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In this paper we present a series of examples to
demonstrate the potential of using parameterised
weak laws of large numbers to determine the
associated large deviation rate functions.
Applications include Stirling asymptotics and
random graphs.



In this paper we present a series of examples to demonstrate the potential of
using parameterised weak laws of large numbers to determine large deviation
rate functions. Most of the examples are given for illustrative purposes,
and it is not claimed that the results are new or could not be obtained
by standard techniques. However, in some cases it seems that alternative

techniques might be difficult to apply.

We will omit technical details, giving references where they exist. Integer
parts are assumed where appropriate.

Ezample 1: Binomial coefficients.

Suppose Y, has a binomial distribution with parameters n and p. That is

to say, for k£ = 0,...,n,
P(Y, = k) = B(n,k)p*(1 —p)"~%,

where B(n, k) is the usual Binomial coefficient. Then Y,/n converges in

probability to p and, assuming the limit
1
h(z) = lim - log B(n,zn)
exists for 0 < z < 1, we have
1
Iy(z) == - liT{n - log P(Y, = zn) = —h(z) — zlogp — (1 — z) log(1 — p).

Applying the principle of the largest term we conclude that the sequence
Y, /n satisfies the LDP in [0, 1] with rate function I,. (Here we are assuming
uniform convergence and also that I, is a continuous rate function; hereforth,

this basic assumption will be made implicitly and without comment.) To



determine the function h, and hence I, we could use Stirling’s formula. But
let’s suppose we don’t know about Stirling’s formula: in more complicated
examples such combinatorial asymptotics might be difficult to determine
directly. Instead we will use the simple fact that the rate function must

vanish at the mean: I,(p) = 0. From this it follows that

h(p) = —plogp — (1 — p) log(1 — p)

and, since p is arbitrary, we have completely determined the function h. We

have thus determined the rate function Ip.

To determine the rate function here we could have used Stirling’s formula,

as we pointed out, or simply applied Cramér’s theorem.

Ezample 2: Stirling numbers of the first kind.

If X, denote the number of cycles in a random permutation of n objects (all

permutations equally likely), then
P(X, = k) = s(n,k)/n!,

where s(n, k) denotes the Stirling number of the first kind. It is often of
interest, particularly in the context of population genetics, to consider biased

random permutations: for each o € Sy,

Py(o) gnumber of cycles in ¢

where 6 > 0 is a parameter. In the population genetics context, 8 is asso-
ciated with mutation rates and each cycle in the permutation represents a

collection of individuals with the same genetic type. The law of the number



of cycles, which we will continue to denote by X,,, under Py, is given by
P(Xp = k) = 5(n, k)6*/[0],

where

Bl.=6(6+1)---(0+n—1);

here we are using the fact (see, for example, [1, p824]) that
n
Z s(n, k)8* = [],.
k=1

It is known (see, for example, [2]) that under Py, the sequence

Xn —6@logn
Vllogn

converges distribution to a standard normal. In particular, X,/logn con-

verges in probability to §. Assuming the limit

1
=i - — 1
u(z) lim {logn [n + log s(n, zlogn)] n} (1)
exists for each z > 0, we have

1
logn

log Py(X;, = zlogn) = —Ip(z),

where

Ig(z) = 6 — zlogh — % — p(z).

It follows that the sequence X,/ log n satisfies the LDP with speed logn and
rate function Iy. Setting Ip(6) = 0 we find that

1
plz)=z+zlogzr — 3

and so

Iy(z) = 6 — = + zlog(z/0).
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Again, we could have obtained this LDP using generating function tech-
niques. The asymptotic formula (1) is consistent with standard asymp-

totic formulae obtained by saddle point and Ray methods (see, for example,

4, 3]).

Ezample 3: Stirling numbers of the second kind.

Drop [ balls uniformly at random into n boxes and let X (n,l) denote the
number of empty boxes. If [/n — ), as n — oo, then X (n,l)/n converges in

probability to e~*. This can be verifted by looking at the first two moments:
nT'EX(n,l)=(1—-1/n) e

as n — oo, and

n—1 1

n"2EX(n,1)? = —(1- 1/n) (1 - ﬁ)‘ +(1-1/n)/n
- e
Now for £ =0,...,n (conditioning on which k boxes are empty) we have

n—k

P(X(n,l) = k) = B(n,k) ( )l P(X(n— k1) =0).

Thus, if the limit
.1
9(p) = lim —log P(X (n, pn) = 0) (2)

exists, for each 0 < p < 1, we have an LDP for the sequence X,/n with

speed n and rate function

I\(z) = —h(z) — Alog(l —z) — (1 —z)g( A ) .

l1—-z



Setting Iy(e~*) = 0, we can solve for g and deduce that
I,(z) =zlogz + Az.
Assuming existence of the limit in (2) is equivalent to assuming that the
limit
v(z) = lirrln{% log S(n,zn) — (1 — ) logn}
exists, for 0 < z < 1, where S(n;k) denotes the Stirling number of the
second kind. This can be verified by subadditivity, using the fact that
B(m,r)S(n,m) > B(n,k)S(n —k,r)S(k,m —r)
for m—r < k < n—r (see, for example, [1, p825]). It follows from the above
that the function v is given by

viz) =z -1+ (z—1)log B+ zp

where [ satisfies z3 = 1—e 8. This agrees with known asymptotic formulae,

obtained in [5, 3]. In fact, there is a more refined formula:
n(l-z)ngv(z)n

V2mn(z — 1+ Bz)

S(n,zn) ~

Ezample 4: Isolated subgraphs in a sparse random graph.

