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1. Introduction

The status of the relation between the spin and the statistics of
identical particles in nonrelativistic quantum mechanics has been
unsatisfactory, for three reasons. First, "It appears to be one of the few
places in physics where there is a rule which can be stated very simply,
but for which no one has found a simple and easy explanation... This
probably means that we do not have a complete understanding of the
fundamental principle involved" (Feynman et al., 1965, p4-3). Second, it
represents a departure from the principle in the simplest form of quantum
mechanics that indistinguishable situations (e.g. positions with angle
coordinates ¢ and ¢+27) are described by the same wavefunction: for
identical fermions, the exchanged and unexchanged states differ by a
sign. (Of course it is always possible to use multivalued wavefunctions,
but at the price of introducing gauge potentials into the Hamiltonian.)
Third, the existing proofs incorporate ideas beyond elementary quantum
mechanics: relativistic quantum field theory (Pauli, 1940, Streater and
Wightman, 1964), topological solitons (Finkelstein and Rubinstein, 1968,
Mickelson, 1984), or the existence of antiparticles (Tscheuschner, 1989,
Balachandran et al., 1993).

Here we will argue that "the fundamental principle” that Feynman
sought is the correct incorporation of identity into an augmented quantum
kinematics in which the space of wavefunctions has, built into it, the
indistinguishability of states related by exchange of positions and spins.
When this is done, the physics of exchange emerges naturally from the
nonrelativistic Schrodinger equation with singlevalued wavefunctions
(§3). The construction of a configuration space in which exchanged
configurations are identified (e.g. the points (ry, rz) and (rp, r;)) is not a
new idea (Leinaas and Myrheim, 1977, Laidlaw and DeWitt, 1971), but
we complete it by incorporating spin (§§2,4). In order to accomplish this,
the spin must be embedded into a larger Hilbert space. The unexpected
result is that for particles with spin quantum number S the exchange
('Pauli’) sign (-1)2S emerges automatically, as an unfamiliar type of
geometric phase (§5).

Our essentially three-dimensional argument was inspired by, and
can be regarded as a mathematization of, a well known geometrical trick
with a belt (Hartung, 1979, Feynman, 1987, Gould, 1995, Guerra and
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Marra, 1984), suggestive of the Pauli principle. Consider first a single
object, tied to one end of a belt, with the other end held fixed. If the
object is turned by 47z (about any axis) this introduces a double twist in
the belt, which can however be eliminated by translating the object with
its orientation fixed. Such 'tethered' rotations, where an even number of
turns is equivalent to no turns but an odd number is not, are regarded as
analogous to fermions, where the wavefunction changes sign after one
turn. (Ordinary untethered objects, for which any number of turns is
equivalent to no turns, are analogous to bosons.) Now consider two
objects, tethered to each other by a belt. Exchanging them introduces a
twist into the belt, which can be eliminated by turning one of them once.
This suggests that exchange of identical fermions is equivalent to a single
turn of one of them, that is to a sign change.

We consider the essence of the connection between spin and
statistics to lie in the exchange of two particles, and our argument will be
presented in detail for this case. However the central ideas generalize to
permutations of N particles, as will be explained in §6.

2. Transported spin basis

The wavefunction for two identical particles with spin S depends
on their positions r; and rp. Exchange involves the vector r = rz-r; of
relative position - it is unnecessary to consider the centre of mass vector.
Under exchange of positions, r becomes -r. The spins must be exchanged
as well. We will describe spin states of the two particles with the quantum
numbers m; and my (Im1, m2I<S) representing their spin components in
the z direction, and employ the convenient notations

M={m.,m}, M={m,,m} (1)

To incorporate spin exchange, we employ an r-dependent
(‘transported’) basis |M(r)) rotated (in a sense to be described in §4) from

the commonly-employed fixed basis |M). Thus
|M(r)) = U(r)| M) 2)
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where U(r) is a unitary operator. The notations |M(r)) and U(r) imply
that the basis is uniquely determined by r; we are therefore excluding the
inconvenience of multivalued bases.

We require the basis (2) to possess the following properties.

a. Smoothness: the basis must be a smooth and nonsingular function for
all r#0, e.g. there must be no Dirac strings.

b. Exchange:
|M(-r)) = (-1)*|M(r)) 3)

where K is an integer. It is possible to envisage more general phase
factors, but the restriction to a sign is forced by the fact that the basis is
uniquely determined by r, applied after a double exchange. The sign
cannot depend on r, because this would imply discontinuities (where the
sign switches), and it cannot depend on M because (as an easy argument
shows) this would imply a preferred quantization axis: for example,
eigenstates of the x component of spin would not be exchanged.

c. Parallel transport:
(M’(r)|VM(r))=0 4)

for arbitrary values of the quantum numbers M, M’. This is the simplest
rule for the transport of spins. With parallel transport, and the fact that the
basis is a function of r, there are no local geometric phases (abelian or
nonabelian) associated with contractible circuits of r.

