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Abstract

For each integer n, there is a natural family of probability distri-
butions on the set of topologies on a set of n elements, parameterised
by an integer variable, m. We will describe how these are constructed
and analysed, and find threshold functions (for m in terms of n) for
various topological properties.

Let us suppose we have some set, S, and we wish to pick a topology on S at
random. What do we mean when we say “at random”? In the case where S is
a finite set, we may say that all topologies on S are equally likely; however,
if S happens to be an infinite set, this makes no sense. We would like to
be able to talk about a random topology on any set, and so we are led to
what is essentially a problem in measure theory: given S, how do we define
a probability measure on the set {possible topologies on S} in a reasonably
natural way? :

1 The Probability Measure

Now, while we do not know how to define a sigma-algebra, let alone a prob-
ability measure, on the set {possible topologies on S}, we do know how to
pick collections of random subsets of S. Given any cardinal number, m,
which may be either infinite or finite, let us consider the set of functions,
{fIlf : {m} — p(S)}; ie the set of {collections of subsets of S indexed by
m} (by {m}, I mean the set {1,2...m} ). We can think of such a function



as assigning to every member of the product set {m} x S,(i,t) either a 1 or
a 0, depending on whether or not the element, ¢ of S is an element of f(3).

This means that functions, {f||f : {m} — p(S)} are in natural one-to-
one correspondence with elements of the set {0, 1}{m}xS_ Now, we can put a
measure on {0, 1}, given by x(0) = 1/2 and u(1) = 1/2, called Bernoulli mea-
sure. And this means that in principle we can put a measure on {0, 1}{m}*5
namely product measure with respect to Bernoulli measure.

So, we have a natural measure, y,,, on the set of {collections of m random
subsets of S}. But, we also have a natural function,f, from {collections of
random subsets of S} to {topologies on S}, namely the function which takes
a collection of subsets to the topology generated by them. Now, this means
we can define a probability measure, p,, on the set, T' = {topologies on S},
given by pp,(T") = um(f~*(T")), whenever the right hand side is defined.

So, for every set, S, we have constructed a natural family of measures on
the set of topologies on S, indexed by the cardinal numbers. We will consider
what happens when S is a finite set; without loss of generality, S is the set
{1,2...,n}, for some n. We will denote this set by {n}. For every natural
number, m, there is a measure p,, on the set of topologies on {n}, and we
will denote a random topology on {n}, chosen with respect to the measure,

m, by Tm(n).

2 Preliminaries

Before starting on the real work of determining threshold functions for topo-
logical properties in this model, we will need some technical results, which
will form the basis for our later work.

We will think of a choice of m random subsets of the set {n} as being
a random function, {f|f : {m} — p({n})}, where all functions are equally
likely.

We observe first that there is a one-to-one correspondence, C, between
functions f : {m} — p({n}) and functions g : {n} — p({m}) given by

i € f(j) & € g(3).

We note that the law of g is uniform on the set of all mappings.
Throughout what follows, f will denote a random function from {m} to

p({n}) and g will denote its image under C. This function, g will be useful to

us, because it will give us a more concrete description of the topology, T,,(n)
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than “ the topology generated by this random collection of open sets”. We

observe secondly that, associated with a topology on a finite set, there is
1. an equivalence relation on the set and
2. a partial order on the equivalence classes formed by the relation.

The relation is given by a~ b< VS opena € S < b e S.

The partial order is given by [a] < [b] +» VS opena € S=be€ S.

Given such a relation, R, and a poset, P, they define a topology,T’, given
by

S open < S is a collection of equivalence classes, closed under ascending
P.

We claim that, if S is a finite set, then this is the only possible topology
giving rise to R and P

Lemma 1 For S finite, P and R completely determine the topology, T.

Proof: Suppose that 2 topologies, T} and T, define R and P. Now,
consider an open set in 77, S. On taking intersections, we get that, Vz € {n}

{ylly] > [=]}

is an open set in both T; and T3. Call it S(z). Equally, on taking unions, we
get:
S =U{S(z)|z € S}

V open S. Thus S is necessarily open in T5. Thus T; = T5.

