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1 Introduction

A min-max function F : R* — R" is built from terms of the form z; + a, where 1 <7 <n
and a € R, by application of finitely many max and min operations in each component. For
example,

Fy\(z1,z2) = max(min(max(z; + 1,z2 — 1.2), max(z,z2 + 2)), min(z; + 0.5, z2 + 1))
Fy(zy,29) = min(max(z; +7,z2 +4.3), min(z; — 5,z2 — 3)) .

(A different notation is used in the body of the paper; see §1.1.) Such functions are homo-
geneous, Fij(z, + h,---,zn + h) = Fi(z1,---,z,) + h for all 1 < i < n, and nonexpansive
in the £y norm, ||F(Z) — F(9)|| < || — ¢]|.- Functions with these properties have emerged
recently in the work of several authors, (3, 23, 29, 34, 46]. We shall follow Gunawardena and
Keane and call them topical functions. They include (possibly after suitable transforma-
tion) nonnegative matrices, Leontieff substitution systems and Bellman operators of games
and of Markov decisions processes, [24]. They also include examples less well-known to
mathematicians, which arise from modelling discrete event systems, such as digital circuits,
computer networks or automated manufacturing plants. This application is discussed in
more detail in §1.2.

Any topical function T can be approximated by min-max functions in such a way that some
of the dynamical behaviour of T is inherited by its approximations (see Lemma 1.1). In this
paper we study the dynamics of min-max functions, motivated partly by the applications to
discrete event systems and partly by the idea of developing a generalised Perron-Frobenius
theory for topical functions. For any topical function, a (generalised) fixed point—or non-
linear eigenvector—is a vector, £ = (z1,'-+,Zn) € R*, for which there exists h € R, such
that F(£) = (1 + h,---,Zn + h). The cycle time vector, X(F) = limy_,o, F*(Z)/k € R",
which arises as a performance measure for discrete event systems, provides the appropriate
nonlinear generalisation of the Perron root, or spectral radius (see §1.3).

The cycle time vector is believed to exist for all min-max functions. This would be implied
by the Duality Conjecture for min-max functions, first stated in [19], which asserts that
X, when considered as a functional from min-max functions to R*, is “almost” a homo-
morphism of lattices (see Theorem 2.2). The conjecture not only gives the existence of
X but also a method for calculating it in terms of the structure of . One of the main
results of the present paper is a proof of the conjecture in dimension 2 (see §4). For general
topical functions, the situation is more complex. The cycle time does not always exist, {23,
Theorem 3.1], and it is an important open problem to determine when it does, [24].

Unlike the conventional spectral radius, the cycle time is a vector quantity and immediately
gives a necessary condition for the existence of a fixed point. If F' has a fixed point, then
it is easy to see that X(F') exists and that X(F) = (h,---,h): the cycle time must have the
same value in each component. For min-max functions, the Duality Conjecture implies that
the converse is also true:

37 € R*, such that F(Z) = (z; + h,---,zn + h) if, and only if, X(F) = (h,---,h) . (1)

The other main result of the present paper is a new fixed point theorem, equivalent in
strength to (1) but independent of the Duality Conjecture and of the existence of X (see
§3). The proof is based on a min-max analogue of Howard’s policy improvement scheme



for stochastic decision processes (see §3). We recover, as a corollary, Olsder’s fixed point
theorem, [37], which applies to a restricted class of min-max functions.

If F has Lipschitz constant strictly less than 1, so that ||F(Z) — F(%)|| < Al|Z — ]| where
0 < A < 1, then the Banach Contraction Theorem completely determines the dynamics:
there is an unique fixed point to which every trajectory converges at an exponential rate,
[16, Theorem 2.1]. When A = 1, the situation is quite different. The existence of fixed
points alone is a classical problem of nonlinear analysis; very little appears to be known
about the general dynamics.

The metric approach to the fixed point problem for nonexpansive maps has focussed on
finding properties of the ambient Banach space—usually convexity properties—which guar-
antee that every nonexpansive function has a fixed point, [16, Chapter 4]. Because these
properties do not hold for the /. norm, these results are not very relevant here and the
approach we take is different: we seek properties of the function rather than of the space.
(In this respect it resembles the topological approach to fixed points arising from the theo-
rems of Brouwer and Lefschetz.) What is interesting is that the properties turn out to be
dynamical in nature: the cycle time vector is an asymptotic average over an orbit of the
underlying dynamical system.

The methods of the present paper rely on a special class of min-max functions which can
be studied by linear methods, albeit of an unusual nature. This is the class of matrices
over the max-plus semiring, Rmax = RU {—o0}, where addition and multiplication are
defined as max and +, respectively, the latter being distributive over the former (see §1.4).
Matrices over Rpyax (satisfying an appropriate nondegeneracy condition) correspond to min-
max functions in which the min operation is never used. Matrix algebra over Rpyax has
been extensively studied, (2, 11, 12, 31, 36]. Min-max functions can be represented by finite
collections of max-plus matrices and the dynamical properties of the latter, known from the
linear theory over Rmax, can be used to infer those of the former.

The attraction in studying this area stems from the emergence of a single vantage point
from which a number of hitherto distinct problems can be viewed: modelling of discrete
event systems, Perron-Frobenius theory, max-plus matrix algebra, fixed point theorems
for nonexpansive functions, dynamics of nonlinear functions, etc. In view of its recent
origins and the fact that it knits together so many different threads, the remainder of this
Introduction is devoted to amplifying the outline above. In doing so the main concepts will
be introduced and the ground prepared for the main results proved in subsequent sections.
We hope this will give the reader a better sense of the scope of the present work, despite
the resulting increase in its length.

Special cases of min-max functions were studied by Olsder in [37]. Min-max functions
themselves were introduced in [21]. The present paper incorporates the results of (8, 19, 20],
as well as new material. The authors gratefully acknowledge discussions with Michael
Keane, Roger Nussbaum, Geert-Jan Olsder, Jean-Pierre Quadrat, Colin Sparrow and Sjoerd
Verduyn Lunel. This work was partially supported by the European Community Framework
IV programme through the research network ALAPEDES (“The Algebraic Approach to
Performance Evaluation of Discrete Event Systems”).



1.1 Min-max functions

We begin with some notation. Vectors in R® will be denoted Z,a, etc. For vector valued
quantities in general, such as functions F' : X — R", the notation F; will denote component
1. F(z) = (Fi(z),- -, Fu(z)). However, to avoid clutter, we use z; for the components of Z.
The partial order on R will be denoted in the usual way by a < b but it will be convenient
to use infix forms for the lattice operations of least upper bound and greatest lower bound:

aVb = lub(a,bd)
anb = glb(a,b).

(The word “lattice” is used in this paper to refer to a partial order in which any two elements
have a least upper bound and a greatest lower bound, [27, §1.1]. We do not require, however,
that a lattice has a greatest and a least element.) The same generic notation will be used
for lattices derived from R, such as the function space X — R. The partial order here is
the pointwise ordering on functions: f < g if, and only if, f(z) < g(z) for allz € X. If R"
is identified with {1,---,n} — R, this specialises to the product ordering on vectors.

To reduce notational overhead we shall use the following vector-scalar convention: if, in
a binary operation or relation, a vector and a scalar are mixed, the relevant operation is
performed, or the relevant relation is required to hold, on each component of the vector.
For instance, if h € R and £ € R", then Z + h will denote the vector (z; + h,---,zn + h),
and £ = h will imply z; = h for each 1 < 7 < n. Throughout this paper, we shall use h
to denote a real number without specifying so explicitly. Formulae such as £ = h should
therefore always be interpreted using the vector scalar convention.

The notation ||Z]| will denote the £y norm on R": ||Z|| = |z1|V--- V|z,|. f F,G: X — X,
then function composition will be denoted, as usual, by FG: FG(z) = F(G(z)).

Definition 1.1 A min-maz function of type (n,1) is any function f : R®* — R!, which can
be written as a term in the following grammar:

f:=$1’$2""a$nlf+a|f/\f|fvf (GER)- (2)

The notation used here is the Backus-Naur form familiar in computer science. The vertical
bars separate the different ways in which terms can be recursively constructed. The simplest
term is one of the n variables, z;, thought of as the i-th component function. Given any
term, a new one may be constructed by adding a € R; given two terms, a new one may be
constructed by taking a greatest lower bound or a least upper bound. Only these rules may
be used to build terms. Of the three terms

((((zy +2) V(z2 — 0.2)) Az3) V (22 +3.5)) — 1
3 V2
(z1+ 22) A (73 + 1)

the first is a min-max function but neither the second nor the third can be generated by (2).



We shall assume that + has higher precedence than V or A, allowing us to write the first
example more simply:

(((IL‘l+2V:132—0.2)/\.’ZI3)V:1:2+3.5)—1.

Although the grammar provides a convenient syntax for writing terms, we are interested in
them only as functions, R* — R. Terms can therefore be rearranged using the associativity
and distributivity of the lattice operations, as well as the fact that addition distributes over
both A and V. The example above can hence be simplified further to

(z1+1Vzo+25)A(z3—1Vza+25).

It is clear that any term can be reduced in a similar way to a minima of maxima, or, dually,
a maxima of minima. We shall discuss the corresponding canonical forms in §2.

Definition 1.2 ([21, Definition 2.3]) A min-maz function of type (n,m) is any function
F :R* - R™, such that each component F; is a min-maz function of type (n,1).

The set of min-max functions of type (n,m) will be denoted MM(n, m). We shall mostly
be concerned with functions of type (n,n), which we refer to as functions of dimension n.
It is convenient to single out some special cases. Let f € MM(n,1). If f can be represented
by a term which uses V but not A, it is said to be max-only. If f requires A but not V, it is
min-only. If f is both max-only and min-only, it is simple. The same terminology extends
to functions F' € MM(n, m) by asking that each component F; has the property in question.
If F € MM(n,m) and each F; is either max-only or min-only, F is said to be separated. Of
the following functions in MM(2, 2),

g [ T+l ro m2+1 U= Ty +1Vze+1 ,
T2 —1 9 —1 )+ 2
S and T are both simple, U is max-only, S AT is min-only and (S VT) AU is separated.

Proposition 1.1 Let F,G € MM(n,n) and G,Z,§ € R* and h € R. The following hold.

1. F+a, FG, FVG and F AG all lie in MM(n,n).

2. Homogeneity: F(Z + h) = F(Z) + h. H
3. Monotonicity: if T < ¢ then F(Z) < F(3). M
4. Nonexpansiveness: ||F(Z) — F(§)|| < [I£ — 7l N

The first three parts follow easily from Definition 1.2, while the fourth is a consequence of
the following observation of Crandall and Tartar, [10].

Proposition 1.2 If F : R* — R" satisfies H then M is equivalent to N.



(See [23, Proposition 1.1] for a proof adapted to the present context.) MM(n,n) forms a
distributive lattice under V and A. The interplay between function composition, F'G, and
the lattice operations, F'V G and F A G, forms the backdrop for much of what we study.