It is important to emphasize at this point that parallel transport
rules out the possibility of constructing operators U(r) that generate
exchange according to (2) and (3) by using just the usual spin operators
S; and S. The reason is that then the states |M(r)) in (2) would span the
whole Hilbert space of spins, and (4) would imply that U(r) is constant.
Therefore we will need to work with a representation of spin that
incorporates the usual one but is larger, in that it allows additional
operations that can generate exchange while preserving parallel transport
(‘flat exchange').
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In §4 we shall construct a transported basis that satisfies these
requirements. It is far from obvious a priori that this can be done - for

example, it is impossible to satisfy the analogue of a for the eigenstates
|m(r)) of r .S representing the ordinary rotation of a single spin. Having

constructed the basis we will derive (in §4) the centrally important
relation

k=28, ie. |M(-r))=(-1)*|M(r)) (5)

In a sense this encapsulates the belt trick, because it asserts that r — -r
and M— M , that is exchange of positions and spins, is equivalent to the
sign change (-1)2S from the rotation of one spin.

3. Identifications

With the spins thus attached to the positions, we can represent any
spin state |¥(r)) of the two particles by the (25+1)2-dimensional vector

v (1), where

¥ (r)= Y, (0)|M(r)) 6)

my,my

Now we must identify the points r and -r, since these correspond to
complete interchange of the particles (positions and spins) and so are
indistinguishable. Singlevaluedness of the wavefunction - applied here as
elsewhere in quantum mechanics - requires

[#(r)) =|¥(-T)) (7)
Now, from (5),
[¥(-r)) = Y v, (-r)(-1)*| M (r))

28 ®)
= 2 ¥ (-r)(=)*|M(r))

so that singlevaluedness implies

yy(-r)=(-1)"y,,(r) 9)
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This resembles the usual spin-statistics relation. However, before
we can assert that it is the same as the usual relation we must show that
the coefficients

¥, (r) = (M(r)|\¥(r)) (10)

in (6) satisfy the same Schrodinger equation as the coefficients in the
fixed basis, where the wavefunctions are

(X)) gea = 2V b nea (1) M) (11)

Thus
Wt smea (T) = (M|(T)),, (12)

In order to show that the quantities defined by (10) and (12) are
the same, we must first define dynamical variables (e.g. momentum and
spin) in the transported basis. Of course, these must satisfy the same
commutation relations as in the fixed basis. This can be accomplished by
generating the transported dynamical variables from their counterparts in
the fixed basis by the same unitary transformation U(r) that generates the
basis itself. In particular, the momentum operator, which in the fixed
basis has the usual form

Prixea = =iV (13)
becomes, in the transported basis
P(r) = U(r)PgyeaU’ (r) (14)

Similarly, the transported spin operators S(r) (={S1, S2}) will be defined
in terms of the usual fixed spins Sfixeq by

S(r) = U(r)S;,eqU' (r) (15)

P(r) and S(r) must be employed instead of Pfixeq and Sfixeq When
constructing the Hamiltonian to express the Schrodinger equation in the
transported basis. For the momenta, an easy calculation leads to

(ME)PEEE) = -ikVy,, (1) (16)

while of course



(M|Pg, ., ’ \P(r)>ﬁxed = =RV Yy frea(T) | 17)

and similarly for spins. Therefore the 'transported’ and 'fixed' quantities
defined by (10) and (12) do satisfy the same Schrodinger equation
(including boundary conditions) and so are the same function. It follows
that (9) is indeed the usual spin-statistics relation, here derived by
requiring the wavefunction to be singlevalued. In effect, we have shown
that although |¥(r)),, ., need not be singlevalued under exchange,

|¥(r)) = U(r)| ¥ (r))y, ., must be.

Mathematically, what we are doing is setting up quantum
mechanics on a 'two-spin bundle’, whose six-dimensional base is the
configuration space ri, ry with exchanged configurations identified and
coincidences ri=r; excluded (to make the base a manifold). The fibres are
the two-spin Hilbert spaces spanned by the transported basis |M(r)). The
full Hilbert space consists of global sections of the bundle, i.e.
singlevalued wavefunctions. The base manifold has nontrivial topology.
It can be regarded as the product of the centre of mass with the space of
relative coordinates r, with the latter parameterized by the separation
distance r=|rI>0 and a point on the projective plane (two-sphere with
identified antipodes) of relative directions. Exchanges of positions
correspond to noncontractible closed loops in this (nonorientable)
configuration space.