Now, we want to know what this partial order and equivalence relation
are, for a topology T,,(n). Recall that, when we chose a random topology
Tm(n), we also chose a random function, g : {n} — p({m}. ¢(7) is inter- -
preted as being the labels of the random basis elements (in the random basis
which generates T,,(n)) which contain i. We would like to have a concrete
description of the equivalence relation and partial order which define T;,(n).

When is it true that, in the topology T,,(n), an open set contains 4 iff
it contains j? This happens precisely when every element of our random
basis either contains both ¢ and j or neither ¢ nor j. That is, exactly when
g(1) = g(j). When is it true that an open set in T,,(n) which contains a
necessarily contains b? This is when there is no element of our random basis
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which contains a but not b: ie whenever g(a) is a subset of g(b). So the
equivalence relation and partial order associated with our topology , T,(n)
are precisely the equivalence relation and partial order induced by the random
function, g.

That is, a random topology T, (n) is induced by a random mapping from
n to p({m}). There is a large literature on such mappings; see for example
Kolchin; “Random Mappings”. However, the properties of this random map-
ping, g, which will prove to be important in the study of random topologies,
are somewhat unusual and have not, so far as we are aware, been previously
studied .

We will need the following lemma:

Lemma 2 If P is a poset on n elements, then,
a m
p(P € P(Tm(n))) = (5

where a = |{ antichains in the poset, P}|

Proof:

The probability we seek is given by p = £ :{"}H"({g,‘,},),[f inducesP}| Tt will
be enough to show that: .

#{f € F(m,n)|f induces P} = a™.

Now, f induces P iff ,for every element of m, f(m) is closed under taking
supersets with respect to P. In other words, such functions are precisely
functions from {m} to the set

S" = {S C {n}|S is closed under superset with respect to P}.

It will be enough to show that S’ is in one-to-one correspondence with
{antichains in P}. But the function, S + minimal elements of S provides
such a correspondence, and the result follows. '

3 Threshold functions

We will now turn our attention to the problem of threshold functions for
topological properties. A threshold function for some property of a topology
(for example, connectedness), call the property @, is a function, m(n), which
satisfies the following 2 properties:

m*(n)

m(n)

— 00 = P(Qle'(n)(n)) =1



Tr:((:)) = 0= P(Q|Tmn)(n)) =0

or conversely.
In fact, I will instead look for functions, m(n), for which I can prove a
theorem of the following form:

m*(n)
m(n)

where f is some function of .

For more information on threshold functions, see Bollobas, Combina-
torics.

We will present proofs of threshold functions for the following 4 topolog-
ical properties:

= A = P(Q|Tmem)(n)) = f(A)

1. Discreteness of the topology T,,(n).
2. Surjectivity of the function, g.
3. Distinguishability of all points in the topology T, (n).

4. Connectedness of the topology T, (n).

Theorem 1 If n? = A($)™ then limn_,00 P(Trn(n) is the discrete topology)=
Y
e

Proof:

Suppose that n? = A(3)™.

(Trn(n) discrete)<>(none of the posets i < j are induced by f).

Now, there are n2 events of this form, each occuring with probability (3)™.
If they were independent, we could conclude the argument here. However,
they are not— but events of the form z; < y; are independent, provided -
that all the z;’s and y;’s are distinct. There is an inclusion-exclusion proof
that, given NV independent events, each happening with probability \/N, the
probability that none of them happen is e™*. Our aim will be to modify this
proof so that it applies to these almost-independent events. To do this, we
will need to show that the probability of 2 non-independent events happening
is small. Let us consider this probability— ie, let us consider ¢ = P(E), where

E is the event that at least one of the following holds:



