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Abstract
Geometric analysis of wave interactions is introduced to analyze type I and II
quasi-phase-matched second-harmonic generation. Optimum strategies for light con-
version are obtained using this geometric point of view.

Armstrong, Bloembergen, Ducuing and Pershan(1] proposed that by modulating the
sign of the susceptibility of a nonlinear material the phases of interacting light waves could
be manipulated to control the flow of energy among interacting light waves. These ideas
have been particularly successful for efficient conversion of light to the second-harmonic
frequency.[2] In this letter we introduce a new way to understand the dynamics of resonantly
coupled nonlinear waves that generalizes the construction of the Poincaré sphere. We use it
to analyze quasi-phase-matched second-harmonic generation (SHG) and to obtain optimum
conditions for energy transfer among interacting waves.

The geometric approach described here extends the theory of quasi-phase-matching.[1,
2, 3] In addition to generating explicit solutions, it provides a powerful geometric visual-
ization of nonlinear-wave interaction dynamics. It enables a more complete understanding
of techniques for controlling wave interactions and applies to a large class of resonant wave
interactions. Though no approximations are needed beyond the development of the enve-
lope equations themselves, asymptotic analysis is facilitated. The standard theory based
on linear approximation[2] is reproduced and given a geometric interpretation.

1



Type IT SHG among quadratically coupled, resonantly interacting light waves is mod-
eled with the resonant three-wave equations given by[1]
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where each g; is a complex wave amplitude, Ak = k; — ks — k; is the wave-vector mismatch,
and each v; is proportional to the second-order susceptibility, x?. These equations model
type II SHG, where waves one and three at frequency w propagate in different polarization
states. As they interact they generate a third light wave at the second harmonic frequency,
2w. The equations model type I or scalar SHG when all three waves are in the same
polarization state. The equations simplify in this latter case since ¢ = g3 and y; = 7s.

The three-wave equations have a scaled canonical Hamiltonian structure[4] with a cubic
Hamiltonian, H = —(q192G3 + ¢10293)/2 — (Ak/2) ?:1 lgj|*/;, and are written in the
compact form dg;/dz = {g;, H} = —2iv;0H/0g;. The Hamiltonian and the Manley-Rowe
relations, K1 = |q1|?/71 + |@2|*/72, K2 = |@2f* /72 + g3/, K3 = |ai*/m + lgs|?/ s, are
constants of the motion. Any two of the K; with H form a complete and independent set
of conserved quantities in involution, so the system is Liouville-Arnold integrable.

Phase space representations are useful for understanding global properties of dynamical
systems. The three-wave phase space has three complex, or equivalently six real dimen-
sions, and is difficult to visualize. Below, symmetries of Eqs. (1)—(3) associated with the
Manley-Rowe relations are used to reduce the phase space to surfaces in three real dimen-
sions. This reduced representation of the dynamics is then used to visualize and analyze
SHG and quasi-phase-matching.

The Manley-Rowe relations correspond to S' group actions or rotations in complex
three-space, where each of the transformations, (g1,¢2,q3) — (@1 exp(i6), g2 exp(i0), g3),
(a1, @2, 33) — (1, g2 exp(iB), gs exp(i)), and (g1, g2, g3) — (q1 exp(ih), g2, g3 exp(—if)), leave
Egs. (1)-(3) invariant. The coordinates X + Y = qif2q3, Z1 = |@1]* — lg2|?, and Z =
2|2 — |gs?, are also invariants of these S' group actions. They generalize the Stokes
parameters.[5] Letting g; = p; exp(if;), the coordinates X and Y may be regarded as the
components of a vector of length |2p;p2ps| and polar angle = (6; — 05 + 63), where £
is the relative phase of the three waves. The coordinates Z; and Z, measure the intensity
difference between the second-harmonic wave and each fundamental wave, so larger values
of Z, and smaller values of Z; correspond to more light at the second harmonic. For type
I SHG Z, = —Z,. The dimension of the three-wave system is reduced from six to four
by finding the equations of motion for the invariant coordinants (X,Y, Zy, Z;). The linear
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relation between Z;, Z,, and the constants of motion K, K> are used to eliminate either Z,
or Z,, reducing the system to three dimensions. In what follows, the coordinates (X,Y, Z,)

are used (without loss of generality).
Following Kummer[6], the reduced equations are written as follows:

dW,/dz = V¢ - (VW; x VH,) j=1,2,3. (4)

Here the gradient V is taken with respect to W = (X,Y, Z2), and ¢ = (72 + 713)(X 24+
Y?) = k(8 — Z2)(7aK2 + Z2)(72K2 — Zy) , where k = Y1723/ (72 + 7)? and § = 1K) +
v3(K;1 — K3). The Hamiltonian expressed in terms of the invariant coordinates is the
reduced Hamiltonian, H, = —X — (Ak/(72 +73)) (72 + 13) K1 + 72 K> — Z») /2. Expanding
(4), the reduced three-wave equations are written explicitly as

X _Aky (5)
dz

av 8¢

o = AkX+ o (6)
dz

—= = 2n+m)Y. (7)

They reduce to quadratures readily.

