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1 Introduction

Resonant wave interactions permit the exchange of wave action or energy
among nonlinear modes in a variety of physical systems. For instance the
three-wave interaction occurs when the wavenumbers and frequencies of three
nonlinear waves satisfy either the matching conditions k; = ky — k3, and
w; = wy — wy for a decay process or the matching conditions k, = —k; — ks,
and w; = —w, —ws for an explosive process. The three-wave equations describe
the resonant quadratic nonlinear interaction of three waves and are obtained
as amplitude equations in an asymptotic reduction of primitive equations in
optics, fluid dynamics and plasma physics.

The purely quadratic three-wave system of ordinary differential equations is

dq ) _

d_tl =15171G2G3 (1)
dg, .

d_t2 = 152724193 » (2)
d

—di: = 153730192 - . (3)

Here, the +; are nonzero real numbers such that 1 + 72 + 7 =0, (s1, S2, S3)
is either (1,1,1) or (—=1,1,1). Each ¢; € C, so this is a system of ordinary
differential equations on C*. The choice of signs, determined by (s1, S2, S3)
distinguishes between the decay interaction which has bounded solutions in
time and the ezplosive interaction which has solutions that blow up in finite
time. These two systems are represented below as Lie-Poisson systems for the

groups SU(3) and SU(2,1).

Decay Interaction. This is obtained by choosing (s1, s2, s3) = (1,1,1) and
(71,72,73) = (1,1,—2). After changing variables to Q, = V2q1,Q2 = V24
and Q3 = s, this system takes the standard form
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_dci— =1Q2Q3 , (4)
dTQtz = inQIi ) (5)
d _

% .0, ©)

and models the dynamics of three resonéntly coupled positive-energy waves.
All solutions in C® remain uniformly bounded.

Explosive Interaction. This is obtained by choosing (s1, s2, s3) =(-1,1,1)
and (7,72, 73) = (1,1,—2). After changing variables to @, = V2G,,Q, =
V2¢, and Q3 = @3, this system takes the standard form

d =
% =1Q2Qs , (7)
d - =
L 005, Q
dd;Cig =iQ1Q2 , | ' (9)

and models the dynamics of three resonantly coupled negative-energy waves.
Solutions in €3 can blow up in finite time. (see Zakharov and Manakov [1] or

Ablowitz and Segur [2]).

Basic wave interactions of this kind are fundamental in the understanding
and analysis of a variety of phenomena including patterns, symmetry induced
instabilities, the Benjamin-Feir instability and many others. The three-wave
equations are closely related to the equations governing coupled harmonic
oscillators, tops, the rigid body and even the interaction of light with a two-
level atom. This is understood by realizing that the three-wave equations are
the complex equations for a resonant three degree of freedom Hamiltonian
system. They contain the Euler equations (see for instance Guckenheimer and
Mahalov [3]) associated with SO(3) as a real subspace of SU(3). The Maxwell-
Bloch equations are also contained in the three-wave equations (see David and
Holm [4] for details). Some general references to literature on the integrable
three-wave equations is found in Whitham [5] Ablowitz and Haberman (6],
Kaup [7-9], Zakharov and Manakov [10], Ablowitz and Segur (2], Newell [11],
and Ablowitz and Clarkson [12].

The integrable Hamiltonian structure of the three-wave equations is of course
well known; we explore it from a somewhat novel point of view in what fol-
lows. As we will show, these equations posses a Lie-Poisson structure in ad-
dition to the canonical Hamiltonian structure. The three-wave decay system
is Lie-Poisson for the Lie algebra su(3), and the explosive three-wave system



is Lie-Poisson for su(2,1). Using the method of translation of the argument,
two compatible Hamiltonian structures are obtained. One is the canonical
Hamiltonian structure embedded in su(3) or su(2,1); it has a cubic Hamilto-
nian. The other is non-canonical having a standard left invariant Lie-Poisson
bracket; it has a quadratic Hamiltonian. These two Poisson brackets lead to
a recursion relation that is expressed in.terms of Lie brackets. This recursion
relation is the same one that is found using the Lax pair approach. We will
show that the A-representation used by Manakov follows directly from this.