—

. 3, j,ksuch thati < jand k < j
2. 34,7,k such that i > j and k > j
3. 3,5,k such that i < jand j <k
4. 3,7 such that f(z) = f(5)
Adding together probabilities:

nd 5 ndl 1
m 2 (Z\ym 2/-\m
i< T+ )+ Tyt
Substituting in n = 1/A(3)™, we see that ¢ — 0 . Let us consider
P(T is not the discrete topology and E does not happen)= p
It will be enough to show that p — e~*. By inclusion-exclusion principle

we have that, Vk:

S5 )< 2,5 >Y0HP) < p < SEP(CD)M({{< 2509 >HIHP)

where
P; = P(z; < y;Vj&notE)
Now, o B
{{< z;,9; >}j21}| = n®/*
And,
n2_z'/i! PV
ami Gy

as n,m — oo
So, our equation is eventually very close to:

A A 4

2?21(—1)i+1i—!(1’i(( 3™ <P <TEEDTRERG)™)

We see from this that it will be enough to show that



Note that P; = (3)™ — r , where

r= P(.’L‘J S yJVJ&E

It remains to show only that lim,_,. 7(3)™ = 0.
We note that r = P(F), where F is the event, one of the following
happens (k is assumed to be not equal to any of the z;’s or y;’s throughout):

1. z; < y;Vj and a poset of the form (1)-(4) ,which is independent of the
z;’s and y;’s occurs.

2. z; < y;Vj and 3k|z; < k, k # y;

3. z; <y;Vj and 3k|y; > k,k # z;

4. there is a proper extension of the poset z; < y;(= P) on the set Z;,Yj
Now, P(1 holds)< ¢(3)™.

P(2 holds)= P(3 holds) < ni(2)™(3)™.

(This holds because there are < n possible choices for k, 7 possible choices
for the pair z;,y;, and P(k < yj|z; < y;) = (2)™, by Lemma 2.)

Now, (2 < 1/2) = limaee P(2 holds)(%)™) = 0
There are only a finite number of proper poset extensions of P, each of
which occurs with a probability of the form (x)™, where p < (3)%.

S0, limp_e 7(5)™ = 0. We are done.

The next property we will look at will be surjectivity of the function, g.
This interests us because, in the case where g is surjective, our little studied
problem of random topologies reduces to 2 much-studied problems, namely
the problem of random partitions of a set, and the partial order on a power
set.

Lemma 3 Ifn = A2™log2™ then, asn — 0o, if A < 1 P(f is surjective) —
0 and if A > 1P(f is surjective) — 1.



Proof:

Throughout the proof of this lemma, we will treat g as a random function
from {n} to {2™}. :

The case A > 1 follows on computing the expected number on elements
of p({m}) not in the image of g. Given some element, i of {2™}, then

P(Bklg(k) =) = (1-27")™
Fufther,
(1 _ 2—m)n — ((1 _ 2m)2"‘)log2’"h'

Recall that
(1-2m7" > e

thus, eventually
1-2""*<e—¢

for some positive e. We deduce from this that
lim 2™(1 —2"™)" =0
n—oo
and thus that
lim E({i] Bk, s.t.9() = i})) =0

The result follows.
For the case A < 1; consider

p; = P(Bk,s.t.g(k) = j|Vi < j3k, s.t.g(k) = 7).
We claim that
p; = P(Bk,s.t.g(k) = j) = p(*)
Now, Bayes formula tells us that

P(A|B) > P(A) & P(A+ B) > P(A)P(B) & P(B|A) > P(B)

for any events A, B.
In this case, to prove (*), it will be enough to show that

P(Vi < j3k,s.t.g(k) =i| Bk,s.t.g(k) =j) > P(Vi < j3k,s.t.g(k) =1)

In other words we have to show that a random function from a set, {n}
to a set of size 2™ — 1 is more likely to hit all the first j — 1 elements than a
random function from {n} to a set of size 2™.