From the reduced equations (4), it is evident that ¢ is a constant of the motion. Indeed,
if ¢ is expressed in terms of the wave amplitudes g;, then ¢ = 0 identically. Thus the
reduced dynamics is confined to the three-wave surfaces defined by ¢(X,Y, Z2) = 0. The
family of three-wave surfaces is parameterized by the Manley-Rowe constants K, and K,
the wave-vector mismatch Ak, and the nonlinear coupling coefficients v;. Each is a surface
of rotation about Z,. The reduced Hamiltonian H, is also a constant of the motion.
Thus the trajectories of the reduced equations are curves produced by intersecting the
three-wave surfaces with level sets of H,. Since H, is linear, its level sets are the planes
Zo =mX + (72 + 713) (K1 + 2H,/Ak) + 12 K2, where m = 2(v, +73)/Ak. They are parallel
to the Y axis. ’

In Fig. 1 the reduced phase space for type II SHG is plotted. A typical trajectory
is a closed loop in (X,Y,Z,). Energy is converted from the fundamental to the second
harmonic and back during one trip around the three-wave surface. Points at which the
Hamiltonian planes are tangent to the three-wave surfaces are fixed points. For type I
SHG, a similar surface is obtained, but singularities along (X,Y’) = (0,0) are introduced
as K, — K, that correspond to homoclinic trajectories.

As the slope, m, of the Hamiltonian planes is varied, the qualitative nature of the
dynamics changes. When m is small, the Hamiltonian planes and the orbits on the three-
wave surfaces are nearly horizontal. The linear oscillation captured in Eqs. (5) and (6)
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Figure 1: A reduced three-wave phase space for type II SHG on a three-wave surface.

Here, |m| = 3/5, where (71,72,73) = (—1,—2,-1), Ak = 10.0 and (g1(0), g2(0),¢3(0)) =
(1.0,0.05,1.5).



dominates, and the dynamics is close to that of a driven harmonic oscillator with oscilla-
tion frequency Ak. This limit is achieved for instance when the system is far from phase
matching. In the large-m limit, the orbits are nearly vertical. The nonlinear oscillation
captured in Egs. (6) and (7) dominates, and the dynamics is close to that of a cubic oscil-
lator. When Ak = 0, the homoclinic orbit, where H, = 0, produces maximum conversion.
When Ak # 0, the orbit with the largest variation in Z; produces maximum conversion.[7]
For intermediate values of m a trajectory has components of both the horizontal or linear
oscillation and the vertical or nonlinear oscillation.

Quasi-phase-matching is achieved by alternating the signs of x?) at every half period
of the oscillation cycle, which for small m (the typical case) is half the linear oscillation
period, i.e., the coherence length I, = m/Ak. Just as the second harmonic conversion
saturates and begins to convert back to the fundamental, the direction of conversion is
reversed by inverting the sign of x®. The fundamental can then continue to convert
into second harmonic. To understand quasi-phase-matching geometrically, construct the
initial segment of a composite trajectory by intersecting the three-wave surface with the
Hamiltonian plane corresponding to the initial data. Follow this trajectory for half of
one period to a new position. Now let y; — —v; leaving everything else fixed. This
transformation leaves the three-wave surface unchanged, but it reverses the sign of the
slope of the Hamiltonian planes. To construct the next trajectory, intersect the three-
wave surface with the Hamiltonian plane that passes through the new position after letting
v; = —;. Follow this new trajectory half of one period. Continue this process constructing
a composite trajectory for quasi-phase-matched SHG on the three-wave surface.

In Fig. 2 a type II quasi-phase-matched second-harmonic trajectory is plotted on a
three-wave surface. It was generated by numerically solving Eqs. (1)—(3) and reversing
the signs of the «; after integrating each distance l.. The composite trajectory shown is
the same as that obtained using the geometric construction described above. It spirals
up the three-wave surface towards larger values of Z, as more light is converted to the
second harmonic. The composite trajectory spirals because the direction of the nonlinear
component of the rotation about the three-wave surface is reversed each time the signs of
the 7; are changed while the direction of the linear rotation remains unchanged. A similar
picture is obtained in the case of type I second harmonic generation.