4. Exchange rotation

As we saw in §2, we need to construct an enlarged representation
of spin that incorporates the usual one but allows additional operations
that can generate flat exchange. To the extent that these additional
operations are unphysical (e.g. by allowing the spins of the two particles
to differ) they must be unobservable: their only role is to accomplish the
exchange.

This can be achieved, and the exchange sign calculated, by
adapting Schwinger's representation of spin in terms of harmonic
oscillators (Schwinger, 1965, Sakurai, 1994). For a single spin, two
independent (that is, commuting) oscillators are required - the a
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oscillator, with annihilation and creation operators a and at, and the b
oscillator, with b and bt. From these can be constructed S=(Sy, Sy, S,):

S=}(a" b )0'(:),

ie. S, =4(a’a-b'b) (18)
S, =S, +iS,=a'b, S_=S, -iS,=b'a

where o denotes the vector of Pauli matrices. The components of S
satisfy the commutation rules for angular momentum:

SxS=iS (19)

(Here and hereafter we omit # in expressions involving spins, so that, for
example, the eigenvalues of S; are spin quantum numbers - integer or
half-integer - rather than dynamical spins.) In this representation, the
eigenstates of S2 and S, with quantum numbers S and m, are number
states of the oscillators: if there are n, quanta in the a oscillator and »,
quanta in the b oscillator, then it follows from (18) that

S=%(ng+ny), m=5(n,—n,) (20)

For two spins, we require four oscillators: ay, by, az, by. The
individual spin operators S and S; are constructed by analogy with (18).
To create exchange, we mix the 1 and 2 oscillators rather than the a and b
oscillators. The rationale behind this is that since an ordinary spin rotation
from z to -z, generated by S, changes the sign of the m quantum number
and so, by (20), interchanges the quanta in the a and b oscillators, so
rotations generated by operators where a and b are replaced by 1 and 2
will interchange the spins. There are two ways of mixing 1 and 2,
involving the a and b operators separately, yielding the operator E,, given
by

E, =4(a] ag)o{? )

2
ie. E,, = %_—(a{fal —azfaz)’ @D
Ea+ = Eax + ian = a1Taz, Ea_. = Eax - ian = aZTal
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and similarly the operator Ep. Obviously [E,4, Ep]=0. The components of
E, satisfy angular momentum commutation relations, as do those of Ep.
The linear combination

E=E, +E, (22)
uniquely shares this property, namely

ExXE=iE (23)
Moreover, by elementary calculations, it can be shown that

[E..S:]=0, [E..S,]=0, [E,S;,]=0 (24)

where S(o=S1+S>. However, S1 and S; do not commute with
E+=E,+iEy, and nor do Sf and S%. In addition, one can show that

E2 =82, (25)

We will call E exchange angular momentum, because the group of
rotations it generates - exchange rotations - can be chosen to satisfy the

requirement (3). We begin with a simple, geometrically motivated,
construction: as the line joining the particles is turned from z to r, the
two-spin state is turned by the corresponding exchange rotation. A
symmetrical choice for the turn is about an axis n(r) perpendicular to
both e; and r. If (6, @) are the polar angles of the direction of r, then

n(r) =-e,sing +e,cos¢ (26)
With this choice, we let the transported basis be generated by
U(r) = exp{-ifn(r)-E} (27)

Now consider the state of the two spins corresponding to nig,
n1p,N24,N2p, Namely

|P1gs 120 Ty My ) = C(af)nla (ag)nza (bf)nlb (b;)nzb 10,0,0,0)  (28)

where C is a normalization constant. By an obvious extension of (20), this
can be written in terms of the more familiar quantum numbers for the
individual spins:
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|nla’n2a’n1b’n2b> =|S1 +m,S, +m,, S8, —m,,S, -—m2)

=|S,,8,;M) )

It then follows from (21) and (22) that

E.|S.S:M)=(S, = $,)[S,.5,: M) (30)

For identical spins, S1=S,=S, and when S need not be written
explicitly we will revert to our previous notation, namely

|S,S;M) =|M) (31)
From (30), we find, for identical spins, the important result

E.|[M)=0 (32)

This ensures gauge invariance of U: any ineffective rotations about the z
axis, applied before U is used to generate the transported basis from the
fixed basis, will not introduce phase factors, since

exp(—ia(r)E,)|M)=|M) (33)

Now we have to show that U does indeed generate spin exchange
according to (3). To evaluate the effect of the exchange rotation operator
(27), we first note that