8



Now, let us consider a random function from a set, {n}, to a k-element
set. We can regard this as being a choice of a random subset of {n}, S (to
be interpreted as the elements which go to k¥ under our random function),
and a random function from the set {n}\ S to a k — 1 element set. So it will
be enough to show that the probability of a random function from {n} to a
k element set hitting all the first j — 1 elements is increasing in n— which it
is.

" So,
P(Vi < j3k,s.t.g(k) =) < (1 —p).

We know p = (1 — 27™)" For n = 2™ log 2™ \,where \ < 1,

(1- xe)% —es0 el = nllglo 2"1-2"")" =00

Thus, given any real number, z, eventually
P(Vidjlg(j) =i) < (1-p)¥" < (1-22"™)" 5 7=

The theorem follows.

We now turn to the problem of distinguishability: how many sets in a
randomly chosen basis do we need to be almost sure that in T;,(n), any 2
points can be separated in T,,,(n)?

Lemma 4 If n?2 = 2)2™, then as n — oo, P(T distinguishes the points of
n) — e

Proof:
p = P(Tn(n) distinguishes the points) = P(g injective)=[]"-4 (1 — 55%).
Let us take logs of this equation:

logp = —%i=p~ 122 T te(d)

where €(2) is an error term. Rearranging:
logp = =\ + X0 le(4)

Now Taylor’s theorem tells us that
) 1
e(i) = O(5,)?

Therefore, logp — —\;and the result follows .
Our next result will be a threshold function for topological connectedness.
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Theorem 2 (1)If n = plogn(2-121 + 2-1%21)~1 and p is bounded below by
A > 1, then P(T is connected) — 1 as n — co.(*)

(2)If n = plogn(271%1 + 27131)~1 and p is bounded above by \ < 1,
then P(T is connected) — 0 as n — oo.(*¥)

Proof of (1):

We note first that a topology, T, is connected iff the associated poset,P
is connected. Indeed, since open sets in T are precisely the sets which are
closed under ascending P, the components of T are precisely the components
of the P.

Recall further that the partial order associated with T,,(n) was the same
as the partial order induced by a randomly chosen function g : {n} —
p({m}). So, our theorem is that, for these values of m and n, such a function
eventually almost surely induces a connected partial order.

Now, let us consider g(z), and let us consider the set {subsets of {m}
which are comparable with g(¢)}. Call this set S. Now, if #(g(z)) = [, then
#(S) = 2! + 2™~!. In particular, the size of S grows exponentially with ,
for I > [m/2], and decreases exponentially with [ for [ < |m/2]. So, if we
can find 7 such that g(7) is either unusually large or unusually small, then we
expect that 7 will be comparable with an unusually large number of points
in the poset induced by g , and our strategy in this proof will be to show
that there does, indeed, exist such an 7 , and then use it as a “hub”, out of
which will we “grow” a component, and eventaully show that this component
covers the whole of the set {n}.

This motivates the following lemma:

Lemma 5 3nsuch that, n > 2, and, forn,msuchthat(x)holds,P(3i||g(i)| >
nm) = 1, |

Proof:
Stirling’s formula tells us that Cj7, — ¢™/p(v/m), where ¢ = (3)"(:%)"™"
and p is a polynomial. Note that ¢ is a continuous function of 7.

q(3/4) > v/2 = 3n such that n > 3/4 and ¢(n) > v2.(a)
Let us choose 7 such that (a) holds. Consider P(|g(¢)| > nm) = p(n);

p(n) > 2~ (A )
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Let %":ﬂ =t. Now,

(Q/2)>\/g=>(—\/§t)_—m—->oo=>tn—>oo.

So, for any real number, z, eventually
o z —x
P(Aillg(®)] 2 nm) < (1 = ~)*(~ e™)

The result follows.
Note that, by symmetry arguments,

P(Ailg@®)] < (1 —n)m) — 0.

Now, we are almost sure to have an element of {n}, 7, such that |g(¢)| >
nm. We will now start “growing” the component out from . We will start
with the following lemma:

Lemma 6 3y < 3/4 such that, P(3i,j,s.t.|g(i)| > nm, |g(j)| > ym, and i, j
in different components of T;n(n)) — 0.

