponent is unity, so that the instability is indeed homogeneous as
required. In addition, xp does not possess time-reversal symmetry, because it is not invariant
under p—-p; more fundamentally, reversal of velocity X for fixed x does not lead to
retracing of the orbit, for the simple reason that X is tied to x and so cannot be reversed
independently. Furthermore, dynamics generated by xp is semiclassically exact.

2. SEMICLASSICAL LEVEL COUNTING

For any classically bound hamiltonian H(x, p) in one dimension, the number of
quantum levels with energy less than E, the counting function, is

N(E)=A(E)/ h+... M

where ... denotes higher-order terms in Planck’s constant A=h/27 and A(E) is the phase-
space area under the contour Hei(x, p)=E. With (1) there is the immediate problem that the
classical motion is not bound, so that A is infinite. Therefore the system must be regularized.
The simplest regularization is to truncate x and p by extending the Planck cell with sides [y,
Ip and area h=lIxlp as in figure 1, so that A becomes the finite area indicated, which depends
on A. This makes the system quantum-mechanically quasi-one-dimensional. We cangot
Justify the regularization procedure, but note the analogy between this phase-space
regularization and the fact that the hyperbola billiard in two dimensions is classically unbound
but has a discrete quantum spectrum 27-29, Thus

N(E)zi_ E ﬁ_,p[f__;x] + E(Iog(%)—l)+l+... (®)

I, h

The constant (sub-leading) term should be modified by the Maslov phase. To guess
this, we note that for a closed phase-space contour which turns by -2, the extra term in the
counting function is +1/2 (cf.the harmonic oscillator with frequency , for which
N(E)=Int(E/hw+1/2)). For (1) the turn is +7/2, so the extra term should be -1/8. Choosing
units such that A=1, (equivalent to replacing E by AE), we now obtain
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Figure 1. Phase space for Hc]=xp, with cutoffs [y and I, for semiclassical regularization.

N(E) —é(log(i—)—lj+%+... )

=27r

This is precisely the asymptotic form of the smoothed counting function for the
Riemann zeros, namely

Ny (E)=6(E)/m+1 (10)
where

9(5):—glogn+lmlogr(§+%w) (1)
correct to terms that do not vanish as E—es. This is unlikely to be a coincidence.
3. CONFIGURATION AND MOMENTUM EIGENFUNCTIONS

The simplest formally hermitian operator corresponding to (1) is

H=%(xp+px)= -ih(x% + %) . (12)

The formal eigenfunctions, satisfing

" Hyg(x)=Eyg(x) (13)

A
ve(x)= VE= (14)

We note the appearance of the power x-S appearing in the Dirichlet series for {(s) (as
integer~s) and the Euler product (as prime™S).
The corresponding momentum eigenfunction is



02(p) =7 | Axwe(x)exp(-ipx/) 1s)

—oco

To evaluate this, we must choose a continuation of Wg(x) across the singularity at x=0. The
simplest choice is that the eigenfunctions are even. Then

¢E(P)= 1/2+i?/h J 1/7dulg/;, exp(—iu)
|| V2 H

A (h)xE/n r( +’>h)

= lp|1/2+iE/h p r(%‘é_b;:)

(16)

where the reflection and duplication formulas for the gamma function have been used. Noting
the similarity with (11), and writing x and p in terms of the sides of the Planck cell, we find

exp{-i6(E/h)}

-\/7_11/1 |1/2—-iE/h

05(0) - ﬁjﬁjﬁfﬁﬁm JT (o)

Henceforth we set 1x=1p=\/(27z), ie. h=1.

The meaning of this symmetry is that position and momentum eigenfunctions are each
other's ime-reverse (cf. figure 1): thus we have a physical interpretation of the function &E)
at the heart of the functional equation for £(s) 39, which states that the function

ye(x)=
(17

Z(E)=exp{i6(E)}((1/2 +iE) (18)

is even, and from which it follows that Z(E) is real when E is real.

If the hamiltonian had not been symmetrized to make it formally hermitian, we would
not have obtained the results (14) and (17), containing the same combination 1/2+iE as
occurs in {(s) on the critical line.