U(r) = exp{-ifn(r)-E, }exp{-ifn(r)-E, } =U, (r)U,(r)  (34)

and U, and Up commute, so we can consider their actions separately. For
this we use the fact that in the Schwinger representation the actions of U,
and Up on states of arbitrary spin can be evaluated in terms of 2x2
matrices multiplying the vectors of creation operators. Thus U, (r)

induces the transformation

=(al af)exp(-}i6n(r)-o) (35)
_ (a* af) cos16 —exp(-i¢)sin1 6
—\T T2 exp(ig)sin 6 cos%6

and similarly for Up.
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It is instructive first to allow U(r) to act on the general number
state (28), where the spins need not be the same. From (34) and (35),

a0 () bl 63 -
(cos}0a] +exp(ig)sinoal)™ x
(~exp(-ig)sin}0af +cos{6a)™ x 56
(cos36b] +exp(ip)sin}6b] )" x

(—exp(-ip)sin}6b] +cos$6b] )™

Similarly, under the action of U(-r), where 6 is replaced by -0 and ¢ by
o+,

a}')nla (a;)"za (b-lr )”w (b;)an -

sint@al —exp(ip)cosioal

(37)

(exp(-id))cos%ebf +sin%9b2) *

Common factors in (36) and (37) can be identified by pulling out phase
factors, and there follows, in an obvious extension of our previous
notation for the transported basis,

|”1a’”2a »M1psN2p (r)) = exp{—iGn(r) . E}| MasN2qsMp> ”2b>

(38)
= =1y (exp(ig) " ) g (1)
showing that the operator E does indeed generate exchange of spins.
An alternative way of writing (38) is (cf. 29)
|81,85:M(r)) = (-1)>% exp{2i(S; - S, )0}|S,.S;: M (-T)) (39)

from which the desired exchange relation (3) follows at once on setting
S1=82=8, as does the Pauli sign (5). This sign can be regarded as arising
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from the rotation of the second spin by 27z (if ¢=0), or equivalently from
the rotation of the first spin by 2z (if ¢=rx), or equivalently from the
rotation of both spins by 7 (as in the simplest version of the argument
relating exchange to spin rotation (Feynman, 1987)).

Similar techniques establish that the transported basis |M(r)) is a

smooth function of r, notwithstanding the Dirac string singularity in U(r)
at the south pole, arising from the half-angles in (36) (details are given in
appendix A), and that it is parallel-transported according to (4) (details
are given in appendix B). Therefore all the requirements laid down in §2
are satisfied by the transported basis generated by the exchange angular
momentum E defined by (21) and (22).

In the foregoing analysis, the Pauli sign was derived using the
particular choice (27) of U(r). In fact, this sign is a consequence of any
exchange rotation satisfying the conditions a and b in §2 (the parallel-
transport condition is automatically satisfied); the argument is given in
appendix C. Thus the implications of the conditions are essentially
topological. (An example of a more general exchange rotation is (27),
multiplied on the left by a smooth exchange rotation even in r.)

As we have seen, parallel transport implies that the spin space must
be enlarged. If such enlargement is abandoned (and with it flat exchange),
a 'counterconstruction’ can be devised, satisfying the conditions a and b in
§2 but leading to bizarre relations between spin and statistics, that depend
on the value of spin in the four classes S(mod 2). The counterconstruction
is described in appendix D.

Now we elucidate the meaning of the relation (32) by writing it in
the transported basis. Since

E-r/r=U(r)E,UT(r) (40)
(32) implies
E-r|M(r))=0 (41)

Therefore E-r annihilates the transported basis states, that is, the
transported basis lies in the subspace of eigenvectors of E - r with
eigenvalue zero (indeed, this property could have been used to define the
transported basis). Eigenvectors where this eigenvalue is not zero
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correspond to unphysical spin states with S;#S,. The definition of
transported operators (e.g. equations 14 and 15) ensure that these
unphysical states never arise during quantum exchanges. The relation
(41) also ensures that the transported operators are invariant under gauge
transformations generated by exchange rotations about the z axis: if U(r)
is preceded by the exchange rotation in (33), P(r) transforms as

P(r) > P(r)+AVo(r)E-r/r (42)
and the additional term vanishes for physical states |M(r)).

We note that in ordinary spin rotation, generated by S, the states
analogous to the transported spin basis are the m=0 eigenstates of the spin
along r, that is of S - r; in the next section we will have more to say about
this analogy.

5. Geometric phases

To see the relation between the way in which we treat quantum
identity and the conventional way, consider the coefficents ¥/, 5 .4(r)

(equation 12) of the fixed-basis wavefunction |'¥(r))_ , (equation 11).

We saw in §3 that these coefficients are the same as the coefficients
y,,(r) in the transported-basis wavefunction |'¥(r)) (equation 6).
According to (9) , then, ¥, ;. .,(r) acquires the familiar Pauli sign under

exchange of positions and spins, that is r — -r, M — M ; this is the usual
formulation of spin and statistics. In the transported basis, however, the
sign change of the coefficients is compensated by the sign change (5) of
the transported basis, and the total wave |'¥(r)) is singlevalued.