The random graph G(n,p) is defined on n vertices, each of the potential
n(n — 1)/2 edges included, independently, with probability p. Let V(n,p)
denote the number of isolated vertices in the random graph G(n,p). It is
easy to verify that V(n,c/n)/n converges in probability to e~¢, for ¢ > 0.

Indeed, we need only consider the first two moments:

n"'EV(n,c/n) = (1 —c¢/n)" ! 2 e ¢



as n — 0o, and

n—1

n~2V(n,c/n)? = - (1-c/n) 2+ n~(1 —¢/n)"?

-2c

We also have, conditioning on the choice of isolated vertices,
P(V(n,p) = k) = B(n,k)(1 —p)" '+ (1 = p)" *P(V(n — k,p) = 0).
Thus, if the limit
fld) = lirrln;ll-log P(V(n,d/n) =0)

exists, for d > 0, we have an LDP for the sequence V(n,c/n)/n with speed

n and rate function given by
I(z) = —h(z) + cz(1 = 2/2) — (1 — 2) f(c(1 = 2)),
for 0 < 7 < 1. Setting I.(¢™¢) = 0, we determine the function f:
f(d) = log(d/a) — (a — d)*/(2d),
where a > 0 satisfies 1 —e~% = d/a. A proof of this LDP can be found in [6].

Let W (n,p) denote the number of isolated wedges in G(n,p). (A ‘wedge’ is
just a triangle with one edge missing.) It is easy to check, again by consid-
ering the first two moments, that 3W (n, ¢/n)/n converges in probability to

c2e~3¢/2. The probabilities satisfy:
P(W (n,p) = k) = 3B(n, 3k)(1-p)*p* (1-p)* (=3t + =N P(W (n—3k,p) = 0).

Proceeding as before we find that

1
nlogn

log P(3W (n,¢/n) = zn) = —z + (1 —z)r(c(1l - z)),



for 0 < z <1, where

r(d) = lim nll log P(W (n,d/n) = 0).

ogn

To determine r we set I.(c?e™3¢/2) = 0 and obtain the formula:
r(d) = a/d -1,
where a > 0 solves d/a = 1 — a%e™3¢/2.

In this example, we immediately obtain the refinement

%log P(3W (n,c/n) = zn) ~ h(z)+zlog c—cz(1—z/2)+[(1—z)r(c(1—z))—z] log n.

Ezample 5: The giant component.

Write X (n,p) for the size (in vertices) of the largest connected component
in the random graph G(n,p). It is well-known (see, for example, [7]) that,
for ¢ > 1, the sequence X(n,c/n)/n converges in probability, as n — oo,
to the unique positive solution to the equation a = 1 — ™%, which we will
denote by a.. If ¢ < 1, then X(n,c/n)/n converges in probability to zero.
We will assume that ¢ > 1, and use these laws of large numbers to obtain

an LDP for the sequence X (n,c/n)/n. Details can be found in [6].

Let q(n,p) denote the probability that G(n,p) is connected. For 1 <k <n

we have

B(n,k)(1 — c/n)E=Kg(k, c/n)P(X(n — k,c/n) < k)
< P(X(n,c/n) =k)

< B(n, k)1 —¢/n)Fg(k,c/n)P(X (n — k,c/n) < k). (3)



The upper bound is just Boole’s inequality; the lower bound is the proba-
bility of having ezractly one component of size k, and none exceeding that

size. Set zg = 1 and, for k£ > 1,

a;k=sup{:1:: 1—xkz =1—e_“}.
If z; < z <1, then £ > (1 — z)ay ;) and we have
1 .
li,{n; log P(X([(1 = z)n},¢/n) < zn)=0.

Thus, if the limit

m(d) = lirlln -71; log g(n,d/n)
exists for d > 0, we have
lim -71; log P(X (n, c/n) = zn) = h(z) + zm(cz) — cz(l — z) =: A(z, )
for z > z;. Luckily, a. > z;, so we can set A(a.,c) = 0 and solve to obtain
m(d) = log(1 —e™%).

We have thus determined the large deviation rate function for the sequence
X(n,c/n)/n on the interval (z;,1]. We can now recursively apply the above

on successive intervals (zg, Zx—1] to get that

1 i, T
1i111n— log P(X(n,c/n) = [zn]) = Z(l —jr)A (1 —,¢(1 —jm))

n 7=0 jz
on (zk,zk—1])- The LDP follows, and the rate function has the following

simplified form:
I.(z) = —kzm(cz) + kzlogz + (1 — kz)log(1 — kz) + cz — k(k + 1)cz?/2

for zp <z < TR
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Figure 1: Plot of the rate function I3.

What is interesting about this example is that the rate function has a very
unusual form. A plot of I3 is shown in Figure 1. In particular, it is not

convex, and so even if generating function techniques were tractable they

would not yield the LDP.
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