Solutions for the three-wave equations and other similar systems are well
known. In our approach below, they are reduced and integrated using a pair
of S! actions, the canonical Hamiltonian structure and the technique of in-
variants. In solving the reconstruction problem, phase formulas analogous to
those obtained for the rigid body [13] are obtained. These formulas give the
value of the phase shifts that accompany the periodic exchange of wave action
in resonant wave systems (see for instance [14-18]).

Though the main development is restricted to the three-wave system, we re-
mark that as in the case of the n-component Euler equations [19], all of the
basic results described below generalize to n-wave systems (see Kummer [20]
for a treatment of reduction for the n-degree of freedom Hamiltonian with
resonances). The structure of the n-wave interaction is related to the family

of Lie algebras in su(n) or su(p, q).

The general picture developed here is useful for many other purposes, including
polarization control (building on work of Holm, David and Tratnik (21]) and
perturbations of Hamiltonian normal forms (see work of Knobloch, Mahalov
and Marsden [22], Kirk, Marsden and Silber [23], and Haller and Wiggins [24]).
They have also been used to analyze quasi-phase-matched second harmonic
generation [25] and cascaded nonlinearities [18] in nonlinear optics.

2 The Canonical Hamiltonian Structure.

A ~y;-weighted canonical Poisson bracket on C® is used. This bracket has the
real and imaginary parts of each complex dynamical variable ¢; as conjugate
variables. The Hamiltonian for the three-wave equations is cubic in this setting.

The Canonical Symplectic and Poisson Structure. Writing gx = Zx +
iy, and treating zx and yx as conjugate variables, the (scaled) canonical Pois-



son bracket is given by

OF 0G 0G OF
{F G} = Z SkVk (8:1: 3yk axk ayk) . (10)
In standard matrix notation this is
{F,K}=(VE)I(VK), (11)

where the gradients are standard gradients in R® (with the variables ordered
as (z1, T2, T3, Y1, Y2, ¥3)) and where

)
J= (12)
T 0

and T is the 3 x 3 matrix with sgyx on the diagonal and zeros elsewhere.

This bracket may be written in complex notation as

3 OF 6G  0G OF )
FG}=-21) s —_—— ] - 13
r.6} ,?;1 K (aqk 0qc  9q* Ok 13
The corresponding symplectic structure is written as follows:
1
Q((21, 22, 23), (wy, wa, ws3)) = — Z ———Irn(zkwk) . (14)

k=1 SkVk

The Hamiltonian. The Hamiltonian for the three-wave interaction is

1
H; = 3 (q19203 + ¢13203) - (15)

Hamilton’s equations are

dgr
== {a H}, (16)

and it is straightforward to check that Hamilton’s equations are given in com-
plex notation by

qu . oH

= = NSV -
dt 1SkYk 8qk (17)



One checks that Hamilton’s equations with H = Hj coincide with (1).

Therefore, the following standard result holds.

Proposition 1 With the preceding Hamiltonian Hj and the symplectic or
equivalently the Poisson structure given above, Hamilton’s equations are given
by the three-wave equations (1).

Integrals of Motion. In addition to Hj itself, one identifies the following
constants of motion,

2 2

K, = lol” + lo:” , (18)
S1MN S272
2 2

]\r2 — IQQI + |q3| , (19)
S272 5373
2 2
S 5373

These are often referred to as the Manley-Rowe relations. The Hamiltonian
with any two of the K; are checked to be a complete and independent set of
conserved quantities in involution (the K clearly give only two independent
invariants since K; — Ko = K3). In the sense of Liouville-Arnold this system
is therefore integrable.