The nonexpansiveness property is very significant in constraining the dynamics of min-
max functions. Let w(Z) denote the omega limit set of the orbit of Z: the set of limits of
subsequences of F¥(Z) as k — .

Theorem 1.1 ([35, 42]) Let F : R* — R satisfy property N and choose £ € R*. If w(Z) is
compact then it is finite and there is a bound on its size which depends only on n.

In particular, nonexpansive functions cannot have periodic orbits of arbitrarily large size.
Determining the optimal upper bound remains an important open problem. Nussbaum’s
Conjecture asserts that it is 2", which has been verified only up to n = 3, [30]. (It follows
from the Aronszajn-Panitchpakdi Theorem, [1], that there are periods of size 2™ in dimension
n.) Blokhuis and Wilbrink have given an attractive short proof that (2n)" is an upper
bound, [4]. Nussbaum’s survey, [33], should be consulted for more details. For min-max
functions, there are periodic orbits of size "C[%] in dimension n and this is conjectured to
be best possible, [24].

The monotonicity property is also known, at least in the context of flows, to have a constrain-
ing influence on dynamics, [25, 43]. The relationship between these various “constraints on
dynamics” has yet to be properly explored.

The homogeneity property suggests a modification of the conventional notion of fixed, or
periodic, point.

Definition 1.3 Suppose that F : R* — R" satisfies property H. We say that £ € R" is a
fized point of F, if F(Z) = £ + h for some h € R, and that £ is a periodic point of F' with
period p, if £ is a fized point of FP, but not of F* for any 0 < k < p.

A fixed point of F in this sense is a fixed point of F' — h in the conventional sense. Unless
otherwise stated, the phrases “fixed point” and “periodic point” will have the meaning given
by Definition 1.3 throughout this paper.

Min-max functions first arose in applications and these applications continue to provide
important insights. In the next two sub-sections we review this material.

1.2 Discrete event systems

A discrete event system is, roughly speaking, a system comprising a finite set of events
which occur repeatedly. For instance, a digital circuit, in which an event might be a voltage
change on a wire, from binary 1 to 0 or vice versa; or a distributed computer system, in
which an event might be the arrival of a message packet at a computer; or an automated
manufacturing plant, in which an event might be the completion of a job on a machine.
Discrete cvent systems are ubiquitous in modern life and the focus of much current interest
in engincering circles, [2, 9, 15, 26]. They are dynamical systems, in the sense that they
cvolve in time, but their analysis leads to quite different mathematics to that used to model
dynamic behaviour in continuous and differentiable systems.

ot



If n is the number of events in the system, let Z € R* be such that z; is the time of
first occurrence of event i, relative to some arbitrary origin of time when the system is
started. Suppose that the system can be modelled in such a way that, for some function
F :R* = R*, F;(Z) gives the time of next occurrence of event 7. In this case the dynamic
behaviour of the system can be modelled by the discrete dynamic system F.

It might be thought that such a model is so simplified as to not occur in practice. It turns
out, however, that the problem of clock schedule verification in digital circuits leads directly
to a model of this kind. To each such circuit may be associated an element F' € MM(n,n),
where 7 is one more than the number of storage latches. (Circuits may have as many as 104
latches.) The clock schedule verification problem may be solved by finding a fixed point of
F. We shall not discuss this application further here; the reader should consult [18, 40, 45]
for more details. It does suggest, however, the importance of understanding the fixed points
of min-max functions. This is one of the main concerns of the present paper.

Notwithstanding this application, it is clear that the model outlined above is severely re-
stricted. It can be broadened considerably in several ways. First, by using the semigroup
generated by a set of functions, {F(a) | « € A}, [13, 41]. This allows for the possibility
of nondeterminism: if the system is in state Z, it may evolve to any of the states F(a)(Z).
For instance, demanding £20 from an automatic cash machine may sometimes result in two
ten pound notes and sometimes in one ten and two fives. A second extension comes by
taking F(a) to be a random variable from some suitable measure space into the space of
allowed functions. This permits stochastic behaviour to be modelled. In a digital circuit it is
conventional to consider only the maximum or minimum delays through a component (the
manufacturer provides a data book which lists these values) but in a distributed computer
system the time taken by a message packet will vary widely and a probabilistic approach is
more appropriate, [2, Chapter 7], [39]. Finally, one can choose a sufficiently broad class of
allowed functions. Proposition 1.1 suggests a class which appears very suitable.

Definition 1.4 ([23, Definition 1.1]) A topical function is any function F : R* — R*
satisfying properties H and M.

Property H may be interpreted as saying that the origin of time is irrelevant, property M
as saying that if times of occurrence are delayed, then the times of next occurrence cannot
be sooner. These are intuitively very reasonable and are observed in some form in most
discrete event systems. Recent work has suggested that “semigroups of random topical
functions” are both mathematically tractable and capable of modelling a wide variety of
discrete event systems, [3, 46].

What role do min-max functions play within the class of topical functions? In turns out
to be an unexpectedly central one, as shown by the following observation of Gunawardena,
Keane and Sparrow.

Lemma 1.1 ([24]) Let T : R* — R" be a topical function and let S C R™ be any finite set
of points. There ezists H € MM(n,n) such that T < H and T(4) = H(4) for allu € S.

It follows that min-max functions approximate topical functions, not only in the topological
sense that MM(n, n) is dense in the set of topical functions (in the compact-open topology),
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but also in a lattice theoretic sense: any topical function is the lower envelope of a family
of min-max functions. More importantly, this approximation preserves some aspects of the
dynamics. Using the notation of Lemma 1.1, it follows from property M that Tk < H*. In
particular, the cycle time vector of T’ will be bounded by that of H (provided both exist).
It also follows from Lemma 1.1 that every periodic orbit of a topical function is the orbit
of some min-max function. Lemma 1.1 and its consequences provide one of the principal
motivations for the present paper: to study min-max functions as a foundation for analysing
topical functions.

We have presented topical functions as arising naturally from attempts to find a mathe-
matical model for discrete event systems. However, they also have intrinsic mathematical
interest because they include a number of classical examples which have been extensively
studied in quite different contexts.

1.3 Topical functions and cycle times

Let RT denote the positive reals: R* = {z € R | £ > 0}. The whole space, R*, can be
put into bijective correspondence with the positive cone, (R*)", via the mutually inverse
functions exp : R* — (R*)™ and log : (R*)™ — R*, which do exp and log on each component:
exp(Z); = exp(z;), for T € R*, and log(Z); = log(z;), for £ € (R*)". Let A be any n x n
matrix all of whose entries are nonnegative. Elements of R” can be thought of as column
vectors and A acts on them on the left as AZ. We further suppose the nondegeneracy
condition that no row of A is zero:

V1<i<n, 31 <j<n, suchthat A;; #0. (3)

In this case, A maps the positive cone onto itself, A : (R*)™ — (R*)™. Let £(4) : R* = R"
denote the conjugate £(A)(Z) = log(A(exp(Z))). Clearly, £(AB) = £(A)E(B), so that the
dynamics of A and £(A) are entirely equivalent.

The point of this is that £(A) is always a topical function: property H is the additive
equivalent of the fact that A commutes with scalar multiplication, while property M follows
from the nonnegativity of A. We see that the dynamics of topical functions includes as
a special case that of nonnegative matrices; in other words, Perron-Frobenius theory. It
can be shown that a number of classical examples in optimal control, game theory and
mathematical economics also give rise to topical functions. The geography of the space of
topical functions is discussed in more detail in [24].

If £ € R" is a fixed point of £(A), so that £(A)(Z) = Z + h, then exp(Z) is an eigenvector of
A with eigenvalue exp(h). Fixed points of £(A) therefore correspond bijectively to positive
eigenvectors of A. That is, to eigenvectors lying in the positive cone. What about the
eigenvalue? Can this also be generalised to the nonlinear context? The clue to doing this
came from the applications.

A frequent demand from system designers is to estimate performance, [5, 18]. If the system
can be modelled by a single function, F : R® — R", as described above, an estimate can
be made on the basis of the time elapsed between successive occurrences: F(Z) — £. Better
still is an average over several occurrences:

(F¥(Z) - F*Y&) +-- -+ F(Z) - ©)/k.



Letting k — oo, we get limg_,oo F*(Z)/k. This is a vector quantity, which measures the
asymptotic average slowness in each component. Does this limit exist?

Lemma 1.2 Let F : R* — R satisfy property N. If limy_,oo F*(Z)/k exists somewhere,
then it exists everywhere and has the same value.

Proof Suppose that limy_,o F*(Z)/k = @ and let 7 be another point of R*. Choose ¢ > 0.
By property N, for all sufficiently large k,

@ — F*@)/kll < ll@ — F*(@)/kll + |F*(2)/k = F*(§)/kll < e+ 1|2 — §ll/k -
From which the result follows immediately.
O

Definition 1.5 Let F : R* — R" satisfy property N. The cycle time vector of F, denoted
X(F) € R*, is defined to be
lim F*(Z)/k (4)
k—o0

when this limit ezists for some T € R*, and to be undefined otherwise.

Suppose that F = £(A) and that A has a positive eigenvector with eigenvalue A. (Perron-
Frobenius tells us that A is real and equals the spectral radius of A.) It then follows, as
above, that X(£(A4)) = log()\). We see from this that X is a nonlinear vector generalisation of
the spectral radius. It can be shown that if A is any nonnegative matrix satisfying (3) then
X exists and can be determined in terms of the spectral radii of the irreducible components
of A, [24]. Indeed, by using £~! on (4), we see that the cycle time vector corresponds to
the usual spectral radius formula, albeit disintegrated into individual components.

The cycle time vector immediately yields a necessary condition for a fixed point. Suppose
that F is a topical function with a fixed point, so that F(Z) = £+h. By repeated application
of H, we see that F¥(Z) = 7 + k.h. Hence, X does exist and X(F) = h. We recall by the
vector-scalar convention that this means each component of X(F') has the same value h.
By Lemma 1.2, h is independent of the choice of fixed point and is characteristic of the
function; we shall calculate its value in Proposition 2.2. There is extensive evidence that,
when F is a min-max function, the converse result, (1), also holds. As discussed earlier,
this would follow from the Duality Conjecture which is stated in §2.

It can be shown that the cycle time vector exists for all topical functions in dimension 2,
[23], in particular, for min-max functions. Sparrow has shown further that any min-max
function in dimension 3 has a cycle time vector, [44]. However, these results do not give the
Duality Conjecture and do not yield methods for calculating X.

It is not the case that all topical functions have cycle times, [23, Theorem 3.1], and it is a
major open problem to identify those that do, [24]. Furthermore, one cannot expect such a
strong fixed point theorem as (1) even for those topical functions that do have cycle times.

If
11
then X(£(A)) = (0,0) but A does not have a positive eigenvector. This example raises a

number of issues which take us beyond the scope of the present paper and we defer further
discussion to [24].