With this observation, the Pauli sign (-1)2S is revealed as a
geometric phase factor, arising from parallel transport generated by
exchange rotation. As with all geometric phases (Berry, 1984, Shapere
and Wilczek, 1989), this sign is the result of dividing a system into two
parts; here they are space and spin, and the space wavefunctions y,, (r)
inherit the phase factor from the transported spin kets, to keep the total
state singlevalued. An analogous phenomenon is molecular
pseudorotation (Longuet-Higgins et al., 1959, Delacrétaz et al., 1986),
where a geometric sign change in electronic wavefunctions, when
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transported round a cycle of the nuclear coordinates that encloses an
electronic degeneracy P, forces the nuclear wavefunctions to change sign
when continued around P.

However, the geometric phase in particle exchange does not arise
in the familiar way, from the line integral of a vector potential or the flux
of a two-form, because these local quantities are zero (equation 4).
Rather, the phase is of a different kind: global, and associated with
noncontractible circuits in the doubly-connected (and nonorientable)
configuration space. As we saw at the end of the last section, the
transported basis states are analogous to the transported m=0 states in
ordinary spin rotation, and these too are known to possess spin-dependent
geometric sign changes (-1)/, where j is the total spin (Robbins and Berry,
1994) for noncontractible circuits in the projective plane, with observable
consequences.

Mathematically, the familiar geometric phase (produced for
example by causing a spin to turn in a cycle) is associated with the Chern
class, that is with monopole singularities of the two-form whose flux is
the phase. On the other hand, the exchange phase is associated with the
first Stiefel-Whitney class (Milnor and Stasheff, 1974, Nash and Sen,
1983, Nakahara, 1990) of the two-spin bundle for noncontractible loops
in the doubly-connected space that incorporates identified states.

To explore the connection with the conventional formulation in
more detail, we write the state in the transported basis explicitly for two
spin-1/2 particles. Denoting quantum numbers £1/2 by %, (6) is
[¥(r))=

43
V(O () 4 ¥ O O Y Dt )y D)

As we have seen, the requirement that this be singlevalued leads to the
conditions (9), which we can write as follows, using E to denote even
functions and O to denote odd functions:

Vi, (l‘) ==Y, (-—l‘) = 01(1'), yv__ (l‘) = —l//__(—l‘) = 0—1 (l‘),
Yo (r)=-y_,(-r)= E(r)+0y(r), y_.(r)=-E(r)+0y(r)

Thus

(44)
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|#(r)) = Oy (r)|++ (1)) + O_(r)|—=(r)) + Oy (r)(| +-(r))+|-+ (r)))

(45)
+E(r)(|+—(r))—|-+(r)))

The conventional representation would employ the fixed basis (11),
where the spin kets lack the r dependence. Since we have already seen
that the coefficient functions, y ., (r), etc, are the same in the fixed and

transported bases, we can then recognise in (45), with transported kets
replaced by fixed ones, the familiar decomposition into the triplet of
states that are space-odd and spin-even, and the singlet state that is space-
even and spin-odd. The traditional form of the exclusion principle follows
from the vanishing of |¥(r)) when the two spin states are the same (++ or
--) and the two positions are the same (r=0). It follows from the exchange
relation (5) that the transformation from the fixed to the transported bases

reverses the parity of the basis states under spin exchange, thereby
restoring the singlevaluedness of the total wavefunction |¥(r)).

Because the states |m;m,(r)) =|M(r)) are not carried into
themselves under r — -r, but rather into (~1)*°|m,m, (r)), the Pauli

geometric phase factor (-1)25 is nonabelian. The alternative transported
basis | ju(r)) of eigenstates of total spin (S1+S2)2 and its z component

(S14S,); (e.g. the triplet and singlet states of (45)) abelianizes the basis
|mym,(r)) that we have been using. The states | j zi(r)) are related to

|mym,(r)) by the Clebsch-Gordan coefficients in the usual way. Unlike
m and my, jand u are good quantum numbers under exchange rotations
(cf. 24), so that | j u(r)) is carried into itself under r — -r. The geometric
Ju(r)) is an
eigenstate of r.E, with eigenvalue zero, and is also (unlike |m;m,(r))) an
eigenstate of E2, with eigenvalue j(j+1) (cf. 25), and thus acquires a sign
(-1)Y under exchange.

phase it acquires is just like the m=0 phase for ordinary spin;

The relation between (-1)/ and the Pauli sign is provided by the
Clebsch-Gordan coefficients, which under exchange of spins change by
(-1)2S-J. This latter sign was conjectured by Leinaas and Myrheim (1977)
to be implicated in the spin-statistics relation, which was completed by
regarding the additional sign (-1) as arising from the parity under
position exchange of the spherical harmonics describing the states of total
spin.
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6. More than two particles

For N identical particles with spin S, it is convenient to represent
the positions, and the quantum numbers representing the spin components
in the z direction, by (cf. 1)

R={r1,...,rN}, M={m1,...,mN} (46)

The elements in these lists (e.g. r2, m3) denote particle properties, and
places in the lists denote particle labels. The spin S; of each particle is
represented by the pair a; and b; of Schwinger oscillators, in terms of

whose operators the state |M) is, in an obvious notation (cf. 28),

M)=CH(af)” ™ (b1)"10) @)

where C is a normalization constant.