To integrate the three-wave equations one typically makes use of the Hamil-
tonian, Hs, plus two of the integrals, Kj, to reduce the system to quadra-
tures. This procedure is usually carried out using the transformation ¢; =
V/Pj expig;. Below a different approach is described. It appears to be less

cumbersome, and it provides considerable geometric insight.

First observe that

Proposition 2 The vector function (K1, K», K3) is the momentum map for
the following symplectic action of T® = S' x S x S*:

(41,92, 93) = (q1exp(7), g2 €xp(17), q3) (21)
(q1, 42, q3) = (q1, g2 exp(¥7), gz exp(i7)) , (22)
(q1, 02, g3) = (@1 exp(47), g2, g3 exp(—17)) - (23)

Any combination of two of these actions is generated by the third reflecting
the fact that the K are linearly dependent. Another way of saying this is that
the group action by T° is really captured by the action of T2



3 Poisson Reduction

In this section symplectic and Poisson reduction are performed on the three-
wave Hamiltonian system using the S' symmetries associated with the mo-
mentum maps Kj. In terms of Poisson reduction, the process is to replace
C® — C¥/T?. The symplectic leaves in this reduction are obtained using the
method of invariants.

Invariant coordinates for three-wave reduction. Invariants for the T?
action are:

X +1Y =q1G2q3 (24)
Zy= |<h‘2 - |(12|2 ) (25)
Zy= IQ2|2 - |11312 . (26)

These quantities provide coordinates for the four-dimensional orbit space C* /T2
The coordinates, X,Y, Z, and Z, are Hopf-like variables (see, e.g., [26]) and
they generalize the well known Stokes parameters (see, €.g., [27]).

Reduced three-wave surfaces. The following identity holds for these in-
variants and the conserved quantities:

X2+ Y? = ka(50m2 K1 + 21)(s3713K2 + Z2) (5272 K2 — Zs) , (27)

where k4 = (517152725373)/ (5171 + s272) (8272 + s3773)%. Trajectories in these
reduced coordinates lic on the set defined by this relation. Using the conser-
vation laws K and the definitions of Z; and 25, a second relation between
K1, K, and Zi, Z, is identified and either of the coordinates Z; is removed re-
ducing the number of real dimensions to'three. In R3 the reduced trajectories
lie on the invariant set:

X2 + Y2 = :“&3((5 - ZQ)(Sg’)’;;KQ + ZQ)(SQ’)’QKQ - Zz) y (28)

where K3y = (31’)’182’)’283’)’3)/(82’)’2 + 33’)’3)3 and § = 5‘2’)’2[(1 -+ 83")/3(K1 - Kg)
This relation defines a two dimensional (perhaps singular) surface in (X, Y, Z»)
space, with Z; determined by the values of these invariants and the conserved
quantities (so it may also be thought of as a surface in (X,Y, 2, Z,) as well).
The relations between the invariants and the conserved quantities may imply
inequalities for, say, Zo; these may imply that the corresponding surface is
compact. A sample of one of these surfaces is plotted in Fig. 1. These surfaces
will be called the three-wave surfaces below.



Reduced three-wave equations. Any trajectory of the original equations
defines a curve on each three-wave surface, in which the K are set to constants.
These three-wave surfaces are the symplectic leaves in the four-dimensional
Poisson space having coordinates (X,Y, Z,, Z3).

The original equations define a dynamical system in the Poisson reduced space
and on the symplectic leaves as well. Using these new coordinates the Poisson
bracket and the Hamiltonian are reduced directly. The reduced Hamiltonian

1S

H=-X. (29)

With the reduced Poisson brackets in ‘(X, Y, Z,), H, produces the reduced
equations of motion

dX

=0 (30)
dY  9¢

- 27 31
dt 02Z,° . (31)

dZ

d_t2 =—2(s972 + s3713)Y (32)

where the dynamical invariant ¢ is defined by

¢= (5272 + s537) [(X* +Y?)
- h‘,3((5 - Zg)(S3’)’3K2 =+ Zz)(‘;'z’)’gl(z - ZQ)] . (33)