1.4 Max-only functions and max-plus matrices

It should be clear from the remarks before Definition 1.2 that if f € MM(n, 1) is max-only,
it can be reduced to the form

f=z14+a1V---Vzp+an

where the absence of a term z; + a; is indicated by setting a; = —oco. This can be thought
of as an element adjoined to R which is less than any real number and acts as an absorbing
element for addition: a + (—o00) = —oo. Hence, if F € MM(n,n) is max-only, it can be
represented by a matrix A with entries in RU {—o0}:

Fi = my+AnV---Vzp+An

o : (5)
F, = z10+AnV---Vzo+Anp,.

Since each component of F' must have some value, A satisfies a nondegeneracy property
formally similar to (3):

Vi1<i<n, 31 <j<n, suchthat A;; # —c0. (6)

Suppose that the algebraic operations on RU {—oo} are now redefined so that the sum
operation becomes maximum and the multiplication operation becomes addition. The el-
ement —oo then becomes a zero for sum, while 0 becomes a unit for multiplication. Since
addition distributes over maximum, this forms a semiring, called the max-plus semiring,
and denoted Rpmax. If vectors in R® are thought of as column vectors, (5) can be rewritten

as a matrix equation
F(z) = Az (7)

in which the matrix operations are interpreted in Rmax. It follows that F¥(£) = A*Z and
the dynamics of F reduce to matrix algebra, albeit of an unusual sort. We have, in effect,
linearised an apparently nonlinear problem.

Cuninghame-Green was perhaps the first to realise the implications of matrix algebra over
max-plus, [11]. Since that time the idea has been rediscovered and redeveloped several
times and there are now several standard texts on the subject, [2, 6, 12, 31, 48]. For a
recent overview, see [14].

In this paper we shall not adopt max-plus notation. That is, + and x will always have
their customary meanings. We shall use V and + for the corresponding max-plus operations.
Similarly, 0 will always have its customary meaning and we shall use —oo for the zero in
Rmax. If A and B are, respectively, n X p and p x m matrices over Rmax, then AB will
always mean the matrix product over Rpyax:

(AB)i; = \/ Aix + Axj -
1<k<p

(Recall that + has higher precedence than V.) The customary ordering on R extends to
Rmax in the obvious way, so that —oco < z for all £ € Rmax. The same symbol is used for
the product ordering on vectors: if Z,5 € (Rmax)" then Z < 7 if, and only if, z; < y; for



all . An n X n matrix over Rpmax, A, acts on the whole space (Rmax)™ and it is easy to
see that it is monotonic with respect to the product ordering: if Z < ¢ then AT < Ay. We
recall that £ € (Rmax)” is an eigenvector of A for the eigenvalue h € Rpax, if AT = Z + h.
If A satisfies the nondegeneracy condition (6), so that A can also be considered as a min-
max function, then fixed points of A correspond bijectively to eigenvectors of A lying in
R". (This restriction is formally similar to that needed for nonnegative matrices and their
eigenvectors in §1.3.) In this paper, the word “eigenvector” will indicate an element of
(Rmax )™ while the phrase “fixed point” will imply that the element in question lies in R".

We need to recall various standard results in max-plus theory. The reader seeking more
background should consult [2, Chapter 3].

Let A be an n X n matrix over Rpax. The precedence graph of A, denoted G(A), is the
directed graph with labelled edges which has nodes {1,---,n} and an edge from j to 1 if,
and only if, A;; # —oo. The label on this edge is then the real number A;;. (Some authors
use the opposite convention for the direction of edges.) We shall denote an edge from j to i
by 7 + j. A path in this graph has the usual meaning of a-chain of directed edges: a path
from 4., to 4 is a sequence of nodes 41, - -, i, such that 1 <m and i; < 44, for1 < j <m.
A circuit is a path which starts and ends at the same node: 7; = i,,. A circuit is elementary
if the nodes i;,--,%,,—1 are all distinct. A node j is upstream from %, denoted ¢ < j, if
either ¢ = j or there is a path in G(A) from j to i. (A node is always upstream from itself.)
A circuit g is upstream from node ¢, denoted i < g, if some node on the circuit is upstream
from :. The weight of a path p, |p|w, is the sum of the labels on the edges in the path:

-1
lplw = Z Aijijp-
Jj=1

It follows from this that matrix multiplication has a nice interpretation in terms of path
weights: A is the maximum weight among all paths of length s from j to ¢. The length
of a path, |p|e, is the number of edges in the path: |p|e = m — 1. If g is a circuit, its cycle
mean, denoted m(g) is defined by m(g) = |g|w/|gle- If A is an n X n matrix over Rpyay, let
1(A) € (Rmax)™ be defined by

pi(A) = max{m(g) | i < g}. (8)

This is well defined: although there may be infinitely many circuits in G(A), only the
elementary ones are needed to determine p(A). By convention, the maximum of an empty
set is taken to be —oo. Hence, if there are no circuits upstream from node i1, p;(A) = —co.
If A satisfies the nondegeneracy condition (6) then every node has an upstream circuit and
so u(A) € R*.

It is convenient at this point to single out the functions t,b : R® — R given by

t(Z) = z1V---Vz,
b(Z) = ziA---Az,.
If ¢ is any vector valued quantity, we shall often simplify this notation by writing tc and be

in place of t(c) and b(c), respectively. It follows from (8) that tu(A) is the maximum cycle
mean over all circuits. A critical circuit is an elementary circuit with cycle mean tu(A).

10



Before proceeding further, it may be helpful to see an example. The max-only function

Fi(z1,22,23) = z2+2Vz3+5
Fy(zy1,72,23) = z2+1 9)
F3(z1,z2,23) = z1—1Vza+3

has associated max-plus matrix, precedence graph and p vector shown below

1

.
-0 2 5 2
-0 1 —oo 2 N . (10)
-1 3 —oo- 5 2
1 3
-1

The maximum cycle mean is 2 and 1 + 3 +— 1 is the unique critical circuit.

—

Proposition 1.3 If F € MM(n,n) is maz-only and A is the associated matriz over Rmax,
then X ezists and X(F) = u(A).

Proof Let pu;(A) = h. Suppose initially that h = 0 and consider the sequence of numbers
a(s) = (A°0);. It follows from one of the remarks above that we can interpret a(s) as
the maximum weight among paths in G(A) of length s which terminate at node 1. If we
consider any path terminating at node 1 then the only positive contribution to the weight
of the path can come from those edges which are not repeated on the path: a repeated
edge would be contained in a circuit, whose contribution to the path weight is at most 0.
Since there are only finitely many edges, the weight of any path must be bounded above by
2 4,;>0 Aij- Hence a(s) is bounded above. Since h = 0, we know that there is some circuit
upstream from node 1 whose weight is 0. Call this circuit g. For s sufficiently large, we can
construct a path, p(s), terminating at node 1 whose starting point cycles round the circuit
g. The weight of this path can only assume a finite set of values because |g|w = 0. Since
a(s) is the path of maximum weight of length s, it follows that a(s) > |p(s)|w and so afs)
is also bounded below. We have shown that there exist m, M € R such that, for all s > 0,
m < a(s) < M. It follows immediately that lim,_,o (s)/s = 0. Hence,

sli{go(Fs(ﬁ))l/S = u1(4).

If h # 0 then replace F by G = F — h. G is also a max-only function and if B is its
associated matrix, then B;; = A;j — h. Hence p;(B) = 0 and we can apply the argument
above to show that lims_,c(G*(0))1/s = 0. But since F = G + h, it follows from property H
that lime— e (F°(0))1/s = h = u1(A). The same argument can be applied to any component
of F and the result follows.

O

If F, has a fixed point, so that F(Z) = Z + h, then h = pu(A). In particular, A = tu(4),
the maximum cycle mean over all circuits in G(A). This is the eigenvalue associated to any

11



eigenvector of A lying in R". It is the analogue for max-plus matrices of the Perron root,
or spectral radius, for nonnegative matrices, [2, Theorem 3.23].

Suppose that A is an n x n matrix over Rpax. Suppose further that tu(A) = 0, so that all
circuits of G(A) have nonpositive weight. Since any path p in G(A), with |p|; > n, must
contain a circuit, it is not difficult to see that

(A%)ij S Ay V-V (A");5 (11)

for all s > n. Let (A*);; = sup{(A®);; | 1 < s}, which is well defined as an element of Ryax
by the previous observation. (It is well-known in max-plus theory that, At = Av ... v A",
[2, Theorem 3.20], but we shall not need this here.) Note that it is still possible for (A*);; =
—00, since it may be the case that there are no paths from j to <. Let C(4) C {1,---,n}
be the set of those nodes of G(A) which lie on some critical circuit. Let P4 be the Rpyax
matrix defined as follows:

Paij= V AN+ (A%)y . (12)
ueC(A)

P4 is sometimes called a spectral projector, (2, §3.7.3]. Part 3 of Lemma 1.4 will show that
it encapsulates information about the eigenvectors of A.

The next lemma is a standard result in max-plus matrix theory.

Lemma 1.3 ([2, Theorem 3.105]) Suppose that A is an n X n matriz over Rmax such that
tu(A) =0. Then (P4)A = A(PA) = P4 and (PA)2 = Py4.

The next lemma collects together a number of useful observations. Some of them are well-
known in max-plus theory, [2, Chapter 3|, but none of them appear in a convenient form in
the literature.

Lemma 1.4 Suppose that A is an n X n matriz over Rpax such that tu(A) = 0. Suppose
further that Z,§ € (Rmax)™. The following statements hold.

1. If AZ < 7 then PAZ < .

AZ = Z if, and only if, PoZ = Z.

The image of P4 : (Rmax)™ = (Rmax)™ s the eigenspace of A for the eigenvalue 0.
IfAZ =%, Ay=9 and z; = y; for all 1 € C(A), then T = 7.

Ifi € C(A) then (Pa)i = 0.

S B e

If AT < ¥ then (AZ); = z; for all i € C(A).

=

If u(A) =0 then P4 : R* — R*.

12



Proof 1. Since AT < i’, it follows that A*Z < £ and so ATZ < Z. Hence (A*)uj +z; <
(A*%), < z,. Choose 1 <17 < n. Then, by (12), (P4Z); < Vuec(A)(AJr),-u +1z, < (ATE); <
z;. Hence P4Z < T as required.

2. If PoZ = £ then it follows immediately from Lemma 1.3 that AT = Z. So suppose that
AZ = Z. By part 1, PoZ < Z. Choose 1 < i < n. If z; = —o0, then certainly (PaZ); = z;,
so we may assume that z; > —oco. For each s, £ = A°Z. Hence there exists 1 < j < n such
that z; = (A%)i; + zj. (A%);; is the weight of some path of length s from node j to node i.
If we choose s = n, then this path must contain a circuit g. It is not difficult to see that,
because z; > —oco, we must have m(g) = 0. It follows that there exists v € C(A) such that,
for some s, z; = (A°)iy + z,. But then,

z; < (A+)iv +z, < \/ (A+)iu +zy < (A+-'f)i =z,
ueC(A)

the last equality holding because 7 is evidently an eigenvector of AT. It follows that
T; = VueC(A) (A%)iy + z,. Hence, by (12), (PaZ); = VuGC(A)(A+)iu + (A*%), = z;. Hence
PiT =1Z.