For N>2, we must consider general permutations of positions R

and spins M, not only two-particle exchanges. Permutations will be
denoted by g, and we adopt the convention that properties of particle i are
transferred to particle g(i). Thus, for the three-particle permutation

g(1)=3, g(2)=1, g(3)=2,
[g{m1oma.ma}) = ‘"’g'l(l)’mg"(z)’mg"(3)> =|ma,m3,m) (48)

The general transformation is conveniently expressed in terms of
permutation matrices, that is

|gM>=|PU(g)mJ,P21(g)mJ,.>, where f;j(g)Eal’g(J) (49)

Every g can be factored into a product of exchanges, and has a parity
£(g), defined, independently of the chosen sequence, as 0 or 1 if the
number of exchanges is even (i.e. det Pj=+1) or odd (i.e. det P;j=-1).

As in §2 we represent the spin states with a transported basis
|M(R)) that depends on the positions, obtained (cf. 2) from the fixed

basis |M) by
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IM(R)) = UR)|M) (50)

The basis must be a singlevalued and smooth function of R, chosen so
that the spins are permuted along with the positions, that is (cf. 3)

|eM(gR)) = (-1)*®)|M(R)) (51)

It is possible to envisage more general phase factors (we do not consider
parastatistics), but the restriction to a sign follows from the argument
given after (3), and the fact that any g can be decomposed into exchanges.
As also explained after (3), K(g) is independent of R and M. The basis
must be parallel-transported, that is (cf. 4)

(M’(R)|VgM(R)) =0 (52)

The unitary operator U(R) will be a ‘permutation rotation’, a
generalization of exchange rotations to be defined later.

As we will show, any permutation rotation satisfying the conditions
implies that the sign in (51) is

K(g)=25¢(g), ie. |sM(gR))=(-1)**(¥)|M(R)) (53)

from which will follow the spin-statistics relation. There remains the
problem of finding an explicit general construction, for all N>2, of a U(R)

that generates a smooth transported basis satisfying the above conditions,
as we did for N=2 with the (26) and (27). This is a difficult problem (one
reason being that permutations do not commute) and we have not solved
it; in our view the difficulties are technical rather than fundamental. We
do have an explicit construction for N=3 (it is rather elaborate), and we
envisage several possibilities for the general case. These will be reported
more fully elsewhere; below, we formulate the mathematical problem
involved in such constructions.

Given the sign (53), we proceed as in §3, and represent any state
|¥(R)) of the N particles by the (25+1)V-dimensional vector Y (R) (cf.

6), where

|#(R)) = Z¥m (R)|M(R)) (54)
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With this representation we must identify the configurations R and gR,
since these correspond to a permutation of spins as well as positions and
so are indistinguishable; therefore the wavefunction must be
singlevalued. Imposing this condition, and using (53), gives

|#(R))=|¥(gR)) = Ev/M(gR)IM(gR)>=

25¢(g) (55)
%ng(gR)lgM(gR)) =(-1)=¢ SYm (sR)|M(R))
From (54) now follows
vem(eR) = (-1 @y (R) (56)

By an identical argument to that following (9), this can be interpreted as
the spin-statistics connection in its familiar form.

To obtain the sign (53), we write each permutation g as a product
over L exchanges e;:

g§=¢€€e; 1..-€¢ (57)
Applying these exchanges in sequence gives
|gM(gR)> = |eL(eL—1 ---elM)(eL (er-1 ---elR)»
= (-1)*C|e, ;... M(e,; ...eR)) (58)
- (_I)K(e,“)+K(e,‘_l )+'"K(e‘)|M(R))

Where K(e)) is the sign associated with the / th exchange. From
invariance under relabelling, all these signs are the same, so

(_I)K(g) — (_1)1)::11((61) = (._1)LK(61) — (_I)K(ex)e(g) (59)

At the end of appendix C we show that K(e;)=2S, which is the sign
obtained in §4 for the exchange of two isolated particles; thence (53).