Following Kummer [28,20], the reduced equations may be written as F =
{F, H,} for the Poisson bracket

(F,G} = V¢ (VF x VG) . (34)

The trajectories on the reduced surfaces are also obtained by slicing the sur-
face with the planes H, = Constant. The Poisson structure on C3 drops to a
Poisson structure on (X, Y, Z1, Z;)-space and this in turn induces the Poisson
structure above. Correspondingly, the symplectic structure drops to one on
each three-wave surface — this is an example of the general procedure of sym-
plectic reduction (MMW reduction [29]). Notice however, that the three-wave
surfaces may have singularities — this is because the group action is not free;
this is one aspect of singular reduction. Also, from the geometry, it is clear
that a homoclinic orbit passes through such a singular point-these are cut out
by the plane H, = 0 when H, = —X. Using ¢ and H;, (30)-(32) are reduced
to quadratures to obtain explicit solutions.



4 Three-wave phase formulas

The goal of this section is to reconstruct the original system on C3. The tech-
nique used generalizes that used by Richard Montgomery [13] in his derivation
of the phase formula for the rigid body, and provides a clear geometrical pic-
ture for phase shifts in resonant wave interactions. The general theory is found

in Marsden, Montgomery and Ratiu [30].

For most initial data on the reduced phase space, the amplitudes of the three
interacting waves evolve along closed orbits. As they evolve their phases shift.
When viewed in R® the wave system is quasiperiodic. The main result here will
be phase formulas obtained by reconstructing the dynamics in C? associated
with the orbits in R3. These formulae ‘provide the phase shifts associated
with each of the three amplitudes in the wave system as they complete one
closed orbit. They have a dynamical part that is associate with the period of
the reduced orbit and a geometric part associated with the symplectic area
enclosed by that orbit.

Let M C C3 be the manifold defined by setting the conserved quantities to
specific values (a level set of the momentum map). Construct a closed curve
C on M in two pieces as shown in Fig. 2. The first portion ¢ is the dynamical
trajectory on M joining the two points % and P. It covers a closed curve in
the reduced space. The invariants define the reduction map W : C® - R so
that the curve ¢y projects onto a closed trajectory in the base space or three-
wave surface m under W as shown in Fig. 2. In M introduce three curves c;,
¢, and c3 any pair of which complete the curve C' by connecting the points Py
and P, as follows: use phase rotations in each factor (the curve ¢, goes with
the first S! etc.) so that ¢; Uc, closes the curve, as shown in Fig. 2; ¢;Ucs and
¢, Ucs also close the curve. The segmert of C associated with the group curves
is drawn perpendicular to the base space m to stress that it corresponds to the
S! symmetries that generate motion “orthogonal” to that on the base space.

Now let © be a canonical one form on C3, a scaling of the Poincaré one form
%(pkqu — g*dpy). Thus, d© = —Q is the symplectic form, and

3
1
(9((11, q2, (13), ('Ul, V2, U3)) = - Z Im(qkﬁk) : (35)
k=1 SkTk

Proposition 3 Using Stokes theorem in connection with C' on C? produces
the system of integral equations,

/@+/@+/@=/d6, (36)
co ¢ c2 S3



/e+/e+/@=/de, (37)
co c c3 Sa .

/e+/e+/@=/de, (38)
co c2 c3 S1

where Sy are surfaces that project to the cap ¥ shown in the figure.

A more careful argument-as in holonomy theorems-shows that the existence
of these surfaces is not necessary.

Next evaluate the integrals associated with the group curves in C3 to extract
the phase shifts associated with these actions and obtain

/@z—[(kqbk, k=1,2,3, (39)
Ck

where K} is the (constant) conserved quantity and ¢y is the phase shift asso-
ciated with the k' S! action. This formula is particularly simple because the
K are homogeneous of degree 2 in the g.