In order to produce maximum conversion from the fundamental to the second harmonic,
choose the initial data at the point on the initial orbit that has the minimum value of Z,.
The maximum change in Z, for that orbit is then obtained after propagating half of one
period. These initial points lie in the plane Y = 0 or = nm, where n = 0,2,4,...
for m > 0 and n = 1,3,5,... for m < 0. Continue the construction of the composite
quasi-phase-matched trajectory as before, changing the sign of the quadratic coefficients
each time the plane Y = 0 is crossed. In a system where the second harmonic starts from
noise, the growth of waves that are initially near the optimum relative phase is largest so
this phase is picked automatically. In systems where the second harmonic is seeded, the
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relative phase must be tuned to achieve optimum conversion.

The optimum conversion efficiency is closely approximated by choosing the initial data
Y =0, X <0 for (y1,72,73) = (—1,—2,—1) and Ak > 0 and taking steps of length [, if m
is small. As shown in Fig. 2, these conditions still produce excellent conversion efficiency
after only 8 layers by choosing I, even when m = —0.3. The nonlinear component of
the oscillation contributes a small shift to the linear period, 2l., as can be seen in Fig. 2.
This shift leads to the eventual saturation of the quasi-phase-matched conversion. As m
increases, the linear period is an increasingly poor approximation to the actual oscillation
period and the quasi-phase-matched conversion saturates after only a few steps of length
l.. At these larger values of m, the signs of the quadratic coefficients must be alternated
at half the nonlinear period to obtain the most efficient quasi-phase-matched conversion.
Because this period varies as the harmonic grows, optimizing the conversion efficiency
requires that the length of the polled sections be varied along the propagation path. If m
is large enough, only a few layers are needed to produce complete conversion. The nonlinear
periods are calculated using standard techniques (see also Ref. [7] for optimization of the
linear mismatch of averaged wave systems). If the length of the polled sections can not be
varied, corrections to both [, and the initial relative phase give the constrained optimum
conversion efficiency for the system.

The strategy for quasi-phase-matched SHG described above is only one of many possi-
bilities for controlling energy flow in resonant wave interactions. For example, the second
harmonic could be generated by moving through a small fraction of an orbit within each
layer of material. In systems that have large m, or are nearly phase matched, this is ac-
complished by changing the sign of the phase mismatch parameter instead of the quadratic
coefficients. This strategy is optimized by taking inital data that has relative phase nearly
equal to Q = nn/2, n = 1,2..., which is the opposite of the condition for conventional
quasi-phase-matching. Geometrically, it corresponds to trajectories that move a fraction of
a period at each step and zig-zag up the side of the three-wave surface along X = 0. Just as
in conventional quasi-phase-matching a relatively small amount of conversion is obtained
in each layer, while the net conversion can be quite large. In contrast to a single layer
of nearly phase-matched material, this scheme introduces the possibility of manipulating
higher-order terms to reduce unwanted effects.

For large m, linear approximations are typically only valid for fractions of an oscillation
period. Only for orbits near fixed points at which a Hamiltonian plane is tangent to a three-
wave surface do the reduced equations linearize, to yield a harmonic oscillator model that
remains valid for times comparable to a period. As noted above, when m is small the orbits
become nearly horizontal and the linear terms in Eqgs. (5) and (6) dominate. The standard
driven harmonic oscillator model described in Ref. [2] is obtained in this limit. It has a
resonance at Ak = 0. By periodically polling the quadratic coefficient at half the linear
oscillation period a kick is introduced, causing the harmonic to grow even though Ak # 0.
This is analogous to pushing a pendulum at half its period. In this small-m limit the

6



=

405 i g o
TR

7
Ly
o o B D T2

® o,
AR

g 58
l§§
by
i

5
oy

&
\}

.

-0.5
0 X
0.5

Figure 2: A composite trajectory with 8 sections of length I, = w/Ak for type II quasi-
phase-matched SHG on a three-wave surface. Here, |m| = 0.3, where (v1,72,73) =

(—1,-2,—1), Ak = 20.0 and (q:(0), g2(0), 3(0)) = (1.0,0.05, 1.5).



Hamiltonian planes generate orbits that are nearly horizontal over the entire three-wave
surface. The driven oscillator model has a large region of validity, remaining valid even at
large conversion efficiency. The oscillation period, therefore, is also well approximated by
21, over a large region of the three-wave surface.

A geometric theory of resonant three-wave interactions has been introduced and used to
analyze quasi-phase-matched SHG. The theory extends to a broad class of resonant wave
interactions and is a key element of a general understanding and analysis of nonlinear con-
trol strategies for them. This analysis underscores the idea that engineering the properties
of dynamical systems can improve the net performance of optical materials.
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