Proof:

Our strategy here will be to show that there almost certainly exists some
k, such that g(k) is contained in g(¢) N g(j), for every such pair i, j. We will
then be done, since k will then be comparable with both ¢ and j in the poset
induced by g. Consider v such that

v<3/4

gamma +1n > 3/2
Suppose that |g(i)| > nm and |g(j)| > ym. Consider g(i)Ng(j). We have

lg(@) Ng(G) > (v+n—1)m:

we set (y+n — 1) = v(> 1/2). Consider

P(g(k) € g(3) N agi)=p> o(v=1)m
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(%) = Je > 020"~ Vm > pet

for sufficiently large n.
Thus P(g(k) € g(z) N g(j)) > n¢!, for sufficiently large n.
Consider

P(Bklg(k) C g(i) Ng(j)) < (1 — n=1)n~2

Recall that (1 — 6)% — e~ ! as § — 0. Thus, for n sufficiently large:

P(Bk|g(k) C g(z)Ng(y)) < R

P(34,jllg(5)] > nm, |9(j)| > ymbe Bk, s.t.9(k) C g(s) N g(j)) < nZe™™",

since there are at most n2 possible choices of i, 7,
Now, lim,_,o n2e™™"* = 0 = the result follows.

So we are now almost sure that all elements of {n}, whose image under
g has size at least ym, are in the same component of T,,(n). Of course, by
symmetry we are also almost sure that any two points whose images under
g have size at most (1 — v)m are in the same component of the topology.

So, we have 2 components of our topology, one containing any point
whose image under g is small, one containing any point whose image under
g is large.

Our next lemma will show that these 2 components between them cover
our set.

Lemma 7 For m,n satisfying (*), P(E) — 1, where E is the event:
Vi, 3k # i, s.t. either
(1) 9(k) C g(i) and |g(k)| < (1 —v)m
or
(2) g(k) > g(i) and |g(k)| = ym

Proof: .
Consider g(i). Consider S’ = {s € p({m})|(1)or(2)holds}. Our aim is to
show that
nP(Ai|g(i) € S") = 0.

12



We will start by finding a lower bound for the size of S’
|g(3)] = I. Then,

h(l) = |S'| = Z(l—v)mzizo(Cf + Cm_li).

We claim that min;|S’| = h([m/2]).
For, consider

(Cf + C’"‘"i) = f:()
Combinatorial identities tell us that

fi) - fil-1)=CiZ} - o
= (@<m/2=(fi() 2 fi(l-1)-1>m-1).)

fi(1) = film = 1) = miny(£;(1)) = £([(m/2)]).

Suppose that

h(l) = Zommzizofi(l) = minih(l) = h([(m/2)]).

Consider h([(m/2)]). Suppose |g(i)| = [(m/2)]; define
Sy ={s:s € p({m})ls D g(i)},
Si={s€Slls|>ym}=85n5
We claim that 51 — 1 .

[S1]

For, let us consider the 1-1 function,

f 810 p({m}\ g(2), f(A) = A\ g(3).

Note that |A| = [(m/2)] + |f(A)|, and that, by the weak law of large

numbers
P(ls| > (= 3)mls € p({m} \ 9(5)) - 1.

(Incidentally, it is here that we have used our assumption that v < 3/4.)

We are done.
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Similarly, if
Sy ={s:s€p({m}),s Cg(i)}, Sy ={s:s € Sls| < (1 - y)m}
then lim,,_, o I%é—i =1.

We have established the following equation:

min|S’|
2[(m/2)] 4 2l(m/2)]

— 1(b)

Now, let us consider

|15']

P(Ailg(i) € 8") = (1 - *27,:)""1-
We aim to show that n(1 — }2‘9—,,',1)"‘1 —0
We have that, from (*) and (b);
min|S’| > logn/\c(n, m)

2m n

where c¢(n,m) — 1 as n — oo.
Recall that (1 — z€)'/¢ — e~ as € goes to 0(1). We have,

_5]
2m

where §(n,m) — 0 as n — oo, and C(n,m) = X as n — co.