On the dynamic trajectory co in C° the line integral is

_ Yt = o
C[e c[(@,)m)dt “HT,

where H is the constant energy of the trajectory and T is the period of the orbit
on the three-wave surface. The factor 3/2 appears because H is homogeneous
of degree 3 in the g.

Now using the symplectic form and noting that

E/Q:E/Qm,

where €, is the reduced symplectic form, and find

- 3 :
[(1@51 + 1(3(153 - A(E) + §HT , (41)
Ky + K3z = |A(Z) + gHT . (42)

10



where A(T) is used to denote the symplectic area of the surface I enclosed by
the orbit on the three-wave surface. Solve these equations to obtain the phase

shifts.

Theorem 4 The phase shifts in C* induced by S' actions over periodic orbits
on the three-wave surfaces are

6 = %{; [A(E) + gHT] , (43)
by = 2172 [A(z) + gHT] , (44)
b3 = 2—% [4) + gHT] | (45)

These actions of the momentum map for. one period, T, on the base space, m,
produce shifts in the initial data on C* so that

q1(T) = q1(0) expli(¢1 + ¢3)] , (46)
2(T) = ¢2(0) exp[i(¢1 + ¢2)] , (47)
gs(T) = g3(0) expli(¢2 — ¢3)] - (48)

Proof The proof follows directly from the discussion above. ®

These formulas show that as the values of the actions of the three waves com-
plete one cycle, the phases of the waves are shifted by the amounts calculated.
These shifts include a dynamic part that scales linearly with the period and
a geometric part that corresponds to non-uniform jumps in the phases of the
waves. These jumps are known to occur at the point where the flow of en-
ergy or wave action reverses (see for instance Refs [14-18]). Three-wave phase
formulas for non-homogeneous Hamiltonians were derived in [18].

Notice that for the fixed point set 3 <> 1, which corresponds to second har-
monic generation, Ko = K and Z; = —Z;. With this restriction, a double root
is introduced into the cubic in Z, on the right-hand side of (33). All of the phase
formulas reduce readily in this case to ¢, = ¢, = [A(Z) + 3HT/2]/(2K,) and
#3 = 0. Over a period then, ¢;(T) = ¢:(0) exp[i¢1] and ¢2(T") = ¢2(0) exp[:2¢].

5 The Lie-Poisson Structure

In this section the three-wave equations are written on the dual of the Lie
algebra of the group SU(3) or SU(2,1) using a Lie-Poisson structure. This Lie-
Poisson system of equations has a quadratic rather than cubic Hamiltonian.

11



The compatibility of the canonical and Lie-Poisson structures is discussed in
the next section.

The Lie-Poisson description is obtained by recasting (1) as a differential equa-
tion in su(3)*, the dual of the Lie algebra of SU(3), for the decay interaction
and a differential equation in su(2,1)*, the dual of the Lie algebra of SU(2,1),
for the explosive interaction.

Map to the dual of the Lie algebra. Define a map U : C® — su(3)* as
follows. Identify su(3) with su(3)* using the standard Killing form:

(A, B) = Tr(AB) . (49)

Thus, su(3)* = su(3) is concretely realized as the space of complex skew
Hermitian matrices with zero trace. Map ¢ = (qi, g2, ¢3) to the matrix

0 q1 q2
U=|-maq0 g | » (50)

—maG, —m3q3 0

where (my,ma,m3) = (1,1,1) for su(3). The standard Killing form is also
used to pair su(2, 1) with su(2,1)*. While the resulting inner product remains
nondegenerate in this case, it does become Lorenzian. The map U : C® —
su(2,1)* is also defined by (50) taking (my, mg,m3) = (1,1,-1).