Equation (17) is a special case of a more general relation between the position and
momentum eigenfunctions, obtained by allowing the multipliers A in (14) to be different for
positive and negative x. The relation is

6 E
l—/"fﬁ A,0(x)+ A_6(-x)]

_ exp{la(E)}
¢e(p) —_|P /27f|l_/ T+iE

(19
[B,©(x)+ B_O(-x)]

where © denotes the unit step function, and the x and p multipliers are related by

()



where M is the unitary matrix

_ (exp(Em)-i) 1 iexp(~E7)
= 2cosh(Er) (i exp(—Em) 1 ) (20b)

The unitarity of M implies
AP +Af =B +[B.] 21)

- arelation that can be interpreted in terms of phase-space currents: the total x current flowing
out from the origin equals the total p current flowing into the origin (figure 2a). These
currents Jy and Jp are the expectation values of the local velocity operators:

T ' oH OJH
____1_ 730k ’ 5 A T il R ’
Jo(x)=% jdx v (x )[ (x=x") > + > S(x-x )}y(x ) o)

—c0

= xy(x)f = 27:[]A+|2®(x) - lA_]z@(x)]
and similarly
7,(p) =228, 0(p) + |- O(p)] (22b)

Of course, the hamiltonian xp is simply a canonically rotated form of the upturned
harmonic oscillator p2-x2, which is in turn a complexified version of the usual harmonic
oscillator p2+x2. These connections have been noted before. Nonnemacher and Voros3!
calculate the Wigner function corresponding to xp, in a study of eigenstates near hyperbolic
points. Bhaduri et al 32 and Khare 33 show that the density of scattering states of the second-
order operator p2-x2 resembles d&(E)/dE (the difference is a constant); Armitage3* studies
the fourth-order combinations (p2+x2)2; and Okubo35 studies the two-dimensional
hamiltonian py2-x2-py2+y2. The first-order operator xp is the simplest representative of this
class, with the monomials (14) avoiding the complications of the parabolic cylinder
eigenfunctions of p2-x2. Indeed, it is possible give a very simple derivation of transmission
and reflection from the potential -x2, using a quantum canonical transformation of the states
(14) with appropriate connections across the singularity at x=0.

4. x AND p CONNECTIONS

It would be desirable to replace the semiclassical regularization of xp in (section 2)
with a quantum boundary condition that would generate a discrete spectrum in a natural way.
We do not know how to do this, but offer some remarks.

It is likely that x and -x should be identified, and also p and -p, as in (17). This is
suggested by a consideration of the complex periodic orbits of xp. With imaginary time the
orbits (6) are periodic (as in an ordinary, rather than an inverted, harmonic oscillator), but the
periods are wrong: 2izmm, rather than izm as required by property g in section 1. Note
however that after odd multiples of the time im, x evolves to -x and p to -p, so that
identification of +x and #p, as shown in figure 2, produces the required complex periods.

Even after these identifications, the system remains open. Ways to close it, and
thereby force the spectrum to be discrete, are suggested by the symmetries of xp. Using
these, we will try to incorporate the fact that the eigenstates of a hermitian operator with
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Figure 2. (a) phase space for Hc|=xp, showing positive-energy contours; (b) with p and -p identified; (c) with
x and -x identified.

symmetry can be written as superpositions of solutions of the eigenequation acted on by
operations in the symmetry group, with each solution in the superposition multiplied by the
appropriate group character.

An obvious symmetry of (2) is that xp is invariant under dilations:

x> Ky, popl/K (23)

From (6), K corresponds to evolution after time logK. This implies that the operator (11),
corresponding to xp, generates dilations, in the same way that the momentum operator
generates translations; the following sequence of transformations makes this obvious:

d
dlogx

f(Kx)= f(exp{logK +logx})= exp{(logK) }f(.x')

d
- exp{(log K)xc—f;}f(x) =K Ef(x)= ;—;_.—wf(x)

It is tempting to choose the integer dilations K=m, corresponding to evolution times logm,
and the characters unity, and write

hnd constant & 1 constant .
ye(x)— 2_31‘/’5("“)= [P X X —7oE = [P E {(3~iE) @5)

m=1

A requirement that this must vanish would, if interpreted as an eigencondition, yield the
Riemann zeros £, as eigenvalues. However, we see no reason to impose this requirement,
and moreover the set of dilations K=m does not form a group (the inverse multiplications 1/m
are missing). Even worse, putting E=Ej in (25) destroys the 'eigenfunction’ by making it
vanish for all x.