3. According to Lemma 1.3, (P4)? = P 4. Hence the image of P4 coincides with the set of
eigenvectors of P4. By part 2, the eigenvectors of P4 are exactly the eigenvectors of A.

4. Choose 1 < i < n. Since Z and 7 are eigenvectors of A4, they are also eigenvectors of A™.
Hence, since z, = y, for all u € C(A),

Paf)i= V ANa+za= V (AN +yu=(Pad)i -
ueC(A) ueC(A)

By part 2, £ =y.

5. If i € C(A) then there exists some k such that (A¥);; = 0. Hence (A*);; = 0. It then
follows from (12) that (P.4):; = 0.

6. Since AZ < 7 it follows that A*Z < A¥~1Z. Hence, by (11), A*Z < AT < . If i € C(A)
then as in the previous part, (A*);; = 0. Hence, z; = (A%)ii + z; < (AT Z); < z;. It follows
that (AZ); = z; as required.

7. If u(A) = 0 then there must be a critical circuit upstream from every node of G(4).
Hence, for any 1 < i < n, there exists some k € C(A), such that A;z > —oo. It follows
from Lemma 1.3 and part 5 that (P4)ix > Aix + (Pa)kxk > —oo. Hence P4 : R* — R, as
required.

O

Proposition 1.4 Let F € MM(n,n) be maz-only. The fized point result (1) holds for F.

Proof If F has a fixed point then clearly X(F) = h. So suppose X(F') = h. Assume first
that » = 0. Let A be the max-plus matrix associated to F'. By Proposition 1.3 we see
that p(A) = 0 and, in particular, tu(A) = 0. Let ¢ = P4(1,---,1). By Lemma 1.3, C'is
an eigenvector of A with eigenvalue 0. Furthermore, since u(A) =0, part 7 of Lemma 1.4
shows that ¢ € R". Hence F has a fixed point. If h 7 0 then the same reasoning shows that
(F — h) has a fixed point: (F — h)(¢) = ¢. Hence, F(C) = ¢+ h, as required.

13



O

Dual results to those above hold for min-only functions. To each such function is associated
a matrix over the min-plus semiring: Rpin = RU {+00} with minimum as sum and addition
as multiplication. Rmi, is isomorphic, as a semiring, to Rmax and any result holding over
one of them has a dual over the other in which the roles of max and min are interchanged.
We leave it to the reader to formulate these and any associated definitions; we shall not
state them separately. It will be helpful, however, to use a different notation for the dual of
the p-vector. If B is an n X n matrix over Rmin, which satisfies the (dual) nondegeneracy
condition (6), n(B) € R* will denote the vector of minimun upstream cycle means in G(B):

ni(B) = min{m(g) | i < g}.

If F is the corresponding min-only function, then by Proposition 1.3, X(F) = n(B).

With this extended preparation we are finally in a position to study the main concerns of
the present paper: the existence and calculation of the cycle time for min-max functions
and its relationship to fixed points.

2 The Duality Conjecture

Definition 2.1 Let F € MM(n,m). A subset S C MM(n,m) is said to be a maz-representation
of F if S is a finite set of maz-only functions such that F = Ay H.

It should be clear from the remarks before Definition 1.2 that every min-max function has a
max-representation and a (dual) min-representation. Since we know the cycle time vectors
of max-only functions, we can approximate that of F. Suppose that X(F) exists. For any
H e S, F < H. By property M, X(F) < X(H). Hence,

X(F) < N\ X(H). (13)
HeS

The difficulty with this is that there may be different max-representations of . The min-

max function _
(z2+2Vz3+5)Azx

Fl (I1,$2,$3)

F2(.’ZZ1,222,:L'3) = zo0+1Az3+2 (14)
F3(z1,22,23) = 71 —-1VzZ2+3
has both the max-representation
T04+2Vz3+5 T,
zo+ 1 , T3 + 2
) —1Vzo+3 Ty —1Vzo+3
and the max-representation
To+2Vz3+5 T
T3+ 2 s To +1
T;—1Vzo+3 Ty —1Vzo+3
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The cycle time vectors of the constituent max-only functions can be calculated by the
methods of the previous section. We leave it to the reader to show that they are, in the
order in which they appear above,

2 0 2.5 0
14, 25 and 25 |, 1
2 2.5 2.5 1

It follows that the estimate (13) gives, for the first max-representation, (0,1, 2), while for
the second, (0,1,1).

To get the best estimate, the information in all the max-representations of F' must be used.
Observe that the set of min-max functions MM(n,m) has a natural representation as an
m-fold Cartesian product: MM(n,m) = MM(n,1) X --- x MM(n,1). If SC 4] x --- x Ap,
is a subset of such a Cartesian product, let m;(S) C A; denote its projection on the i-th
factor. :

Definition 2.2 The rectangularisation of S, denoted Rec(S), is defined by
Rec(S) = m1(S) x -+ X mn(S).
S is said to be rectangular if S = Rec(S).

It is, of course, always the case that S C Rec(S). It is also clear that m;(S) = m;(Rec(S)).
It follows that, if S C MM(n,m) is finite, then

ANH= A\ H and \VH= \/ H, (15)

HeS HeRec(s) HeS HeRec(s)

since the partial order on MM(n,m) is defined componentwise. Furthermore, if S contains
only max-only functions, then so does Rec(S). It is worth observing that neither of the
max-representations used above were rectangular.

Suppose that S C P, where (P, <) is a partially ordered set. Denote by Min(S) the subset
of least elements of S,

Min(S)={zeS|yeS, y<z = y=xz},

and by Max(S) the corresponding set of greatest elements. If z € S, then there exists
u € Min(S) and v € Max(S) such that u <z < v.

Now suppose that P is a product partial order: P = A} X --- x A, with the partial order
on P defined componentwise from those on the A;.

Lemma 2.1 Let S; C A; be finite subsets for 1 <1 <m. Then

Min(S; X --- x S;) = Min(Sy) X -+ - x Min(Sp,) .
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Proof It is clear that both L = Min(S; x --- x S;;) and R = Min(S}) x --- x Min(S,,) are
irredundant: no two elements are related by the partial order. If z € S} x --- x S,,, then,
by definition of the least element subset, we can find u € L such that u < z. By a similar
argument on each component, we can find v € R such that v < z. It follows easily that
L=R.

O

Theorem 2.1 Let F € MM(n,m) and suppose that S,T C MM(n,m) are rectangular maz-
representations of F. Then Min(S) = Min(T). ’

Proof For m = 1 this is a restatement of one of the main results of an earlier paper,
which asserts the existence of a canonical form for min-max functions, [21, Theorem 2.1].
Now suppose that m > 1. Since 7;(S) and 7;(T') are evidently max-representations of Fj,
it follows from the first case that Min(m;(S)) = Min(m;(T)). But then, since S and T are
rectangular, it follows from Lemma 2.1 that

Min(S) = Min(m1(S)) x - - x Min(m,(S)) = Min(m(T)) X - - x Min(mm(T)) = Min(T),

as required.

O

Corollary 2.1 Let F € MM(n,n) and suppose that S,T C MM(n,n) are rectangular maz-
representations of F. Then
A\ X(H) = A\ X(G).

HeS GeT

Proof Since X is monotonic, it must be the case that AreMinis) X(H) = Ages X(H). The
result follows immediately from Theorem 2.1.

O

The max-representations used for example (14) have identical rectangularisations, obtained
by taking the union of the two representations. The best estimate for the cycle time, on
the basis of Coroliary 2.1, is therefore X(F) < (0,1,1).

Such calculations suggest an approach to proving the existence of X. Suppose that F €
MM(n,n) and that S, C MM(n,n) are, respectively, a max-representation and a min-
representation of F. Choose £ € R® and € > 0. If G € T and H € S, then G* < F* < H.
Hence, for all sufficiently large s, X(G) — € < F*(Z)/s < X(H) + €. It follows that, for all
sufficiently large s,

(\/ X(G))-—e < %@1 < (/\ X(H)>+e. (16)

GeT HeS

It is natural, in the light of this, to make the following guess, which is supported by extensive
calculations.

16



Conjecture 2.1 (The Duality Conjecture) Let F € MM(n,n). Suppose that S,T C
MM(n, n) are rectangular maz and min-representations, respectively, of F'. Then,

\V X(G)= A X(H). (17)

GeT HeS

The implication of this should be clear from (16). We record it below for future reference.

Lemma 2.2 If the Duality Conjecture holds for F then X(F) ezists and has the value

\V X(G)=Xx(F)= / X(H). (18)

GeT HeS

Consider once again example (14), for which we have already shown that the right hand
side of (17) is (0,1,1). A min-representation can be constructed from (14) by using the
distributivity of A over V to interchange the two operations in Fi:

F1($1,$2,$3) = (1:1 N\ To +2) \% (2:1 A x3 +5).

A rectangular min-representation of F' is then given by

Ty Azo+ 2 Ty Az3+ 5 Ty Ao+ 2 T Az3+5
To+1Az3+2 | zo+1AZ3+2 |, | zo+1AZ3+2 |, | z2+1AZ3+2
T, —1 o+ 3 To+3 zy—1

and we leave it to the reader to show that the corresponding cycle time vectors are

0 0 0 0
o, 1|, 1{,10
0 1 1 0

It follows that the left hand side of (17) is also (0, 1,1), confirming the Duality Conjecture.
The calculation gives very little hint as to why the same numbers come out at the end
but we have at least shown that X exists for example (14) and equals (0,1,1). (In fact,
we already knew from Sparrow’s result, [44], that X(F') exists but we did not know how to
calculate it. The existence of the cycle time vector does not imply the Duality Conjecture.)

It is easy to see that at least half of (17) must always be true. Under the same assumptions
as Conjecture 2.1, choose G € T and H € S. Since G < H, X(G) < X(H). Hence,

V x(G) < A\ x(H) (19)

GEeT HeS
In two dimensions, it can be shown by a direct calculation that the Duality Conjecture is
true. We shall give the proof in §4. Before doing so, we shall first reformulate the conjecture

in a more attractive way and then discuss two special cases where the conjecture can be
casily proved.

Theorem 2.2 The following statements are equivalent.
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e The Duality Conjecture holds for all functions in MM(n,n).

o The cycle time vector defines a functional, X : MM(n,n) — R"™, which is a homomor-
phism of lattices on rectangular subsets of the domain. That is, if S C MM(n,n) is
nonempty, finite and rectangular, then

X(AresF) = AresX(F) (20)
X(VresF) = VresX(F) .