The quadratic Hamiltonian. The gquadratic Lie-Poisson Hamiltonian is
Hy = —-Tr(UQ,)/2, where

0 ai1qy Q2q2
Ql = | —moaoaq 0 3Q3 . (51)

—ma0pge —m303q3 0

The explicit form of this quadratic Hamiltonian is

3
Hy=1) myoklgil®
k=1

where the a are purely imaginary and are related to the v, in the following

way:



s171=—imz(as — a3) ,
S92 = —ima(as — 1) ,
5373 =—1my(a; — Q2) -

By relating C® and su(3)* using the map above, (my, ma, m3) = (1,1,1) implies
that 3_, 7% = 0 and (s1, 52, 83) = (1,1,1) for the decay interaction. Relating
C® and su(2,1)* using the map above, (my, mg, m3) = (1,1, —1) implies that
Y3 _ 7 = 0 and (s, 2, 83) = (=1,1,1) for the explosive interaction. In both
cases Im(ax) > 0 for k = 1,2,3 and |as| > |as| > |au]-

The Lie-Poisson bracket. The equation

dau
Et— = _[Ua Ql] (52)

is equivalent to the three-wave system, where [,] : gx g — g s the Lie bracket
and in this context is equivalent to standard commutation of matrices. As
we show below, Q, = —6H,/8U, so we can write dU/dt = [6H2/6U,U]. The
general theory of Lie-Poisson structures is used to construct the Lie-Poisson

bracket

= (v ) (53

where for g = su(3) or su(2,1), f,k:g" = K, 5f/8U,6f/0U € g, and U € g*.

Theorem 5 With these definitions, the three-wave decay equations are Lie-
Poisson equations on su(3)* for (s1,s2,s3) = (1,1,1) and (my, ma, m3) =
(1,1,1); the ezplosive three-wave equations are Lie-Poisson equations on su(2,1)*
for (s1, $2,83) = (=1,1,1) and (m1,mg,m3) = (1,1, -1).

Proof Let F : g* — R, then with the definitions above, dF/dt = {F, Hy}, or
OF dU 0F 6H,
(%) =~ (v [io- 7)) 4

where (, ) is defined by the trace as above. Now, DH,(U)-V = =Tx(VQ:1(U))/2—
Tr(UQ,(V))/2 for V € g*. We claim that Q, is a symmetric linear function of
U. In fact, one can check directly that Q1(U);; = cijUi; (no sum), where ¢ ;
is a symmetric matrix. Thus,

Tr(UQ:(V)) =Tr (Z Uk,jcj,ij,k> =Y UrjcixVix = Tr(@Q(U)V) .
7 ik

13



Hence, DH,y(U) -V = —Tr(VQ:1(U)) and so §Hz/6U = —Q1(U). Using this

fact, write
to obtain |
2 =-wal. (56)

It is checked that these indeed are the three-wave equations. M

6 Connections between the two Hamiltonian structures

The three-wave equations have now been expressed using both the well known
canonical Hamiltonian structure and the Lie-Poisson structure. In this section
the relationship between them is discussed. A recursion relation is also pro-
duced and it is shown to be the same one obtained using the Lax approach.

Second Hamiltonian structure. Modify the Lie-Poisson bracket for the
three-wave equations as follows:

o) = (v |35 35]) 57

in which the first matrix is frozen at Uy, where Uy € su(3)* is independent
of ¢t and is to be specified. Taking 6f/6U and 6k/6U at U, this new bracket
produces the equations of motion,

[

b on =
dt © 55U (58)

By choosing U = iA4 and k o Hj, so that 0k/6U = Q2, where Q- is quadratic
in the g;, we arrive at the three-wave equations. In this way the scaled canon-
ical Hamiltonian structure is obtained directly from the Lie-Poisson bracket.
Compatibility follows since this is a “translation of the argument” of the Lie-
Poisson bracket, where {,} = {, }1(U) + &{, }o(Uo) for an arbitrary real con-
stant €. Both {, }, and {, }o are Poisson Brackets and the Lie-Poisson bracket
with a shifted argument is also a Poisson bracket [31,32]. The two three-wave
brackets are therefore compatible.