(1= D < (1= 8o, )t = (1 = b, m)) T ),
n ¢
Now, by (1), 3e > 0, s.t., for sufficiently large n
(1—6(n, m))mc("’m) <e-—c¢
Therefore,
(1 = 8(n, m)) Tom CCmyoEn < (o — )loen

Note that
n(e — €)™ — 0

Thus, nP(i is such that neither 1 nor 2 holds for any k) — 0.
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=> E(#(i| neither 1 nor 2 holds for any k)) — 0.
The lemma holds.

So, we have shown that, almost certainly, our topology has at most 2
components, one of which contains all the points whose image under g is
small, and one containing all the points whose image under g is large. All
that it remains to show is that these 2 components are in fact the same
component. In other words, to prove our theorem, it will be enough to
establish the following lemma:

Lemma 8 For n,m satisfying (*), P(E) — 1, where E is the event:
3, such that

1. |9(8)| = mm

2. 19l <@ =-7)m

3. 9(4) C g(9)

Proof:

Consider %, such that |g(z)| > nm.

Consider P(g(j) satisfies 2 and 3) = p — we aim to find a lower bound
for p .Define:

h(l) = [{s : |s| < (1 — y)m&s C g())}|(l9(3)| = 1).

3

h(l) is increasing in [; therefore, we may assume that |g(i)| = :

m.
P(g(j) C g(i)) = 27%™,
Consider P(|g(5)| < (1 —)ml|g(5) C g(2)) = q.

We know (1 — ) > 1, therefore,

3m
im
q 2§m
1,3:2
z(33(%)3)%7" 1
2 r(m)



where 7 is some polynomial function of \/m.
(Stirling’s formula)
So,Ve > 0, eventually

(33(3)%)m

p>(1—¢) S ()

tm
=(1- f)mn‘),

where t > \/g . (computational check).
In particular, |g(¢)] > nm = nP(j satisfies (2) and (3))— oo. Thus,
given 1
P(3j,s.t.1 — 3satisfied||(|g(z)| > nm)) — 1.

Together with Lemma 4, this proves the lemma.
Proof of (2):

Consider
p = P(3k,s.t.||g(k)| = [m/2]&k a singleton in the poset, P(T;,(n))).

We will show that, for n, m satisfying (**) lim,_,o p = 1.

We first define a subset, S of {n}, as follows:

1€ 5 & |g(i)| = [m/21&Vj <4,j ¢ S or |g(j) & g(3)| > fm,
where 3 is some suitably chosen constant (to be chosen later).

We aim to show that, almost surely, there is an element of S which is a
singleton in the induced poset.

We will need first get a bound on the size of S. 8 will be chosen so that
S is almost surely sufficiently large.
We note, firstly, that, given 7,

[{s : Is & g(h)]) < Bm}| ~ ¢™/(p(Vm)),

p some polynomial, q is a function of 3,s.t.

Ve > 0,308s.t.q(B) < 1+e).
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(This result comes from Stirling’s formula).

We choose 3 such that, for sufficiently large n, m satisfying (**).

i=fm m
n(Y OF) < 1/2Cfm(= O(%»

Thus, V{g(1),9(2)...9(: = 1)},

P(i€ S) & g(i) € S' C p({m}),|S'| > 1/2.C5, /5

(S’ depends on {g(1),9(2)...9(: — 1)})
Therefore, V{s;}

. : o 1208,
p(i € Slg(j) = 55,5 < i) > —5 "2
Stirling’s formula tells us
m vm

Therefore,P(|S| > n/m) — 1.

