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For each positive integer m, there is a natural
representation for the factorisation of m as a partition
of the unit interval. The elements of this partition can
be arranged in non-increasing order, and represented
as a point V (m) on the infinite-dimensional simplex. In
1972, Billingsley proved that, if N is a randomly chosen
positive integer less than n, then for large n, the law of
V (N) can be approximated by the Poisson-Dirichlet
distribution (with parameter 1). We prove the
following: if P is a randomly chosen prime less than n,
and d is a fixed non-zero integer, then for large n the
distribution of V (P + d) can be approximated by the
same Poisson-Dirichlet distribution. We will discuss
some implications of this result in cryptography.
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We will begin by introducing the Poisson-Dirichlet distribution, and related

GEM distribution. Denote by
(o ¢]
¢ =]l0,1)
=1
the infinite dimensional unit cube, by
(o e]
A={x€C: inzl}

i=1

the simplex of vectors in C with unit sum, and by

the set of vectors in A with non-increasing components. We endow C with
the product Euclidean topology and Borel o-algebra; A and T are equipped
with the topologies and o-algebras they inherit as subsets of C. The GEM
and Poisson-Dirichlet distributions are supported on A and T, respectively,
and are constructed as follows. Let U, Us, ... be a sequence of independent

random variables, each uniformly distributed on [0, 1], and set
Xi=U, Xo=(1-U))U, X3=(1-U1)(1-0r)Us, ...

The law of the random vector X = (X, X2,...), which we denote by 7,
is the so-called GEM distribution with parameter 1. Note that <y is sup-
ported on the simplex A. If we write X(;) > X > --- for the non-
increasing rearrangement of components of the vector X, then the law of
X = (Xq), X(2)s---), which we denote by m, is Poisson-Dirichlet with pa-

rameter 1.

We remark that, if the U; were taken to be independent with common den-

sity given by f(u) = (1 — u)?~! on [0,1], the distributions v and 7 would



be, respectively, GEM and Poisson-Dirichlet with parameter 6. These dis-
tributions arise naturally in a variety of contexts, from the study of random
permutations and random mappings to Brownian excursion theory and neu-

tral population genetics. References are given in [2].

Now, for each positive integer m, there is a corresponding partition of unity:

1 lo
0g P1 R g PQ(m) =1
logm logm

Here, Q(m) is the number of (not necessarily distinct) prime factors py, ..., Pa(m)
of m. The elements of this partition can be arranged in non-increasing order

and an infinite string of zero’s attached to the right, giving an element V' (m)

of T.

Billingsley [1] proved the following beautiful result.

Theorem 1 (Billingsley) If N, is an integer chosen uniformly at ran-

dom from {1,...,n}, then the law of the V(N,) is asymptotically Poisson-

Dirichlet with parameter 1.

Donnelly and Grimmett [2] give an alternative proof, using the GEM con-

struction outlined above. We will also make use of the GEM construction,

to prove the following.

Theorem 2 If d is a non-zero integer, and P, is a prime chosen uniformly
at random from all primes less than n, then the law of V (P, + d) is asymp-

totically Poisson-Dirichlet with parameter 1.

Our motivation for proving such a result comes from cryptography, where

primes are quite useful and it is often desireable, for reasons of security, to



use primes p with the property that p + 1 and/or p — 1 are hard to factor

(contain large primes). A ‘corollary’ of Theorem 2 is that most primes have

this property.

Proof of Theorem 2. Our proof follows closely the proof of Donnelly and
Grimmett for the uniform case, up to a certain point, where we make use of
the following essential lemma, due to Dirichlet (see for example [4]). Denote
by ma(n) the number of primes less than n which are = a (mod b), and

by ¢(n) the number of positive integers less than and prime to n.