Another possibility, closely related to the ideas of Connes3, is to use not all integers
but the group of integers under multiplication (mod k). This would have two advantages.
First, the group involves only intcger and not fractional dilations. Second, it opens the
possibility that the group characters 6 can appear as multipliers in the Dirichlet series for ,
thereby yielding the zeros of the different Dirichlet L-functions (which are all conjectured to
have zeros in the line Res=1/2) as eigenvalues of different self-adjoint extensions of xp.

Another way to close the system xp could be to connect the asymptotic positions with
the asymptotic momenta. Then the current flowing out at x=teo would be re-injected at
p=teo. We envisage two such connections. Referring to figure 2c, we could connect 1 with 2
and 3 with 4, thus preserving the separation of the original quadrants (opposite in figure 2a)
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and yielding a phase space with cylindrical topology; or we can connect 1 with 3 and 2 with
4, thereby connecting the quadrants (as does the matrix M in (20)) and yielding a phase space
with Mobius topology

A way to accomphsh this connection is suggested by the fact that the dilations K
under which xp is invariant need not be constant but can be any function of xp. The choice
K=h/(xp) yields the canonical transformation

2

x—>x1=£, p—)pl=£ (26)
D h

Because of the h-dependence, we call this quantum exchange (the simpler canonical
exchange x—p, p—-x does not leave xp invariant). Under quantum exchange, the
hyperbolas xp=E are of course invariant curves; E=h is a curve of fixed points, with points
on the curves E<h mapping towards increasing x, and points on the curves E>h mapping
towards decreasing x. To see the corresponding transformation of quantum states, we
represent these in Hilbert space as kets |y), and employ the notations

(xlwy=w(),  (plv)=¢(p)

27)
(alw)=vila). (nly)=a(p)
Then the quantum implementation of exchange is
i h
vin) =774 (28)
bl U

(obviously, this would preserve normalization of the state).
Superposition of states related by this exchange operation gives, after using (17)

ve(x) > we(x)+ £¢() szf_{?,f).,}z 29)
X

If we could argue that this should vanish, the resulting 'quantization condition' would be the
vanishing of the first term of the main sum of the Riemann-Siegel formula 2. This would give
zeros with the correct density, and it is tempting to regard it as arising from some
hamiltonian operator, and then seek to generate the true Riemann operator from a series of
corrections.

However, this hope is unlikely to be realised, because (29) possesses complex zeros
and so cannot be associated naively with a hermitian operator. To demonstrate the existence
of these zeros off the critical line, we write (29) in the following form, which follows from

(11):
8(s)=f(s)+f(1-5)=0,
s/2 (30)

where f(s) = IG/2)

This has zeros for s real, that is £ imaginary, at
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Figure 3. The function g(s). whose zeros are the same as the first term of
the Riemann-Siegel main sum, (a) on the real s axis, (b) contours of Ig(s)!,
showing zeros enclosed by loops.

(_l)m (ﬂe)hx
s=2m+1+==——| , (m=8,9,..) 3D

Tm\m

The first few are illustrated in figure 3a. There are also at least three zeros, shown in figure
3b, between the real axis and the critical line. And visible in figure 3b are zeros of (29) that
are on the line but do not correspond to Riemann zeros; these lie near s=1/2+0.82i. Similar
arguments establish the existence of zeros off the line when more terms of the Riemann-
Siegel main sum are added to (29). It follows that the vanishing of (29) is not a boundary
condition corresponding to a hermitian operator.

Combining the two symmetries - integer dilation and quantum exchange - suggests
the 'boundary condition’

21/2—15 Z(E)=0 (32)

L\'/«/El

Using (24), this can be put into the intriguing form (with operators temporarily denoted by
carats for clarity)

S yelme)+ L 3 g (s ) =
m=1 X k=1
(el ¢S = i)+ (plpHe(E+ifwe) =0 (w=h) (33)

These conditions do generate the Riemann zeros, but we see no way to interpret either of
them geometrically.
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5. GAUSS MAP AS A BOUNDARY CONDITION?

