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Let Xr be a sequence of iid random variables taking
values in a finite set, and consider the problem of
estimating the law of X; in a Bayesian framework. We
prove that the sequence of posterior distribution satisfies
a large deviation principle, and give an explicit
expression for the rate function. As an application, we
obtain an asymptotic formula for the predictive
probability of ruin in the classical gambler's ruin
problem.
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Abstract

Let X; be a sequence of iid random variables taking values in a
finite set, and consider the problem of estimating the law of X, in a
Bayesian framework. We prove that the sequence of posterior distribu-
tions satisfies a large deviation principle, and give an explicit expression
for the rate function. As an application, we obtain an asymptotic for-

mula for the predictive probability of ruin in the classical gambler’s

ruin problem.

1 Introduction and preliminaries

Let X be a Hausdorff topological space with Borel o-algebra B, and let py,
be a sequence of probability measures on (X, B). A rate function is a non-
negative lower semicontinuous function on X. We say that the sequence pn

satisfies the large deviation principle (LDP) with rate function I, if for all

B € B,

1 1
— i < liminf — <h — < — inf I(z).
zlengo I(z) < hn}lmf - log un(B) < hmnsup - log un(B) < 112[3 ()

Let  be a finite set and denote by M/ (§2) the space of probability measures

on . Consider a sequence of independent random variables X taking values



in Q, with common law p € M;(2). Denote by L, the empirical measure

corresponding to the first n observations:
1 n
Ln=—> 6bx,
n k=1
We denote the law of L, by L(L,). For v € M;(Q2) define its relative entropy

(relative to u) by

Jo&log Zdy v < p
AUIMER S

00 otherwise.

The statement of Sanov’s theorem is that the sequence £(Ly) satisfies the

LDP in M;(Q2) with rate function H(-|u).

In this paper we present an inverse of this result, which arises naturally in
a Bayesian setting. The underlying distribution (of the X}’s) is unknown,
and has a prior distribution 7 € M;(M;(£2)). The posterior distribution,
given the first n observations, is a function of the empirical measure L, and
will be denoted by 7*(L,). We prove that, on the set {L, — u}, for any
fixed p in the support of the prior, the sequence n™(Ly) satisfies the LDP
in M;(Q) with rate function given by H(u|-) on the support of the prior

(otherwise it is infinite). Note that the roles played by the arguments of the

relative entropy function are interchanged.

As an application, we obtain an asymptotic formula for the predictive prob-

ability of ruin in the classical gambler’s ruin problem.

It is clear to us that the result should hold for more general §2, but not
without making additional assumptions about the prior. To see that this is
a delicate issue, note that, since H(u|u) = 0, the LDP implies consistency

of the posterior distribution:” it was shown by Freedman [2] that Bayes



estimates can be inconsistent even on countable §2 and even when the ‘true’
distribution is in the support of the prior; moreover, sufficient conditions for
consistency which exist in the literature are quite disparate and in general
far from being necessary. The problem of extending our result would seem

to be an interesting (and formidable!) challenge for future research.

2 The LDP

Let Q be a finite set, and let M (£2) denote the space of probability measures

on Q. Suppose X1, Xa,... are i.i.d. Q-valued random variables.

Let 7 € M;(M;(Q)) denote the prior distribution on the space M;(f),
with support denoted by suppn. For each n, set

MQ) = {%i‘a : zEQ"}.

=1
Define a mapping 7 : MP(Q) — M;(M1()) by its Radon-Nikodym
derivative on the support of m:

dr) ) Teqvl@™® 1
dm ) fo(Q)HIEQ’\(z)nu"(I)W(d’\), M

here, 7"(u4n) denotes the posterior distribution, conditional on the observa-

tions X1,..., X, having empirical distribution p, € MF(Q).

Theorem 1 Suppose z € QN is such that the sequence pn, = S 65 /n
converges weakly to ju € suppm and that p(z) = 0 implies that pp(z) = 0 for
all n. Then the sequence of laws 7" (un) satisfies a large deviation principle

(LDP) with good rate function
H(plv), if v € suppm
I(v) = {

00, else.



The rate function I(-) is convez if suppm is convez.

Proof : Observe that

T
Liog [ A2 @ = 3 an(z) 0 un(z) = 3 pin(z) log 22
€N €N zeN
= —H(pn) — H(un|)) < —H(un).

Here, H(in) = S zcq tin(z)log pn(z) denotes the entropy of pn. The last

inequality follows from the fact that relative entropy is non-negative. It
follows, since 7 is a probability measure on M;(f2), that
[ TI M@)™ () < exp(-nH (n))-
M) zeq
Thus,
lim sup — log/ H A( )"“"(I) (dX) <11msup —H(un) = —H(p); (2)
n—eo M) zeq

here we are using the fact that H(-) is continuous.

Next, since pn, converges to u € suppm, we have that for alle > 0, 7(B(u, €)) >
0 and pn € B(u,e€) for all n sufficiently large. (Here, B(u,¢) denotes the
set of probability distributions on € that are within € of u in total varia-

tion distance—note that this generates the weak topology since § is finite.)