Consider

P(3i € S|i is a singleton in the induced poset P(T;,(n)) = p'.
We will rephrase this problem as follows:

We have a collection C; (=S) (not necessarily randomly chosen) of [(m/2)]-
sets in p({m}), such that:

Vs,t € Cy,|s At| > fm,|Cy| > %

We also have a collection, Cs, of randomly chosen elements of p({m})/{m}[(™/2)1
such that |Cy| < n.

We wish to find a lower bound for
P(Ji e Cy| Aj € Cy,s.t.3D j& Bj,st.jDi)=p.
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As C) is not randomly chosen, we require this bound to be valid for any
possible Ci: that is, we seek a lower bound for ming, (p') .
~ As ming, (p) is decreasing in |C,|, we may assume |Cs| = N, for any
N > n. Similarly, we may assume that |C;| = [n/m].
Our strategy here will be to show that, for any positive v, there is a choice
of N, such that, eventually N > n, and ming, (p')|(|C2| = N)) =1 —e™
We have a collection of [n/m] non-independent events, {E1, E . .. Ef(m/2) },
(E;=(i is a singleton)) and we want to know P(E; happens, some ).
Consider P(E;, E,...E all happen)= p(N).

IQl )N

e(N)=(1 - oo
A

where Q = {S : § € p{m}/{m}I(™/D] 35 < k|S C S; or S D S;}.
By inclusion-exclusion:

k(221 4215 — 2) > |Q| > k(2! + 213 — 2) — Ch(2'#1-9% 4 21717

Therefore:
k(231 4+ 2l%) — 2 k(231 4+ 21%) — 2 2l81-A% 4 2l3)-P%
(-T2 <y < MBS e 2T AR g

Our next aim will be to show that, for suitable choices of N, both sides
of the equation (f) ~ (ZX)¥.

Proof:

We choose N such that N = log m%/,(?"r%} + 271%] — 21=m)=1 where
Y = . .

By (**), eventually, N > n. Now, let us consider p;(N). In particular,
let us consider the eqn. (f).

Consider the LHS of this eqn:

k(2l%1 4213 —2) log -7 v
(1- o =0~ k—N_)

In particular, consider:

n

log 25
log (1 - k—gN-ﬂ)N = ——klogmifyl +e

18



where € is an error term. Taylor’s theorem, applied to log(1-x), tells us

1 n_\2
that, for sufficiently large n, |¢| < k(—og—’;_i —n—o0o 0. Thus, we see that the

LHS of () ~ (2)* as n — co. RTS only that the RHS does, as well.
But let us consider

RHS(t) _ k

9[31-8% QL%J—ﬂ%)

N
2m )

=Y

where z — 1 as n,m — oo. )
Observe that
o[21-8% 4 ol3I-8%

. k _
Jim Nz(Cy( o )=0

Therefore, lim, o,y — 1.
Thus, for this choice of N, Ve > 0, for n sufficiently large

VPY{E,,... By}, (1= (T < P({Ei, - Bi}) < (1+ (%Y

Now, if we apply the inclusion-exclusion principle to the events E;, we
see that ‘

P(E; happens, some 1) — 1 — e~

We are done.

4 The Largest Component Problem

If we have a random topology, T;,(n), then we have an associated random
variable, X,,,(n), given by X,,(n) = (|largest component of T;,(n)|)/n.

Our aim in the current section is to examine the behaviour of this random
variable as n, m — oo.

We will need the following technical lemma:

Lemma 9 3p < v/2and v < 3/4 such that if n = p™, then with probability
eventually close to 1, all elements of {n} whose images under g have size
< (1 —y)m or > ym lie in the same component of the induced topology.

Proof:
This will be a modification of the proof of this same result for n =
logn2% \

19



Let us consider Cy;, =~ ¢™ /f(/m).(f some polynomial)(Stirling’s formula).

gp > 2 = nP(|g(?)| 2 nm) — oo = P(3illg(i)| = nm) — 1.

So, choose 1 > 3, 5.t.q(n) > V2.

p> —> = P(3illg(i)| = nm) — 1.

q(n)

Let us also choose v, s.t.