14



Recursion relation. Having obtained the Lie-Poisson structure and the
compatibility of the two Poisson brackets the recursion relation for the three-
wave equations are found. Equate the two Poisson brackets and write

L), )= (@)
UO) <ro\ <1 = U1 o\ <rr . (59)
< [6U oU i+l SU’ \6U i
For this relation to hold the Lie brackets,
ok ok
Jj+1 Jj

must also be equal. This is exactly the recursion relation obtained using the
Lax approach. For the three-wave system it is invertible, and a complete set

of (6k/8U); is constructed.

The Lax equations. To demonstrate the connection with the Lax approach
let D, P,Q € su(3) for the decay case and D, P,Q € su(2,1) for the explosive
case, and write ‘

(¢D=[P,DJ], (61)
dD
=10, | (62
Compatibility of these two equations leads to
dP
E+[P’Q] =0. (63)

Let P = i€A+ U and Q™) = ;'V=1 Q;EN-I, where A,U,Q; € su(3) for the
decay case and A,U,Q; € su(2,1) for'the explosive case. Define A to be
A = diag(8, B2, f3) with 3 _, B = 0. The Q; are general elements of the Lie
algebra. As before U maps C°® into SU(3) or SU(2, 1). With this definition for
P (63) becomes

dU

O +i[4,Q™) + [U,Q™] = 0. (64

Now using the series for Q™M) the coefficients of powers of £ yield

dUu
E-i—[U,QN]:O,... (65)

15 -



i[A,Q;] + [U, Qj-1]=0,... (66)
[4,Q0]=0. (67)

The first equation is the integrable three-wave system. The second is the re-
cursion relation. The final equation constrains the @; so that Qo € ker ad.
Letting Q; = (6k/6U); and iA = Uj this is exactly the recursion relation ob-
tained using the method of Poisson pairs. The recursion relation implies that

[U, Q1] = —i[A, @3], so the three-wave equations are also written
auv .
Et— = 1,[A, QQ] . (68)

Carrying out the recursion (65)—(67) explicitly for the three-wave equations
with N = 1 and diag(Q;) = 0 for j > 0, it is found that Qo = diag(8°, 53, B3),

ﬁo_ﬁo 50_50
0 G- It Bs—p, 12
s ﬂO_ﬂO ﬂO_'BO
= F2 M1 73 F2
Qu=t| 55 0 B 5B | (69)

ﬁO _ﬂO ﬁo'__ﬂo

B3—B1 T2 B3—P2 r3 0
and
0 273 143
Q=013 0 T1¢2 | » (70)
T173 172 0
where
_ (B2 — B1)B3 + (By — B3)B3 + (B — B2) ) (71)

(81 = B2)(B1 — Bs) (B2 — 3)

Note that while Qs is cubic in the gk, the recursion terminates with Q4 =0
because the diagonal terms in Q; for j > 0 are set to zero.

With these definitions, dU/dt = i[A, Q] yields

% =1(f1 — P2)0qarTs3 , ' (72)
%qf‘ =1(03 — 1)0q1G3 (73)
%qf =1i(f2 — PB3)0qr1 , (74)
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(75)

which are the three-wave equations in (1) if s;1n = mi (B — B2)o, s272 =
ma(Bs — B1)0, s373 = ma(B2 — Bs)o and 1, = miQi. Notice that the v, sum
to zero as required. These definitions also show that for dU/dt = [@1,U],
ar = (B9 B°)/(Ba—Br), c2 = (B3—B9)/(Bs— ), ez = (B3—2)/ (B3 —F2)- Two
higher-order equations are obtained using Qs; they have cubic and quadratic
coupling terms. For diag(Q;) # 0 j > 0 integrable equations with terms of
higher than quadratic order are obtained.

Conservation Laws and Hamiltonians. The Q; are gradients of Hamil-
tonian functions, and Q; = —8H;/6U, where the Hamiltonians

Hj+1 = _Tr(UQJ)/(] + 1) .

