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Maslov indices, We show that in time-reversal invariant systems, a pair
time-reversal, of periodic orbits related by time-reversal have the same
spectral statistics Maslov index. Previously this result had been implicitly

assumed in the semiclassical derivation of the Gaussian
Orthogonal Ensemble (GOE) spectral form factor.
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That the energy levels of a (spinless) classically chaotic quantum system, invariant
under time reversal symmetry, have the same statistics as the eigenvalues of the
Gausssian Orthogonal Ensemble (GOE) of random matrices is one of the central results
of quantum chaology (Bohigas et al 1984, Berry 1987, Bohigas 1991, Mehta 1991).
The purpose of this note is first to point out that the semiclassical derivation of GOE
statistics for such systems depends on pairs of time-reversal-related periodic orbits
having the same Maslov index (previously this passed as an unnoticed assumption in
the argument), and then to give a demonstration of this result.

Throughout we consider a system of N degrees of freedom, defined on cartesian
configuration space RY, whose classical dynamics is chaotic and time-reversal
invariant. We make no additional assumptions about the form of the Hamiltonian.

Let us consider the spectral form factor

K(T)= %/ exp(izT/h)d(E + z/2)d(E — z/2))dz — 2rhd§(T), (1)
the Fourier transform of the two-point correlation function of the density of states
d(E) =Y, 6(E — E,). In (1), (---) denotes an energy average, d(E) = (d(E)) is the
mean density of states, and the normalization is chosen so that K(T) — 1 as T' — oo.
Following Berry (1985), the semiclassical evaluation of K(T') proceeds by substituting
for d(E) the Gutzwiller trace formula (Gutzwiller 1990),

d(E) ~ d(E) + #Re Z A; exp(iS;/h —ipn/2), (2)

where the sum is taken over periodic orbits with energy E (assumed to be isolated
and unstable). S;(E) is the periodic orbit action, A; = T;/| det(M; — D['/2, T; is the
period, M;(E) is the Poincaré map linearized about the orbit and u; is the Maslov
index. From (1) and (2),

K(T) = % 3 <A,.Ak exp(i{S; — Se}/h — i{p; — pr}/2)6 (T - T_12-1 ) > o Y

ik
where Ty = 27hd is the Heisenberg time.

Next, we restrict the sum in (3) to the diagonal (S; = Sk) terms. These terms
dominate the expression for K(T') for T < Ty, and as shown by Bogolmolny & Keating
(1996), the contributions from the off-diagonal terms, which become important for
larger values of T, can be evaluated to leading order in terms of the diagonal ones.
For systems with time-reversal symmetry, there are generically two kinds of diagonal
terms. In the first, the labels j and k refer to the same orbit, and so A; = Ax, T; = Ty
and p; = pk. In the second, the orbit labelled k is the time-reverse of the orbit
labelled j; we denote this by writing k = 7. Then A; = A; and T; = T. The diagonal

contribution may thus be written as

K @a9)(T) = Tl; Z <A12 (1 + exp(—i(p; — p5)7/2))8(T — Tj)>E . (4)
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If we take p; = pj, the GOE form factor K99F(T) ~ 2T/Ty for T << Ty is then
recovered from the Hannay-Ozorio de Almeida (1984) sum rule,

D (4T -T)) g~ T. (5)

In previous discussions, the fact that a periodic orbit and its time-reverse have the
same Maslov index appears to have been implicitly assumed. Here we give an explicit
demonstration. This will be based on the following topological characterization of the

trace formula Maslov index (Creagh et al 1990, Robbins 1991).