Proof Suppose first that X is a functional with the stated properties. Choose F €
MM(n,n). Let S be a rectangular max-representation of F. Then, by the homomorphic
property of X,
X(F)=X</\ H) = A\ X(H) .
HeS HeS
A similar argument for a min-representation establishes the Duality Conjecture.

Now suppose that the Duality Conjecture holds for all functions in MM(n,n). Evidently, X
defines a functional, X : MM(n,n) — R*. We have to show that the formulae in (20) hold.
Choose S C MM(n,n) to be nonempty, finite and rectangular. Each f € =;(S) is a min-max
function of type (n,1). Choose a max-representation A;(f) € MM(n,1) for each such f. If
F € S, let A(F) C MM(n,n) be defined by A(F) = A\ (F1) X - -+ X Aq(F). Evidently, A\(F)
is a rectangular max-representation of F. Now define A C MM(n,n) to be the union of all
the A(F): A = Upes A(F). A consists entirely of max-only functions and

ANH=N A H=A\F.
HeA FES HeA(F) FeS
We claim that A is rectangular. To see this, note that, by elementary set theory,
mi(A) =m ( U /\(F)) =Um@FE)=UxE)= U M0
FeS FeS Fes feni(S)

Furthermore,

( U Al(fl)) X---X( U An(fn)) = U Al(fl)x“'X/\n(fn) :

fremy(S) fn€mal(S) (fr,:fn) €M (S) X XTn (S)
Since S is rectangular, the right hand side of this can be rewritten as
U MF) x - xA(Fr) = |J MF)=A .
FeS FeS

It follows that
m(A) X -+ X (A) = A

which establishes the claim. We have shown that A is a rectangular max-representation
of Apes F. By the Duality Conjecture for this min-max function, making use of the rect-
angular max-representation A, and the Duality Conjecture for F € S, making use of the
rectangular max-representation A\(F'), we see that

x(/\ F): AxHEH =N\ A xH)=A\XF).

FeS HeA FeS HEXNF) FeS
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This establishes the first formula of (20). The second follows by a dual argument. This
completes the proof.

O

This formulation contains all the information necessary to calculate the cycle time. A min-
max function F is usually specified in such a way that a max-representation, S C MM(n,n),
can be easily found, perhaps after some algebraic simplification. The Duality Conjecture
then reduces the calculation of X to that of the max-only functions appearing in Rec(S):

X(F)=X(/\H)=X AN H|= A Xx#H),

HeS HeRec(s) HeRec(s)

where we have used (15). For max-only functions, the Duality Conjecture suggests a further
reduction. Any max-only function has a min-representation in which the min-only functions
are simple functions. For instance, example (9) has the min-representation

To + 2 3+ 95
To+1 |, z2+1
.’1:1—-1 .’L‘2+3

The Duality Conjecture suggests that the cycle time of (9) can be calculated by rect-
angularising this set. This turns out to correspond exactly to the prescription given by
Proposition 1.3.

Proposition 2.1 If F is maz-only or min-only then the Duality Conjecture holds for F.

Proof Suppose that F is max-only and let A be the associated max-plus matrix. Corol-
lary 2.1 shows that it does not matter what rectangular max-representation is chosen so
choose the one consisting only of F. The right hand side of (17) is then u(A). A min-
representation, T, can be constructed as follows, as in the example above,

T= ][] {z+ Aix | Aix # —o00}.

1<i<n

This is patently rectangular and each element of T is not just min-only, but simple. We
have to show that Vg X(G) = p(A). Choose 1 < i < nand G € T. We can clearly regard
the precedence graph of G as contained in G(A); it simply picks out the edges used by G.
Because G is simple, there is an unique circuit, g, upstream from node ¢ in G(G). It follows
that X;(G) = m(g). Furthermore, any circuit upstream from 7 in G(A) must appear in this
way through some element of T. Hence, Vger Xi(G) is the maximum cycle mean among
all circuits upstream from node 7. But, according to (8), this is exacly p;(A). Since i was
chosen arbitrarily, Vger X(G) = u(A), as required.

m]

We sce from this proof that rectangularisation is precisely what is needed to ensure that
cach circuit in G(A) makes a contribution to X(F).
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There is one other case where the Duality Conjecture can be easily shown to hold. Suppose
that F € MM(n,n) and that X is known to exist for F. Then,

V bX(G) <\ X(G) <X(F) < A\ X(H) < N\ X(H). (21)
GeT GeT HES HeS

The outermost inequalities are obvious while the innermost follow from (13).

Proposition 2.2 With the same assumptions as in Conjecture 2.1, suppose in addition
that F has a fized point, where F(Z) = Z + h. Then (21) collapses to an equality. In
particular, the Duality Conjecture holds for F.

Proof Suppose that F(£) = £ + h. We know in this case that X does exist and that
X(F) = h. Since S is rectangular, there must be some H € S such that H(Z) = £+ h. But
then h = X(H) = tX(H). It follows that h = AycstX(H). The dual argument, using the
rectangularity of T, shows that h = Vg7 bX(G). The result follows.

O

It follows that h = ApcgstX(H), which expresses h in terms of the maximum cycle means
of the max-plus matrices associated to elements of S. Similarly, h = Vger bX(G). Corol-
lary 3.3 below shows that both these properties together imply that F' has a fixed point.

3 Fixed points of min-max functions

The main goal of this section is to derive a fixed point theorem which is independent of the
Duality Conjecture but which, nevertheless, is equally powerful to (1). The proof of this
occupies the first sub-section. We then discuss algorithmic issues connected with finding
fixed points. In the final sub-section we show that our general fixed point theorem leads to
a straightforward proof of an earlier fixed point result due to Olsder, [37].

3.1 The fixed point theorem

It will be convenient, from this point onwards, to drop the distinction between max-only or
min-only functions and their associated matrices. If A is a max-only or min-only function,
we shall use the same symbol to stand for its associated Rpmax Or Rpyin matrix, respectively.
Furthermore, taking advantage of Proposition 1.3, we shall use X(A) interchangeably with
#(A) and n(A).

If U and V are sets, let U\V denote the complement of V in U: U\V = {i € U | i g V'}.
The next result is the key technical lemma of this section.

Lemma 3.1 Suppose that F € MM(n,n) and that S C MM(n,n) is a rectangular maz-
representation of F. Choose any family of n functions in S: Ay,---,An € S. There exists
a function K € S such that tX(K) = V<icp Xi(4i)-
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Proof Let h; = pi(4;) and h = Vi<, hi- We have to find K € S such that tX(K) = h.
We can assume, without loss of generality, that hy = h. Let U; C {1,---,n} be the subset
of nodes upstream from ¢ in G(A4;):

U={ke{l,---,n} | i< kinG(4)}.

By convention, a node is always upstream from itself, so that ¢ € U;. It follows that the sets
{U;} provide a cover of {1,---,n}: Uy U---UU, = {1,---,n}. Let V, = U, U---U U, for
1 < r < n. Thesets {V;} provide a filtration of {1,---,n}: Uy =V C--- CV, ={1,---,n}.
Define a function £: {1,---,n} — {1,---,n} by the filtration level at which a number first

appears:
L[ ifieny
&) = { r ifi€U\Up_, forr>1

Now define a new matrix K according to the following rule: Kj; = (Agq))ij- Since S is
rectangular, K € S. It remains to show that K has the required property.

Let 7,7 be nodes of G(K) such that ¢ + j. Let £(i) = r, so that « € U,. By construction
of Up, 7 < i in G(A;). Since ¢ « j in G(K), it must be the case that K;; # —oo and so
(A;)ij # —oo. Hence, i + j in G(A;) and therefore also r <= j. It follows that j € U,. But
then £(j) < r. We have shown that if i + j in G(K), then £(z) > £(j).

Suppose that g = 4; « --- + %, is a circuit in G(K), where m > 1 and ¢; = #,. Let
£(iy) = r. By the previous paragraph, it must be the case that £(i;) = 7 for 1 < r < m.
Hence g is also a circuit in G(4,) and furthermore r < g. But then, by virtue of (8),
m(g) < ur(A;) = h,. In particular, m(g) < h. Since g was chosen arbitrarily, it follows that
tu(K) < h.

Finally, let g be a critical circuit of A; upstream from node 1. Since we assumed that
h = hy, it follows that m(g) = h. Every node on g and every node on the path from g
to 1 are in U;. By construction of K, g is also upstream from node 1 in G(K). Hence,
tu(K) > h. It follows that tu(K) = h, as claimed. This completes the proof.

O

Lemma 3.1 has a number of useful consequences which we collect in the following Lemmas.

Lemma 3.2 Under the same conditions as Lemma 8.1, the function {1,---,n} x S > R:
(i, H) = Xi(H) has a saddle point:

t(/\ X(H)) = A\ @X(H).

HeS HeS

Proof It is well known that half the conclusion always holds; we briefly recall the argument.
Choose 1 < j < n. For any H € S, X;(H) < tX(H). Hence, Ayecs X;(H) < AyestX(H).
Since j was chosen arbitrarily, it follows that t (Aycs X(H)) < Ages tX(H).

Let H; € S be a max-only function for which X;(H;) = Ages Xi(H). Let h =V <i<n Xi(Hi).
It follows from Lemma 3.1 that there exists K € S such that tX(K) = h. Hence,

N\ X(H) < h = t(/\ X(H)) .

HeS HeS
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The result follows.

O

Lemma 3.3 Under the same conditions as Lemma 3.1, if Agcg X(H) = h, there ezists
K € S such that X(K) = h.

Proof It follows from Lemma 3.2 that h = t (Ayes X(H)) = AgestX(H). Let K € S be
such that tX(K) = h. Then,

h= A X(H) <X(K)<h. (22)
HeS

It follows that X(K) = h, as required.
O

The next result is the main theorem of this section. It follows in detail an argument given
by Cochet-Terrasson and Gaubert in [8]. The additional ingredient which appears here is
Lemma 3.1, in the guise of Lemma 3.3, which allows a stronger result to be derived than
that in [8].

The proof is based on a min-max analogue of Howard’s policy improvement algorithm for
stochastic control problems with average or ergodic cost (see, for example, [47, Ch. 31-
33],[38]). Typically, Howard’s algorithm finds a fixed point of F(Z) = A,cy Cu + PuT where
U is a finite set and, for all u € U, &, € R" is a cost vector and P, is a row-stochastic
matrix. (In this paragraph matrix operations are to be interpreted in the usual algebra.) It
is easy to see using Proposition 1.1 that functions of this form are in fact topical. At each
step, Howard’s algorithm selects a function A(Z) = ¢+ PZ in S = Rec{¢, + P,z | u € U}
and finds a fixed point of it. It is necessary to assume that such a fixed point can be found,
which is the case, for instance, if each matrix P, is positive. If this point is not also a fixed
point of F, then the function A is replaced by A’ € S which satisfies F(Z) = A'(Z) and
the process is repeated. Under appropriate conditions it can be shown that this leads, after
finitely many steps, to a fixed point of F.