Here, (7 + 1) is the highest power of gx in Hj4,. The cubic Hamiltonian, Hj,
defined here is proportional to the one associated with the scaled canonical
structure from above. The quadratic Hamiltonian, H,, is associated with the

Lie-Poisson structure.

These conserved quantities are found in a number of ways. The method of
Poisson pairs produces invariants and their involutivity. The so called master
conservation law is obtained by showing that the equation

<U,(-i£> = (1,1, D)) (76)
reduces to
4D, U) = €(D, U, Qo) - (77)

Then using the recursion relation and in this case D = Q@ one finds that
d (U, D) /dt = 0. In this way the Hamiltonians

Hy=—3(QuU), Hy=-3(QuU). (78)

arc obtained, where Hy = —20 H3.
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7 Discussion

Equations (61) and (62) provide alternate methods for solving the three-wave
equations. They are used to construct the Lax pair of (63), which are linear
equations for the evolution of an associated eigenfunction. Recall that as D
evolves, its determinant and the values of Trace(D*) remain invariant. Since
the coefficients of the spectral curve,

I'=Det(D —yl)=0, (79)

involve only these quantities I is also invariant. By constructing the Baker-
Akheizer functions of the associated linear spectral problem or by constructing
new coordinates using D, algebro-geometric methods are applied to integrate
the system in terms of theta functions on Riemann surfaces.

Finally, recall that (63) is the Lax equation for P. If P and Q = QM are linear
in € then (63) contains the three-wave equations, as shown above; (63) is then
the so called A-representation for the three-wave equations (see (19,33]). The
three-wave system exhibits a rich Hamiltonian structure that has only been
partially discussed here. Note for instance that this system can be expressed
in terms of the R-matrix representation. Also note that the A-representation
for the three-wave equations is a reduction of the loop algebra associated
with su(3) or su(2,1). A more complete treatment of the general structure of
integrable equations of this type is found for instance in Refs. [31,32,34].

The family of n-wave interactions is connected to the groups SU(n) and
SU(p,q). The structures described above for the three-wave example also
follow for these higher-dimensional groups. Here integrability of the n-wave
interaction on C" is connected with the fact that there are a series of U(1)
subgroups in SU(n) and SU(p,q) that reduce the equations on C" to equa-
tions on surfaces in R®. In Kummer [20] the resonant Hamiltonian system with
n-frequencies was analyzed using the reduction procedure discussed here for
the three-wave system. Using n — 1 independent S 1 symmetries the n-wave
system is ultimately reduced to quadratures. Phase formulas for the recon-
struction then follow. A simple generalization of our phase formulas for the

three-wave system yields ¢ = [A(Z)/2 + nHT/4]/Kx.

Solutions of the three-wave system analyzed here are also traveling wave or
stationary solutions of an integrable partial differential equation (for solu-
tion of the partial differential equation see Refs. [1,6-12] ). In this sense the
integrable structure outlined above generalizes to the structure of the partial
differential equation. More generally, cach integrable system of ordinary differ-
ential equations is associated with a hierarchy of evolution equations through
(61)-(62) by letting ¢ — 8/0z, d/dt — 0/0t and associating D, P, and Q
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with an appropriate group. For instance, the three-wave system is closely con-
nected to the rigid body. The Euler equations are on the real subspace formed
by taking su*(3) — s0*(3). It follows that there is a related real partial differ-
ential equation for which the Euler equations are stationary or traveling wave
solutions.
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Fig. 1. A three-wave surface is drawn in (X,Y, Z,) coordinates for the de-
cay interaction. Trajectories are also drawn showing the phase space of the re-
duced three-wave equations on the three-wave surface when (s1,82,83) = (1,1,1),

(71’72173) = (171a_2)1 and (Kl’KQ) = (2>—1)

Fig. 2. The geometry used to reconstruct solutions in C® from periodic orbits on
the three-wave surfaces is shown.
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