Before discussing the construction of the transported basis, we
must define permutation rotations. Let EW) be exchange angular
momentum operators for the particle pairs i, j, defined (cf. 21 and 22) in
terms of the Schwinger oscillators a;, b; for each of the spins S; by
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@) - Egj) + ng) (60)
where

.. a;
e -4(a! af)of 5 |
J

ie. EW = i(ata, -ala;), (61)
EW =W +ieW =afa;, EW =) _i® =ala,

and similarly for Eg’j). Permutation rotations are the unitary operators
generated by the exchange angular momenta E(#), namely

u<v=l1

N
U(R)=exp{—i Yy c,w(R)-E(”V)} (62)

The parallel-transport requirement is automatically satisfied by the basis
generated by this operator, as follows from an easy generalization of
appendix B.

Naturally associated with U(R) is the NXN matrix

N
Uy = {exp(—%—i S ¢y (R)-o™ H (63)
u<v=1 ..
ij
Here the o(**) are generalized Pauli matrices, defined as vectors of NXN

traceless hermitian matrices labelled by u<v, whose only nonzero
elements are

[o.(uV)] =0y, [G(w)] =0y,

v %%

The o(*) span the space of NXN hermitian matrices. Therefore
permutation rotations can be regarded as a representation of SU(NV) (the
group of NxN unitary matrices with determinant unity), just as exchange

rotations can be regarded as a representation of SU(2). In the Schwinger
representation, the action of U(R) on the states |M) is effected by the
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asociated matrix Uj; acting to the right on the creation operators, i.e. (cf.
35)

al - (a,T)' =alu, (65)

and similarly for the b oscillators.

In appendix C we show that the permutation condition (51) implies
the following relation for the associated matrices

U;(gR)=Uy (R)Qy (g7 )D;(2.R) (66)

Here, Q is a rephased permutation matrix with det Q=1, that is (cf 49)
N
0;(8) =8 4 exp{iv;},  where Elv,- = rre(g) (67)

and D is a diagonal matrix in SU(N). Therefore the construction of the
transported basis reduces to finding a Uj(R) in SU(N) satisfying (66).

One possible construction is to take the columns of Ujj(R) to be the
eigenvectors |n(R)), written as column vectors (i|n(R)), of an NxN

hermitian matrix H(R) depending smoothly on R. Thus

HR) = 3.4, R)nR))r®)} ie.
n;l (68)
Hy(R)= 5.2, (R, (R (®)

where the eigenvalues A,(R) are chosen to be symmetric under
permutations g. Orthogonality and completeness of the |n(R)) guarantee
that Ujj(R) is unitary. Our hope that H(R) will be simpler than Ujj(R)
springs from the fact that for N=2, where Ujj(R) is the matrix in (35) (cf.
(26) and (27)), the expression (68) gives the simple formula

HR)=r-o (69)
with A+(r)=%r.
Calculations based on (66) and (67) lead to the requirements

[H(R),H(gR)]=0 (70)
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showing that the matrices related by permutation of positions commute,
and

|n(gR))(n(gR)| =|g ™ (m)(R)) g™ (n)(R)| (71)

showing that a permutation of positions leads the same permutation of the
eigenstates |n(R)) (and possibly a change of phase). Another way to write

this last result is
N
H(gR) = §llg(n)(R)|"(R)>(n(R)| (72)

- that is, permutation of positions changes the eigenvalue associated with
each state |n(R)) from A,(R) to its permuted counterpart Ag(n)(R). These
general conclusions are illustrated by (69) where g is the exchange r— -r,
whose effect on H is to interchange either the two states |+(r)) or the two

eigenvalues *r.

A consequence of (71), together with the orthogonality of the states
|n(R)), is that for positions R=gR, where two or more particles coincide,

the states |n(R)), and hence the matrix Ujj(R), are singular, so H(R) is

degenerate (as in (69) where r=0). The number of degenerating
eigenvalues must equal the number of coinciding particles. So, finding a
nonsingular transported basis reduces to the mathematical problem of
finding an NXN hermitian matrix H;j(R) with degeneracies only where
R=gR; degeneracies at other points would lead to singularities in the
basis constructed from H;j(R). Here the codimension of degeneracies
gives cause for optimism. To make two particles coincide, it is necessary
to vary three coordinates (to make the components of the interparticle
vector vanish), and this is precisely the codimension of degeneracies (that
is, the number of parameters in a generic complex hermitian matrix that
must be varied in order to produce a degeneracy of two eigenvalues). To
make N particles coincide, it is necessary to vary 3N-3 coordinates. For
N>2 this is less than the codimension N2-N of a degeneracy of N
eigenvalues, showing that the matrices we seek are special rather than
generic, and there are insufficent parameters to lead us to expect
unwanted degeneracies on higher-dimensional manifolds containing the
points where R=gR.
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7. Discussion

It is important to be precise about the sense in which we claim to
have derived the connection between spin and statistics, embodied in the
Pauli sign (-1)2S. The form of quantum mechanics that we have used to
describe identical particles, involving the transported spin basis and
wavefunctions invariant under r — -r, was not itself derived, but
postulated as being closest in spirit to the more familiar quantum
mechanics without exchange. This is physics, not mathematics, and so it
can be tested by experiment. But since this quantum mechanics leads to
the same physics (e.g. the exclusion principle) as more conventional
formulations, the experiments have already been carried out, and support
the theoretical predictions.