Lemma 1 Asn — oo,

n
Tap(N) ~ ———~

log(n)#(b)”
The integer P, + d, which we will denote by N = N(n), has a prime factori-

sation in the form

N = HPA(P,n)
p

where A(p,n) is the multiplicity of the prime p. (The product is over the
set of all primes.) If N(n) = 1, then A(p,n) = 0 for all p. Set

M(n) = Q(N(n)) =Y _ Alp,n).
p

Just as in [2], we place the prime factors ai,...,ap(n) of N in random
order by size-biased sampling: the first term, which we denote by Dj(n),
is chosen at random from the sequence aj, with each «; being chosen with
probability proportional to log ;. Having chosen the first term, the second
term, Dy(n), is chosen similarly from the remaining divisors, and so on. In

this way we obtain a sequence Dy, Dy,..., D) of prime divisors of N.



For i < M(n), set

~ N(n)
B = 5 mDatm) - D)
and
4 logD( ).
B = Tog Rutm)

for i > M(n) we set Bj(n) = 0. Note that the vector B(n) € C. It
suffices to prove, just as in [2], that the law of B(n) converges weakly to
Lebesgue measure on C. (That is, the B; are asymptotically a sequence of
independent, uniformly distributed random variables on [0, 1].) This would
follow if, for each k, the law of the vector By(n) = (Bi(n),...,Bk(n))
converges weakly to Lebesgue measure on [0, 1)¥. Donnelly and Grimmett
argue that, to establish this, it suffices to prove that, forany 0 <a<b <1

in [0, 1]* (the usual partial ordering),
k
liminf P(a < Bn(n) < b) 2 U (b; — a;).

We refer the reader to the paper of Donnelly and Grimmett for a detailed
justification of this claim.

Set
Q={xe[0,1*: a<x<b}.

Now, By € Q iff R* < D; < R¥ for 1 <i<k. So

P(Br€Q) =) P(N=mDg=p),

p,m

where p is the set of vectors with prime elements and m is restricted by the

inequalities

[$23



Note that the probabilities summed will very frequently be zero, and that,

for certain p and Q, the inequalities will prevent any values of m from being

valid.

It is convenient to fix € > 0 and restrict to m > en (losing at most O(e)
to the value of the summand, by the prime number theorem). We can also
assume that n > max(1,€™2), to avoid problems with divergence for n small.
Reversing the order, the summation is now over the whole of en < m <mn,
but we are restricting the vector p by requiring nj* < p; < (eny)%, n; =

n/ 152l pj-

For these p and m, and for n sufficiently large

logn k log p;
P(N = 7D = >(1-—
( m P) = ( E) n g ]og(m/plpz.--pi—l)

whenever pips ... px actually divides m, and zero otherwise. Here, the first
factor is to account for m — d being prime (and uses the prime number

theorem), and the second arises from the size-biased choice process.

The inequality is preserved by replacing m with n in the denominator of the

second factor, yielding

logn ﬁ log p;

n log n;

P(N=m,D=p) > (1 -¢)
i=1

We now perform the summation over values of m of the form p + d and
with pips ... px dividing m. Since the summand is independent of m, this
ammounts to counting the number of terms in the summation which, by

Dirichlet’s lemma (Lemma 1) is of order

1 ( n en >
&(I1pi) \logn logn+loge/’



for n large enough, this at least (1 — 2e)nlogn/@([]p:). Since

o([Ip) = [Il0i - 1) < [ p:,

we can conclude that, for n sufficiently large,

P(Bi(n) € Q) > (1 — €)( 1—2e)HZ 1082, 5

1 pilog nl
Recall that the sum is restricted to p with n}* < p; < n?", 1 <1<k
Observe that, since p; = n;/n;+1, we have n; > n where v = kL =b).

It is a standard fact (see, for example, [3]) that

1
Z 08P _ logk + O(1)
p<k

as k — oo; thus, there exists a L such that, for all I > L,
E E)-522(171-—a,-—e)10gl.
1%i<p<ibi P

Thus, for n > LYY, we have

Now, recall that

k
PBin)eQ)>(1-e(1-20][> l°§;’; O(e).
i=1 p 1

for n sufficiently large. Performing the product starting with ¢ = k and

letting 7 decrease—this ensures that the p are well-defined at each step—we

.obtain

(bi —a; —€) + O(e),

-

P(Bk(n) € Q) = (1 — €)(1 — 2¢)

i=1

I

and the result follows by first letting n — oo and then € — 0.
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