Therefore,
L1og / ()" @r(d)) > *log I] Ma)™@n(dr) 2
n Mi(Q) Ieﬂ n B(p,e) €N
1 pn ()
—logm + Z pn(z) log pun(z) — sup pn(z) log —=-.
n ( ) foerd AEB(iye) zeng(:z»o A(z)
=0,

To obtain the last inequality, we have used the assumption that, if y(z)

then pn(z) = 0 for all n. We also use the convention that 0log0 = 0. Since



7(B(u,€)) > 0, it follows from the above, again using the continuity of H(:),

that

1
lim inf—log/ I Az)™»Ex(dr)
Mi(9)

n—o00 n IEQ
T
> —Hw- swp Y plz)lg 2D 3)
APEB(14€) zeQp(2)>0 (z)
Letting € — 0, we get from (2) and (3) that
lim —log/ Mz)™ @ (dA) = —H(p). 4
Jim -~ Ml()}}z (z) (d)) (k) (4)

LD upper bound: Let F be an arbitrary closed subset of M; (). If 7(F) =0,
then 7" (un)(F) = 0 for all n and the LD upper bound,

llmsup log 7™ (un)(F) < — inf I(v),
VvEF

n—oo

holds trivially. Otherwise, if m(F) > 0, observe from (1) and (4) that

llmsup 1 log 7" (un)(F) — H(p) = limsupilog/ /\(x)"“"(x)w(d)\)

n—o00

< limsup— log w(F) + limsup  sup Z pn(z) log A(z
n—oo N n—oo Aansuppwzen

= limsup sup  [~H(pn) — H(pal|A)]

n—oo \eFNsuppr

< sup sup [—H(p) — H(p|\)] Vé>0,
p€ B(u,6) \e FAsuppr

where the last inequality is because p, converges to u. Letting § — 0, we

get from the continuity of H(-) and H(-|-) that

li n < - i =—infI()), (5
im sup — logﬂ (1a)(F) < Aep%’éﬁppnﬂ(“"\) Algpl() (5)

where the last equality follows from the definition of I in the statement of

the theorem. This completes the proof of the large deviations upper bound.

[Sa



LD lower bound: Fix v € suppm, and let B(v,¢) denote the set of prob-
ability distributions on € that are within € of v in total variation. Then,

m(B(v,€)) > 0 for any € > 0. Using (1) and (4) we thus have, for all

d € (0,¢),
limjnf ~ log 7" () (B (v €)) ~ H (1)
> hnrr_l*ggfn log ) Mz)™ (@ (dA)
> ligr_l)%)gf;logw( (v, 5)) + hm 1nf m£ - Z pn(z) log M(z)

> inf  inf [—H(p) — H(p|N)].
2 of Ae};l(u’(,)[ (p) (pIN)]

Letting § — 0, we have by the continuity of H(-) and H(|-) that

.1

liminf ~log 7" () (B(v;€)) > —H (ulv) = 1), (6)
where the last equality is because we took v to be in suppm.

Let G be an arbitrary open subset of M (f2). If G Nsuppn is empty, then,
by the definition of I in the statement of the theorem, inf,eg I(v) = oo.

Therefore, the large deviations lower bound,

hmmf log7r (#n)(G) > — 1281( v),

holds trivially. On the other hand, if G N suppw isn’t empty, then we can
pick v € G such that I(v) is arbitrarily close to infxeg I(A), and € > 0 such
that B(v,e) C G. So ™ (un)(G) > w"(un)(B(z/,e)) for all n, and it follows

from (6) that
llmlnf Iog7r (un)(G) > — mf I()).

n—00

This completes the proof of the large deviations lower bound, and of the

theorem.



3 Application to the gambler’s ruin problem

Suppose now that § is a finite subset of IR. As before, X} is a sequence of
iid random variables with common law pu € M;(f2), and we are interested
in level-crossing probabilities for the random walk S, = X, + --- + X,. For
Q > 0, denote by R(Q,u) the probability that the walk ever exceeds the
level Q. If a gambler has initial capital Q, and loses amount X on the
kt" bet, then R(Q, ) is the probability of ultimate ruin. If the underlying
distribution g is unknown, the gambler may wish to assess this probability

based on experience: this leads to a predictive probability of ruin, given by

the formula

Pa(Quin) = [ RQ.N)7"(d),

where, as before, u, is the empirical distribution of the first n observations

and 7™ = 7" (un) is the posterior distribution as defined in equation (1). A

standard refinement of Wald’s approximation yields
Cexp—6(1)Q < R(Q, n) < exp—d(1)Q,

for some C > 0, where

d(u) =sup{6 >0: /eozu(dx) <1}

Thus,
0 [ exp(~5()Q)n"(AN) < Pa(Quitn) < [ exp(~0NQ)T" (@),

and we can apply Varadhan’s lemma (see, for example, (1, Theorem 4.3.1])

to obtain the asymptotic formula, for ¢ > 0,

1
lim - log P, (qn, pin) = — inf{H (u|v) + 6(v)q : v € supp 7},

n—00



on the set p, — . We are also assuming, as in Theorem 1, that u,(z) =0,
for all n, whenever p(z) = 0, and using the easy (Q is finite) fact that
8 : M1(Q) - R, is continuous. This formula can be simplified in special

cases. Its implications for risk and network management are discussed in

(3]-
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