Associated to the unstable periodic orbit Z;(t) are its N-dimensional stable and
unstable manifolds W'js’“, consisting of points which approach the orbit asymptotically
in forward and backward time respectively. The N-dimensional planes tangent to
the stable and unstable manifolds at Z;(t), which we denote by Ai(t) and A}(t), are
Lagrangian planes; that is, if §z; = (£1,7:1) and 6z = (€2, 7;) are two vectors in Aj(?)
for example (here the £’s and n’s denote the ¢ and p components of the 6z’s), then
& -1, = & - 1. Therefore, over a period T, A$(t) and A¥(t) describe closed curves in
the space of N-dimensional Lagrangian planes. The space of Lagrangian planes A(N)
has nontrivial topology; in particular, closed curves in A(N) can be classified by an
integer winding number. A calculation shows that the winding numbers wn A}(¢) and
wn A¥(t) (which turn out to be the same) are just the Maslov indices y; which appear

in the trace formula (2), so that
p; = wn Ai(t) = wn Aj(2). (6)

We shall make use of the following explicit formula for the winding number

(Robbins 1992). Let the vectors (&1,m1)(t), . .. (€n,nn)(t) comprise a basis for Aj(?).
For present purposes it is convenient to stipulate that these vectors be periodic

themselves (although in general they need not be). Consider the complex N-

dimensional matrix
Lop(t) = €ap(t) + inap(t) (7)

(ie, the matrix whose rows are the vectors £,(t)+i74(t)). The phase of the determinant
det L(t) is periodic, and wn A3(t) is just the number of times det L(t) encircles the origin
of the complex plane in the counterclockwise sense. Explicitly,

1 Td
)(t) = — — .
wn Aj(t) 27rIm /0 p Indet L(¢)dt (8)
Now consider a Hamiltonian invariant under time reversal z = (q,p) — Z =
(q, —p)- This implies the Hamiltonian flow ®,(z) satisfies
3,(z) = B_4(2), (9)

so that if the t-origins of the unstable periodic orbits Z;(t) and Z4(t) are appropriately

chosen, then

Z(t) = Zy(~t). (10)
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From the definition of the stable and unstable manifolds, it is obvious that (9) also
implies that W2 = W}*°. Therefore

A4 (1) = X (1), (11)

where, in general, the time-reverse X of a Lagrangian plane ) is obtained by changing
the sign of the momentum components of the vectors in A\. From (6), (7), (8) and (11)
we have that

p; = wn A3 (t) = wn )\_;(—t)

1 T d .

—glm/o EzlndetL (—t)dt
1 T d *( 4/ /

= —5—7;Irn/0 %lndetL(t)dt

11 /T d In det L(¢") d¢’ A5(t (12)
= —Im — = (8) = w;

o [ pindet L(Y)d' = wn X(0) =

(in the substitution # = —t we have used the periodicity of L(t)), which gives the
desired result.

The equality of the Maslov indices p; and pj can be understood to follow from
the cancellation of two sign factors. The first is due to the change in the sense of
traversal of the time-reversed orbit (cf (10) and (11)). The second is due to the
effect of time-reversal on the space of Lagrangian planes. The transformation A — A
defines a continuous map with continuous inverse (ie, a homeomorphism) on A(N),
and therefore induces an automorphism on its fundamental group, namely the integer
winding numbers. There are just two automorphisms of the integers, namely n — n
and n — —n, so on general grounds we can expect that under A(t) — A(t), either all
the winding numbers remain the same or they all change sign. The above calculation
shows it is the second alternative which holds.

The result generalizes to anticanonical symmetries (Robnik and Berry 1986).
These are the classical analogues of antiunitary symmetries — an anticanonical trans-
formation ¥ is obtained by composing time-reversal with a canonical transformation
®, so that ¥(z) = ®(Z). If the Hamiltonian is invariant under ¥, and Z;(t) and Z(¢)
are two unstable periodic orbits related by Z5(t) = ¥(Z;(—t)), then their Maslov in-
dices pj and pj are equal. This follows by noting that Ay (t) = D@(Zj(t))-:\_f(——t), where
D® is the tangent map of ®@. The calculation (12) shows that wnA}(t) = wn As(—1),
while wn A3(—t) = wn {D®(Z;(t)) - A3(—t)} follows from the invariance of the winding
number under canonical transformations (see, eg, Littlejohn and Robbins (1987)).
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