<§ + 53
Y 4a’)’ n 5

Consider
P(3,5 : 19(z)| = nm, |g(5)| = ym Bklg(k) € g(i) N g(5)) = 0
< 20H1=Amy s o0 @ 2N RDmpm o6 = p > 2270,
We also wish to establish that, almost surely, 3i, 7 such that
1. #(g(2)) = nm
2. #(9(4)) < (1 =7)m
3. 9(4) C g(d)

Now,set
p' = P(j s.t.j satisfies (2) and (3)||g(¢)| > nm) ~ ¢™/(f(v/m)),
¢’ is some real number,q’ > %

p> # = np’ — 0o = P(3j, s.t.1, j, satisfy 1-3 ||g(i)| > nm) = 1

But, P(3i[|g(i)| = nm) — 1
Therefore, provided p satisfies

1
1. p> 7
2. p> 22_('7+7l)
3. qp>2

20



p also satisfies the conditions of the lemma. The result follows.
We will also need the following lemma:

Lemma 10 For n > p™, p as in the statement of Lemma 9, Vi, P(E;) — 1,
where E; is the following event:

FEither i is a singleton in the induced poset, P, or i lies in the component
of P which contains all sets of size > ym.

Proof:
We note that, for any positive ¢,
20—y—€em>|g(A)| > 2y -1+ e)m =

P(|(Is| = 3)] = (v — $)m)|s comparable with g(3))— 1.

So, let us consider 4, such that ¢ is not a singleton in the poset. Let j
be minimal such that g(j) is comparable with g(i). g(j) is then a randomly
chosen element of

{8 : § c {m}, S comparable with g(:)}.

Now, for some sufficiently small ¢

P(E")=P((2(1-v) —e)m > |g(3)| > (2y -1+ €)m) = 1, and

P(lg(5)| = ym or |g(4)| < (1 — 7)m|E") — 1.

The result follows.

Theorem 3 Ifn = 2™/2~2AV™ _ then the size of the largest component of the
induced topology, Xm;(n), converges to [, >\ e~*" /\/21x in probability.

Proof:
We have already seen that

E(Xm(n)+ X, (n)) =1,
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where X, (n) = |{i|i a singleton}|/n Since Xp(n) + X, (n) <1+ %
Xm(n)+ X, (n) =p 1

Choose p < 2X and v > 2)X. We will show that P(E) — 0, where E is the
following event:

Either abs(]g(z)| — m/2) < py/m and i is not a singleton.}

Or abs(|g(?)] — m/2) > vi/m and i is a singleton.}

For, let us consider the probability that { happens, p(})

p() = (1 = (1 — 27 = 2-m 4 27m)n=1),

where [ = |g(7)|, the sum is taken over abs(l — m/2) < py/m and ¢ =
P(lg(?)| =1). So, given that

1— (1 _ 2—! _ 2l—m + 2—m)n—1 < 1— (1 _ 21—m/2+u\/17)n—-1

we have

p(t) <1 (1 —2im/zmymn=
Now,

n2l=m/2tuvm _ 9l+(u-20)vm _,
and, thus

(1 _ 21—m/2+y\/ﬁ)n—l -1

as n — oo. Therefore, p(t) — 0 RTS only that p(}) — 0. The same
argument as above shows that

P(I) < (1 _ 2—-m/2+u\/17)n—1
n2—m/2+u\/ﬁ — 2(!1—2)\)\/5 - 00
and, thus

(1 _ 2—m/2+u\/ﬁ)n—1 =0
We are done.
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So, if C is our largest component, and S = {i|abs(|g(i)| — m/2) < puy/m,
then E(|S A C|) — 0: since |S A C| > 0 necessarily,

IS AC| —p 0.

The Central limit theorem tells us that

22
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P(g(i) € S) — ir mdﬂ:

So, now, the weak law of large numbers tells us that

2

e
S| =5 /lzls»\ ssda

We are done.
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