The convergence proof for the traditional Howard algorithm relies on a form of maximum
principle: algebraically, the fact that the inverse of I — P is monotone, for a nonnegative
matrix P whose spectral radius is strictly less than one. The analogue of this in the proof
below is the monotonicity property of the spectral projector which appears as part 1 of
Lemma 1.4.

Theorem 3.1 Let F € MM(n,n) and suppose that S,T € MM(n,n) are rectangular and,
respectively, a maz-representation and a min-representation of F. The following conditions
are equivalent.

1. F has a fized point with F(Z) = £ + h.
2. Nues X(H) = h.
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Proof It follows from Proposition 2.2 that 7 implies both 2 and 3. Assume that 2 holds.
We shall deduce 1. The fact that & also implies I follows by a dual argument.

We may assume, as usual, that h = 0. It follows from Lemma 3.3 that there is A; € S such
that X(A,) = 0. By Proposition 1.4, A; has a fixed point: A;(@;) = @;. Hence, F(a;) < a;.
Since S is rectangular, we can find Ay € S such that A(@;) = F(@1). We can ensure,
furthermore, that if F;(a@;) = (a@1);, then (A2); = (A;)i. Since Az(@;) < @, it follows by
property M that u(A4s) < 0 and so, by a similar argument to (22) that pu(A42) =0. Asa
consequence, it follows from part 6 of Lemma 1.4, that (A2(a@)): = (@1); for all i € C(Ay).
Hence, F;(a@;) = (A2(a1)); = (@1)i, and so, by construction, (Az2); = (A;); for all ¢ € C(Ayg).
It is then not difficult to see that C(Az) C C(4,).

Since p(Az) = 0, it also follows that A, has a fixed point. By part 7 of Lemma 1.4,
P, : R* = R*. Hence we may choose the fixed point of A; to be a3 = P4,(a;). Since
As(@,) < a, it follows from part 1 of Lemma 1.4 that do < @;. At the same time,
if i € C(A3), then by part 5 of Lemma 1.4, (P4,)ii = 0 and so (@2); > (@1);- Hence,
((-1'2),‘ = (51)i forallz e C(Ag).

We can now carry on and generate a sequence (A;,d;) for s = 1,2,---, such that the
following properties hold:

1) A;€S and a; €R"

2) As(&s—l) = F(ds—l)

3) As(@) = ds

4) as S a’s—l

5) (@) = (@s—1)i foralli € C(4s)

6) C(As) - C(As—l)-
Evidently, since S is finite, we must have Ay = A, for some k < l. By property 6, C(Ax) =
... = C(A;). Hence, by property 5, (@x); = --- = (a;); for all 7 € C(4;). It follows from
property 3 that @, and a; are fixed points of A; which agree on C(A;). Hence, by part 4 of
Lemma 1.4, a; = a@;. By property 4, ax = --- = @. In particular, a; = @;—;. By property

2, a; = Ay(a@)) = A(@_,) = F(a_,) = F(a;). It follows that @, is a fixed point of F'. This
completes the proof.

O

Corollary 3.1 ([19, §3]) If F € MM(n,n) satisfies the Duality Conjecture, then the fized
point result (1) holds.

Proof Evident.
O

Corollary 3.2 ([8]) Suppose that F € MM(n,n) has a maz-representation S such that each
H € S has a fized point. Then F has a fized point.

Proof Since X(H) = tX(H) for each H € S, the result follows immediately from the
Theorem.

O
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Corollary 3.3 ([21, Theorem 5.1]) Let F € MM(n,n). F has a fized point, with F(Z) =
T + h, if, and only if,
V bX(G)=h= A tX(H).

GeT HeS

Proof If F has a fixed point, this is just Proposition 2.2. If the formula holds, then it
follows from (21) that condition 2 and condition 3 of Theorem 3.1 hold and hence that F
has a fixed point.

O

3.2 Algorithmic issues

Finding fixed points of min-max functions is an important problem in applications. For
instance, the clock schedule verification problem mentioned in §1.2 is equivalent to finding
a fixed point of a min-max function associated to a digital circuit. The particular form
of the min-max functions which arise in this application leads to efficient algorithms for
finding fixed points. For general min-max functions the situation is less clear. Although
the methods of the previous section are constructive in nature, they do not give rise to an
efficient general algorithm.

The problem stems from the fact that a min-max function is typically presented in the
form F = ApcsH where S is a subset of max-only functions which is not necessarily
rectangular. In order to make use of the method in Theorem 3.1, it is necessary to find
A € Rec(S), such that A has a fixed point and X(A) is minimal; this is the starting point
for the iteration. Searching all of Rec(S) to find such a function is prohibitively expensive.
However, it is sometimes the case that all functions H € Rec(S) have fixed points. This
occurs, for instance, when S consists of functions for which the corresponding max-only
matrices have no —oo entries. In this case it is easy to see, using Proposition 1.3, that each
function H € Rec(S) satisfies X(H) = h, for some h € R. Hence, by Proposition 1.4, each
H has a fixed point. This situation does arise in applications. We can adapt the method of
Theorem 3.1 to give a tractable algorithm in this case.

It will be convenient to extend the spectral projector notation P4 (see (12)) to general
matrices: if tu(A4) # 0, let A = —tx(A) + A, so that tu(A) =0, and define P4 =P ;.

Suppose that a a min-max function F is given in the form:

F@)= A AuZ, (23)

u€eU(i)
where U(1),---,U(n) are finite sets and A;, are row vectors with entries in Ryax. Bor-
rowing the vocabulary of optimal control, we say that a policy is a map 7 : {1,---,n} —

Ui<i<n U(3), such that 7(i) € U(3), for all 1 < ¢ < n. The corresponding policy matrix A[n]
is defined by A[m]; = A;r¢;)- By construction, the set of policy matrices A[n] is rectangular.

The fixed point algorithm takes as input a min-max function of the form (23) each of whose
policy matrices have a fixed point. Equivalently, by Proposition 1.4, for each policy matrix,
7, there exists hy € R such that X(A[r]) = h,. The algorithm produces as output £ € R*
and h € R such that F(Z) = £ + h. The steps are as follows.
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1. Initialisation. Select an arbitrary policy m;. Set s = 1 and let A; = A[m]. Find
71 € R"* and h; € R, such that A7, = 1 + h;.

2. If F(Zs) = Zs + hs, then stop.
3. Policy improvement. Define m,41 by

Vi<i<n, A Awfs=Ain,, 0T -
ueU(7)

The choice should be conservative, in the sense that 754 (¢) = ms(i) whenever possible.

4. Value determination.
(a) If u(As41) < hs, then, take any fixed point Z54q of As41.
(b) If u(As+1) = hs, then, take the particular fixed point Zs41 = Pa,,,Ts.
5. Increment s by one and go to step 2.
The cycle time vector p(A) of a max-plus matrix A can be computed by Karp’s algorithm,

[2, 28] while Gondran and Minoux give algorithms in [17, Chapter 3, §4] which can be
adapted for computing the spectral projector P 4.

The proof that the algorithm terminates is a straightforward generalisation of the method
of Theorem 3.1 and is left as an exercise to the reader. The following example illustrates
how the algorithm works in practice.

Consider the Min-Max function:

Fi(zy,72,73) = (z1VZe+1Vz3+1)A(z1+1Vzo+1Vz3+1)
Fy(zy1,72,73) = (z1+1Vzo+2Vzz+1)A(z1VI2+1VI3)
Fg($1,.’1:2,$3) = (221+1V:1:2V:L‘3+2)/\(2:1V:Z:2+1V:L‘3+2)

Alternatively, F can be written in the form (23), with

A11= 011 A12= 1 11
U)=U@)=U@B)={1,2}, Aun=(12 1) Ap=(010
Asz;=(1 0 2) Azp=(0 1 2

Note that each policy matrix of F has all its entries finite and so, as discussed above, F
satisfies the conditions required by the algorithm.

Initialisation. Select m1(1) = 1,m(2) = 1,7(3) = 1 so that

0
A= 1
1

O N -

1
1
2
Since p(A;) = 2, we set hy = 2 and we choose some fixed point of A, for instance,
T
n=(-2 -1 -1)
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Policy improvement. We have F(Z,) = AyZ; where

011
A= 010
1 0 2

Here, m2(1) = 1, m2(2) = 2 and m2(3) = 1.
Value determination. We have hy = h; = 2. Accordingly, we select the particular fixed
point
T
H=(-2 -3 -1) =Pad,

where
-2 -3 -1
Pa, =] -3 -4 -2
-1 -2 0

Since F(Z3) = Z9 + hg, the algorithm terminates.

The complexity of one iteration of the algorithm is O(n3 + (3, <;<n |U(3)|)n), where n is the
dimension of the ambient space, and | X | denotes the cardinality of the set X. Indeed, Karp’s
algorithm for computing the cycle time vector u(A) of a matrix A has time complexity O(n?)
as do the algorithms of [17]. It follows that one value determination step costs O(n3) time.
Clearly, one policy improvement step requires (3;<;<n |[U(?)|) scalar products, which can
be done in time O((3;<i<n [U(3)])n). T

It seems difficult to bound accurately the number of iterations of the algorithm. Experiments
suggest that its average value is well below n, at least when |U(¢)| is O(n), for all <. The
situation seems very similar to that of conventional policy improvement algorithms, which
are known to be excellent in practice although no polynomial bound is known in general
for their execution time.

3.3 Derivation of Olsder’s Theorem

Olsder has proved a fixed point theorem for certain separated min-max functions, [37,
Theorem 2.1]. Although this applies only to a restricted class, it was the first result to be
proved on min-max functions beyond the Rpax linear setting. We now show that it follows
from Theorem 3.1.

Let F € MM(n,n) be a separated function. We can assume, without loss of generality, that
F has the following form

F = 1+ Ky V-V, + Kip if1<i<s
YT )Y i+ Kag ANz, + Ky ifs+1<i<n

where 1 < s < n and Kjj is an n X n matrix of elements satisfying K;; € Ryjp for 1 <1 <s
and Kjj € Rmax for s +1 <17 < n. Let t = n —s. Recall the notation introduced at the
end of §1.4: if B is a matrix over Rp,p, then 7(B) denotes the vector of minimum upstream
cycle means and X(B) = n(B).
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K is neither a matrix over Rmax nor over Ry, but it is convenient to break it into blocks
which are. Let A, C be matrices over Rmax 0f size s X s and s x ¢, respectively, corresponding
to the top left and top right blocks of K and let D, B be matrices over R, Of size t X s
and t x t, respectively, corresponding to the bottom left and bottom right blocks of K:

Aij = Kij iE{l,'--,S} jE{l,---,S}
Ci(j—s) = Kij 7:6{1,---,8} j€{8+1,'~,3+t}

D(i—s)j = Kij i6{8+1,--~,s+t} jE{l,"-,s}
B(i-s)(j—s) = Kjj iG{S+1,---,S+t} j6{8+1,~-~,5+t}.