The relations (25) and (32) are multiplicative: they involve formal eigenfunctions of
xp at multiples of any given x and the associated momentum h/x. A different relation,
combining multiplication with addition, connects values of x related by the Gauss map that
generates continued fractions. This involves the generalized transfer operator 37, and the
requirement that this operator has eigenvalue unity 38 The eigencondition corresponding to
this map is

51 ﬂ( 1 )=£U) e

n=t(n+x)° \n+x

This was introduced38 as a quantum map giving discrete eigenvalues associated with the
modular domain. The natural exponent is then s=1+iE, with E real, so that factors in the sum
are 'semiclassical' complexified square roots of the jacobians in the corresponding 'classical’
transfer operator, which would have s=2. However, the Riemann zeros follow from the
different association s=1/2+iE, with E real, This is semiclassically mysterious because the
factors in (34) now correspond to 1/4 powers of the classical jacobians. The argument,
explained to us by Bogomolny (personal communication) is as follows.

Define
hy(x) = f(x=1) (35)
and seek a formal eigenfunction of (34) in the form
h(v)= 3 T —— (36)
Y m=1k=1 (mt + k)s
where s=1/2+iE. The condition (34) becomes
h(x)-i 1 h( n+x )
: nat(n+x-1)° \n+x-1
=333 1 -3 ——
n=tm=1k=0[x(m+ k) +n(m+k)=k['  n=im=1[m(x+n)]’
L BN ) o7
= ———{(s
n=li=1k=0 [xI + nl = k]’ n=1(x+n)’
ke 1
=h(x)=-C(s) X ——
5(x) = &( )El Gany

where the last equality follows after noticing that the sums over n and & can be conflated into
a single sum over the variable nl-k. Obviously the condition is satisfied whenever 1/2+iF is a
Riemann zero.

It might seem that the eigenfunctions disappear at the Riemann zeros even without the
condition (34), because the summation in (36) can be taken over multiples of coprime (m,k)
pairs and {(s) extracted as a factor:
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hy(x) = —
() 5 —

(mk)=1(mx +k)*

If this were a valid objection, the solution (36) would be empty. But it is not valid, because
(36) is a formal expression that does not converge when E is real. It can be analytically
continued onto the critical line, for example by

1 s-1

%)= e ari) - 1] i o0~ owp(er) 1]

(39

where C is a loop starting and ending at t=+eo, encircling the origin positively and enclosing
no other poles. The integral, when evaluated numerically, does not vanish at the Riemann
zeros (figure 4).

Figure 4. Absolute values of {(s) (dashed curve) and the Gauss map
eigenfunction hg(0.5) (computed from the integral (35)) (full curve)
on the critical line s=1/2+iE.

Now, hg(x) in (36) can be regarded as a sum of eigenfunctions (14) of xp, evaluated
at positions x+k/m that differ by rational numbers. Therefore the condition (34) might be
interpretable as a boundary condition, relating the eigenfunction at each such position to its
pre-images under the Gauss map. We do not know how to pursue this suggestion.

6. Concluding remarks

We have presented several tantalizing connections between xp and {(s). However, it
is clear that more is required to transform our hints and guesses into an unambiguous and
satisfactory construction of the Riemann operator. There are two principal unsolved
problems.

First, the space on which xp acts is not known. Somehow the plane must be sewn up
into a region that makes the dynamics bound, at least quantally. We have speculated that this
might involve connecting x and p, or relating multiples of x or rational translations of x (to
see how complicated this can get, compare the space obtained by identifying x with nx for
real v and all integers » with the familiar circle obtained by identifying x with n+x ). Perhaps
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the required space is a quantum graph 39,40, with xp acting on bonds between vertices (one
difficulty is that xp does not sit naturally on a general graph).
Second, we do not know how to associate the primes with the periodic orbits of the

Riemann dynamics.

In terms of the properties listed in the introduction, xp is consistent with a, part of b
(xp dynamics is unstable but not bound), c, d, g, h i and j. Concerning e, the appearance of
times that are logarithms of integers begins to be plausible in view of the association between
dilation and evolution, but primes do not appear in any obvious way. We have no
explanation of f.

There are probably more connections between xp and {(s). Our hope is that in writing
this paper we will stimulate others to uncover them.
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