Suppose that F' has a fixed point: F(Z) = £ + h. Let i/ € R® be the vector obtained from
T by truncating the last ¢ components: y; = z; for 1 < i < s. Evidently, A(%) < 7+ h,
so that p(A) < h. Equivalently, in scalar terms, tu(A4) < h. A dual argument shows that
h < bn(B). Hence, a necessary condition for F to have a fixed point is that tu(A) < bn(B).

Olsder’s result is by wéy of a converse to this but requires more assumptions on the structure
of 4, B, C and D. To discuss it, we need to review some further material from matrix theory.
For more details, see [2].

Let A be an n x n matrix over Rpax. A is said to be irreducible if there does not exist any
permutation matrix P such that P*AP is in upper triangular block form. (This is identical
to the notion of irreducibility for nonnegative matrices, [32, §1.2].) An equivalent condition
is that G(A) is strongly connected. That is, if ¢ and j are any two nodes in G(A), then
they are upstream from each other: ¢ < j and j < 1. If ¢ + j in G(A) then it is easy
to see that u;(A) > pj(A). It follows that if A is irreducible then u(A) = tu(A). (By
Proposition 1.4 we see that A has an eigenvector lying in R*. This is a max-plus version of
the Perron-Frobenius Theorem, (2, Theorem 3.23].) If U C {1,---,n} is a subset of nodes,
all of which are upstream from each other—i « j for all 7,5 € {1,---,n}—then we shall
say that U is upstream (respectively, downstream) from some node k € {1,---,n}, if there
is some 7 € U such that k < 7 (respectively, ¢ < k).

Theorem 3.2 Suppose that ' € MM(n,n) is separated. Using the notation above, suppose
further that A and B are irreducible and that both C and D have at least one real entry.
Then the Duality Conjecture holds for F. Furthermore, ([37, Theorem 2.1]), F has a fized
point if, and only if, tu(A) < bn(B).

Proof Define rectangular max and min-representations of F, S,T C MM(n,n), similar to
those used in Proposition 2.1:

S = {Fi} x- x {Fo} x [lsq1<icsse{Ts + Kij | Kij # 400}
T = Ilcics{zj+ Kij | Kij # =00} x {Fey1} X -+ x {Fops}.

Let ji = Ayesu(H) and 7 = Vgern(G). We know that 77 < fi. To establish the Duality
Conjecture, we have to show that 77 = f.

For any H € S, H; = F; for i € {1,---,s}. Hence the top left block of H is equal to A:
H;; = Ajj for 4,5 € {1,---,s}. Since A is irreducible by hypothesis, it follows that, for any
1,7 € {1,---,s}, ni(H) = pj(H). Furthermore, tu(A) < p;(H) for all H € S. Hence,

pi= N\ wi(H)= N u(H) =p;.

HeS HeS
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It follows that pu; = -+ = p;. Let us call the common value u. Evidently, tu(A4) < u.
Dually, 7541 =+ -+ =154+ = 7 and bn(B) > 7.

Consider the min-plus matrix B. It has a rectangular max-representation, R C MM(n,n), of
the same form (but dual) to the one used in the proof of Proposition 2.1. Each element of R is
a simple function. Since B is irreducible, n(B) = bn(B). By Lemma 3.3 there exists a simple
function U € R such that n(U) = bn(B). Now construct an element K € S by choosing
Kj=Uj_sforj€ {s+1,---,s+t}. Itis clear that u;(K) = bn(B) for j € {s+1,---,s+1t}.
By hypothesis, Cjx # —oo for some i € {1,---,s} and k € {s+1,---,s+t}. It follows that
i+ k in G(K). It is not difficult to see that pu;(K) = tu(A) V bn(B). Hence,

_J tu(A)vbn(B) ifie{l,---,s}
“"(K)‘{bn(B) ! ifie{s+1,--,s+1t}.

It follows that u < tu(A) vV bn(B) and u; < by(B) for i € {s+1,---,s +t}. By a dual
construction we can show that n > bn(B) A tu(A) and n; > tu(A) for i € {1,---,s}. We
can summarise what we have shown in the table below.

tw(d) < m < p < tp(4) Vbn(B)

tu(d) < s < p <
bn(B) Atu(Ad) < n < pey1 < bn(B)

I
o -
=
=

bn(B) Atu(4) < n < pse

Suppose that bn(B) < tu(A). Then it is easy to see from the table above that 77 = /. Hence
the Duality Conjecture holds.

Now suppose that tu(A4) < bn(B). As we saw above, this is a necessary condition for F' to
have a fixed point. We shall now show that it is also sufficient.

Choose j € {s+1,---,s + t}. We claim that pu; < p. To see this, choose H € S such
that uy(H) = --- = pus(H) = p. By construction of S, H is simple in the components
s+1,---,5 +t. Hence the node 7 must have an unique edge leading to it in G(H): say,
j+ k. Ifke{s+1,---,s+t} then it has a similar property and we can proceed in this
way until one of two mutually exclusive possibilities occur. Either the path remains entirely
among the nodes in the range {s + 1,---,s + t} or it contains a node i € {1,---,s}. In the
latter case, pj(H) = pi(H) = p since the path out of j is unique until it reaches a node in
{1,---,s}. Hence, u; < p.

In the former case, j is not downstream from {1,---,s} in G(H). Suppose, to begin with,
that there is no node in the range {s + 1,---,s + t} which is downstream from {1,---,s}.
Because C has at least one real entry, some node in this range is upstream from {1,---,s}.

Since every circuit of G(H) in the range {s+1,---,s+t} must also be a circuit in G(B), it
follows that p > bn(B). From the table, we see that u; < bn(B) and so p; < p.

We may now assume that there exists u € {s+1,---,s +t} downstream from {1,---,s} in
G(H). Since B is irreducible, there exists a path in G(B) from u to j:

J=UL& U U T U, (24)
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where 1 <m, {u,---,um} C {s+1,---,s+t}. We may assume furthermore, without loss

of generality, that u;, -+, Um,—1 are not downstream from {1,---,s} in G(H). It follows that
pu; (H) > bn(B) for 1 < i < m. Define H' € S by altering H as follows:
(H'): = H; ifi & {u, -, Um-1}
(H’)ui = B(u,~—s)(u,~+1—s) fl<i<m-—1

By construction, (24) is also a path in G(H') and j is downstream from {1,---,s} in G(H').
It follows that pj(H') = p1(H'). The only difference between G(H') and G(H) is at the
nodes uy, - -, Um—1 which may have different edges leading to them.

Suppose that p1(H') > p. This can only happen if one of the edges on (24) has created a
new circuit upstream from 1 in G(H’). Let u, be the first node on (24) which is upstream
from {1,---,s} in G(H'). We may assume that 1 < r < m, for if r = m, then, contrary to
what was just said, no edge of (24) can have caused the change. It must now be the case
that u, was also upstream from {1,---,s} in G(H). Hence, p = p1(H) > py, (H). But, as
we saw above, p,, (H) > bn(B). It follows once again that pu; < u. Hence, we may assume
that pu;(H') = p. But then pj < pj(H') = pi(H') = p. In either case, pj < p, which
establishes the claim.

Now suppose that for some j € {s + 1,---,s + t}, it is the case that p; < p. Choose
H € S such that pj(H) = p;. If p is the path in G(H) leading to node j then p cannot
start from any node i € {1,---,s}. For if it did, p < pi(H) = p;(H) < p, which is
nonsense. Hence p must terminate in a circuit g, which must also be a circuit in G(B).
Hence m(g) > bn(B). But evidently, p;j(H) = m(g), since g is the only circuit upstream
from j. Hence u;(H) > bn(B), from which it follows that bn(B) > u > p;(H) 2 bn(B),
which is also nonsense. It follows that for all 7 € {s + 1,---,s + t}, u; = p. We have
shown that Ay X(H) = p. By Theorem 3.1, F has a fixed point. By Proposition 2.2, the
Duality Conjecture holds for F. This completes the proof.

O

The above proof is straightforward in comparison with Olsder’s original argument and fits
within the general framework established by the Duality Conjecture.

The case bn(B) < tu(A) is the only situation in which the Duality Conjecture is known to
hold for fixed point-free functions of high dimension outside the linear setting.

4 The Duality Conjecture in dimension 2

Choose F € MM(2,2) and let S,T C MM(2,2) be rectangular max and min-representations,
respectively, of F. Let L =V pgerm(B) and R = A 4¢5 p#1(A). We know that L < R.

Theorem 4.1 Under the above assumptions, R < L. In particular, the Duality Conjecture
holds for F.

The proof occupies the whole of this section. We begin with some extensive book-keeping.

It will be convenient to regard the expressions for cycle times which appear in formulae such
as (28) and (29) below as taking values in R U {—o00, +00}. For instance, we will encounter
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expressions of the form A .5z where S C Ryax and it may be the case that S is empty. By
convention the minimum over an empty set is taken to be +o00 (and, dually, the maximum
over an empty set is taken to be —o0). We regard R U {—o00,+00} as equipped with the
obvious extension of the partial order on R so that —oo < 4+o00. This will allow us, where
necessary, to compare —oo with +oo.

If U C V, let U denote the complement of U in V, U = V\U, whenever the superset V is
clear from the context. If £ is any set, let P"(L) denote the set of partitions of £ into n
disjoint pieces:

P*(L) = {{Uy,---,Up} |Ui C L, L=U1U---UU, and U; NU; = O for ¢ # j}.
It will be convenient to use the variables z and y in place of z; and z5 in what follows.

The first step is to obtain expressions for L and R. We may write F in the form

Fi(z,y) = /\ISiSnl (@i +zVbi+y) (25)
Fy(z,y) = Aigjcn,(ci +TVdj+Y),

where a;,b;,¢j,dj € Rmax and 1 < nj,np. We may assume that not both a; and b; are
—oo and that the same applies to ¢; and d;. It will be convenient to identify the sets
IL,I,C{1,---,n1} and J;,J2 C {1,---,n2} where

Il = {i|b,~=—oo} Ig = {'i|a,-=—oo}
Jio= {jldj=-00} J2 = {j|cj=—o0}.

In view of the assumptions above, these sets satisfy the restrictions
LNh=0and JjNJ,=0. (26)
We can evidently construct a rectangular max-representation of F', S C MM(2,2), in which

each A € S is indexed by an element of {1,---,n,} x {1,---,n2}. If (,7) lies in this set,
then the corresponding element of S is represented by the max-plus matrix

.. " bi
A(z,n:(‘jj dj).

R= A p1(A(, 7)) -
(i,j)e{l,---,n;}x{l,---,nz}

We may write

By Proposition 1.3, u1(A(4, 7)) is given by

a; V (b; +Cj)/2Vdj if b; # —o0

a; otherwise (27)

H1 (A("'v])) = {

This equation is valid even when a;, b;, ¢; and d; take on the value —oo; the point of the
second formula being that, if b; = —oo, then node 2 is no longer upstream of node 1. In all
other cases, the first formula gives the correct answer.

In order to compare R with L we shall need to write one of the expressions “the other way
round”. Let us do this with R and use the distributive law to interchange A and V. This
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amounts to choosing, for each (z,5) € {1,---,n1} x {1,---,n2}, one of the three possible
terms which appear in (27),

a; , (bl + C])/2 ) d] )

and doing so in all possible ways consistent with the restrictions in (27). If {S,T,U} €
P3({1,---,n1} x {1,---,n2}), let p(S,T,U) € RU {—00, +00} be defined by

bq
PSTU = N\ apn N\ 2TZ AN da. (28)
pEMS (g,7)ET uemU

This formula must be evaluated in R U {—o0, 400} because it may be the case that both
—o0 and 400 appear when evaluating it. For instance, this happensif SNI; # @ and U = 0.

In this case, of course, p(S,T,U) = —co. We may now write
R= V p(S,T,U) , (29)

{SvaU}EPS({la e )nl} X {17 et ,TLQ})
where we must assume that 77 NI} = mU NI, = 0 because of (27). We may as well get

rid of all the partitions which make a contribution of —oco to (29). We may hence assume
that the partitions in (29) satisfy the restrictions

mSNL, = 0
mTNL; = mTNJ, = 0 (30)
7r2UﬂJ1 = wlUﬂII = @ .

It is easy to deduce from these equations and the fact that {S,T,U} is a partition, that
I x {1,---,n2} C S. In particular,
Il Q 71'15. (31)

We now turn to R. By using distributivity again, (25) can be rewritten as

Fi(z,y) = Vxciim) ([(/\pe,\' ap) + 2] A [(Agex bg) + y])

(32)
F2($1y) = V}’g{l,m,ng} ([(/\rEY C,-) + :E] A [(AuGV du) + y]) ’
where X and Y are subsets satisfying the restrictions
Il g X g {1,"',”}}\]‘2 (33)

J €Y C {l,-,n}\2 .

It follows that we can construct a rectangular min-representation of F, T C MM(2,2), in
which each B € T is indexed by pairs (X,Y) where X C {1,---,n1} and Y C {1,---,n2}
satisfy the restrictions in (33). The matrix corresponding to (X,Y’) is then

_ [ Nvexap Noex bg

Our conventions ensure that B(X,Y) is an Rpjn matrix, provided the restrictions in (33)
are satisified.

This completes the book-keeping. We can now embark on the proof proper.

Proof (of Theorem 4.1) We begin with an observation which sets out the direction
which the proof will take.
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Lemma 4.1 With the details above, suppose that for each partition {S,T,U} satisfying the
restrictions in (80), it is possible to find X,Y satisfying the restrictions in (33) such that

Then R< L.

Proof: With the restrictions in (30) and (33), we have

R=\/ p(5,T,U) < \| mB(X,Y)=L.
S, T,U XY

D

Choose a partition {S, T, U} satisfying (30) and assume to begin with that T = @. It follows
from (28) that
p(S,0,U) = /\ ap A /\ dy.

peEM S uemnU
Now suppose further that mU = {1,---,n2}. It follows from (30) that J; = 0. Let
X =71(S) and Y = 0. It follows from (30) and (31) that X,Y satisfy (33). Since Y = 0,
the corresponding matrix B(X,Y) in (34) has +oo0 in the bottom left corner. If X # 0, it
follows from (27) that,

mB(X,Y)= N ap A A du
peX ueY

and it is clear that p(S,0,U) = mB(X,Y). If X = @ then certainly p(S,0,U) < mB(X,Y)
since the latter omits the contribution from U. In either case we are done. Now suppose that
mS # {1,---,n;}. It then follows from (30) that moU = {1,---,n2} (a picture is quite useful

at this point) and we have already done this case. So we may assume that mS = {1,---,n;}
and hence that I = 0. Let X = {1,---,n;}, which certainly satisfies (33), and let Y be
any subset of {1,---,n2} which satisfies (33). We can always choose such a subset in

view of (26). Because X = 0, it follows from (27) that 7 B(X,Y) = A,cx ap. Hence
p(S,0,U) < mB(X,Y) and once again we are done. This deals with all the possibilities
when T = 0.

We may now assume that T 7# (). The crux of the proof hinges on the shape of T. The form
of mB(X,Y), as calculated from (the dual of) (27), shows that T corresponds to the set
X x Y. This differs from T in being a rectangular subset of {1,--+,n1} x {1,---,n2}. This
clue gives rise to the argument which follows. The idea is to replace the partition (S, T, U) by
a new partition (S’,T’,U’) which still satisfies (30) but for which p(S,T,U) < p(S',T',U").
The new partition will have 7" rectangular. Such partitions can be dealt with relatively
simply. Rectangularisation is thus the crucial step.

Suppose that we can find u € m;T and v € m2T such that (u,v) € T. Then either (u,v) € S
or (u,v) € U. If (u,v) € S thenlet D C {1,---,n1} x {1,---,n2} be the set D = {z €
T | 71z = u}. Evidently, D # 0. Construct a new partition {S’,T',U’} such that §' = SUD,
T' =T\ D and U’ = U. It is clear that this is still a partition of {1,---,n1} x {1,---,n2}.
We need to check that it satisfies (30). Since T' has got smaller, it follows that 7" cannot
violate (30) and, of course, U has not changed. As for S, it is easy to see that m S’ = 1S,
so that S also satisfies (30). We thus have a good partition. Furthermore, since 7" has got
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smaller while m S’ = m S and mU’ = moU, it is easy to see that p(S,T,U) < p(S',T",U’).
If (u,v) € U then we move elements from T to U and a similar argument works. We
can now carry on constructing new partitions in this way. Since T is finite and strictly
decreases each time, the process can only stop in two ways. Either we end up with T = 0,
which we have already dealt with, or we find that we can no longer choose (u,v) satisfying
the requirements above. But it must then be the case that T = mT x mT. Hence we
may assume that 7' is non-empty and rectangular. The importance of this stems from the
following elementary fact.

Lemma 4.2 With the above details, if T is rectangular, then

N g+e)/2=(C A\ b)+( A\ e))/2.

(gr)eT gem T remT

Proof: The rectangularity of T implies that

A (g+e)z = NN (bg+e)/2 .

(q.r)eT gem T remeT

We can now use the distributivity of + over A, twice, to rewrite this as follows:

= N G/2+( N\ &/2)

qem T remT
= (A b+ A /2.
gemT remeT

O

The remainder of the argument resembles the case when T = 0. Suppose first that mU =
{1,---,ny} so that J; = 0. Let X = mS and Y = 0. As before, these satisfy (33).
The corresponding B(X,Y) has +oo in the bottom left corner. It follows from (27) that
p(S,T,U) < mB(X,Y) since the latter simply omits the contribution coming from T, if
X # 0, and from both T and U, if X = 0. Now suppose that ;S = {1,---,n;} so that
I, = 0. Let X = {1,---,n;}, which certainly satisfies (33), and choose any Y which also
satisfies (33), which we may always do by (26). The corresponding B(X,Y’) has +o0 in the
top right corner. It follows from (27) that p(S,T,U) < mB(X,Y) since the latter omits
the contributions from both T and U. Now let X = mT. If X € mS then it follows
from (30) that moU = {1,---,n,}, which we have already considered. So we may assume
that X C m S and 50 Aper,5p < Apex ap- Furthermore, it is easy to see that X satisfies
(33). Let Y = mpT and suppose that Y € moU. Then, in a similar way, it must be the
case that m S = {1,---,n;}, which we have also considered. Hence, we may also assume
that Y C moU and $0 Ayemou du < Ayey du- Furthermore, Y also satisfies (33). But now,
p(S,T,U) < mB(X,Y) because in the latter the contribution from X x Y is equal to that
from T by Lemma 4.2, while the other contributions have got larger. It follows that R < L.

This completes the proof of Theorem 4.1.
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A similar argument can be attempted in higher dimensions, albeit at the cost of increased
book-keeping. It is not the book-keeping that defeats this, however, so much as the fact
that Lemma 4.1 is no longer of any use. There is an example in dimension 3 such that, for
a given partition of the form {S,T,---,U} (but now requiring 8 entries) there is no single
Rmin matrix B(X,Y, Z) for which the hypothesis of Lemma 4.1 holds. Different matrices
are required for different values of the parameters, a;, b;, etc. It is a convenient accident
that this does not happen in dimension 2.

5 Conclusion

The Duality Conjecture remains the main stumbling block to further progress in this area.
The methods of this paper suggest two distinct lines of approach to it.

A close reading of the proof of Theorem 4.1 suggests that the interplay between distributivity
and rectangularity lies at the heart of the conjecture. We can consider this in a more
abstract setting as follows. If P is a partially ordered set, satisfying suitable conditions, we
can generate from it a free distributive lattice D. (In our context, P = {1,---,n} X R, which
represents terms of the form z;+a. The fact that D corresponds to MM(n, 1) is a restatement
of [21, Theorem 2.1].) The free construction satisfies the property that if f : P - R is a
montone function on P then f extends uniquely to a morphism of distributive lattices
D — R. Now consider P x P. (In our context we would need to consider P x --- x P, with
n factors, but the essential idea is clear with two factors.) It is still the case that D x D
is generated as a distributive lattice by P x P but it is no longer freely generated. For
instance, there are such relations as:

(a,0) V(c,d) = (a,d) V (c,b) (35)

where a,b,c,d € P. Given a monotone function f : P x P — R, we can ask if f can be
extended to a rectangular morphism of distributive lattices D x D — R. It can be shown,
using essentially the same ideas as in §2, that f can be extended via rectangularity in two
possible ways to D x D. One extension, call it f*, satisfies the first equation of (20) while
the other, f~, satisfies the second. For instance, f* would be defined on the element (35)
by

f+((a’b) v (C,d)) = f(aab) Vf(C,d) Vf(avd) Vf(c’b) .

A necessary and sufficient condition for there to be an extension of f which is a rectangular
morphism of distrbutive lattices is that f* = f~. Under what circumstances on P and f
does this occur?

Although this question appears quite natural in the context of lattice theory, there appears
to have been no work done on it. If a general answer were available, we could apply it
immediately to test whether or not the Duality Conjecture holds. Although this seems
a harder question than the conjecture itself, the abstract setting reveals the fundamental
combinatorial problem with greater clarity.

An alternative approach to the conjecture is suggested by the policy improvement methods
of §3.1. It can be shown that if H is a max-only function then there exists £ € R" such that
H*(Z) = £ 4+ kX(H). We can think of this as a generalised fixed point appropriate for the
situation in which X(H) # h. If a similar generalised fixed point existed for an arbitrary
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min-max function, the policy improvement methods of §3.1 might be adapted to find it,
thereby establishing the Duality Conjecture.

We hope to report on progress in these directions in future work.
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