However, given this form of quantum mechanics, and our
particular implementation in terms of exchange angular momentum, the
Pauli principle is inevitable and we have derived it. The obvious question
now is whether the result is unique. We are not claiming that the
implementation is unique: there could be ways to define exchange
angular momentum that do not involve harmonic oscillators, and, more
generally, ways to augment spin so as to incorporate exchange without
introducing exchange angular momentum. Nevertheless, we conjecture
that the Pauli sign will emerge from any transported basis that satisfies
the specified conditions. Certainly this is true for any transported basis
generated by exchange rotations. More generally, we suggest that the
relation between spin and statistics could be determined by the first
Stiefel-Whitney class of the two-spin bundle, which in turn could be
determined just by the conditions (a-c) in §2.

The main role of the Schwinger representation has been to provide
a way of embedding the spin space in a larger Hilbert space (eigenstates
of harmonic oscillators), to enable it to be parallel-transported. It is
natural to ask whether the exchange rotation could be accomplished
without this larger space, using the individual spin operators S; and S,
alone. It could not, at least while maintaining the requirement of parallel
transport (the abandonment of which leads to the bizarre consequences
explored in appendix D). An analogous enlargement of spin space has
been noted before (Berry, 1987) in the interpretation of experiments on
polarized light in a coiled optical fibre. Photons are spin-1 particles,
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which because of transversality are confined to the two-state subspace of
spinors with spin quantum numbers m=%1 along the propagation
direction. However, in order to accommodate within a fixed basis the
changing propagation direction in a coiled fibre, three states are
necessary. It is curious that in fibres the local m=0 state is excluded,
whereas in spin exchange it is the m#0 states - unphysical because they
correspond to particles with different spins - that are excluded. However,
as J.H. Hannay has pointed out to us, linearly polarized light can be
regarded as being in the m=0 state of the component of spin along the
polarization, rather than propagation, direction.
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Appendix A. The transported basis is smooth

Using the Schwinger representation, we need to show that the
transported function on the r.h.s. of (36) is a smooth function of r for »>0.

Obviously it is necessary to examine only the neighbourhood of the poles.
Near the north pole, we can set up local cartesian coordinates

E=0cos¢p, n=0sing (6<<1) (A1)
Then the local approximation to (36) is
() ) o) 63)”
(af +4(c+ in)a})n'“ (af -4(&-in)af )"2“ X (A2)
(bf +4(&+in)b})"™* (b] - 3(£-in)o] )™’
which is obviously a smooth function of & and 7.

Near the south pole, we can set up local cartesian coordinates

E=(n-0)cos¢g, n=(r-0)sing ((r—0)<<1) (A3)
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Now the local approximation to (36) is

(a;,)nl., (ag )nza (bf)nlb (b}‘)"“’ — (exp{ig})™="™* (- exp{-ig})"> "
(af +4(&-imaf)™ (af - 3(&+im)al )™ x A%
(01 + (& imof )™ of ~ (2 -im )

Smoothness is threatened by the phase factors, which can be written as

(exp{ig})™ ™™ (—exp{-ig})™ ™ = (-1)*% exp{2ig(s, - S, )} (AS)

However, the ¢-dependence disappears for identical spins, so the basis
depends smoothly on £ and 7 near the south pole. Note the contrast with
the more familiar transport of spin-1/2 states by ordinary spin rotation,
where the dependence on 6/2 leads to a singularity at the south pole.
Exchange rotation this avoids this because the singularities cancel from
the commuting parts E, and E, of E (equation 21) - but only for the
physical states S1=5>.

Smoothness can also be demonstrated using the gauge invariance
(33) under exchange rotations about the z axis, as follows. We have that

|M(r))=U(r) M) =U'(r)| M) (A6)

where U’is any operator that differs from U by an arbitrary gauge
rotation, that is

U’(r) = U(r)exp(ia(r)E,) (A7)

Now, we can choose U as in (27), whose smoothness near the north pole
guarantees that |M(r)) is smooth there, and we can choose U’ to be the

alternative exchange rotation - from e; to -e; and then from -e; tor -
U’(r) = exp{-i(7 - 6)n(r) -E} exp{—inE y} (A8)

whose obvious smoothness near the south pole guarantees that |M(r)) is
smooth there also.
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Appendix B. The transported basis is parallel-transported
To prove the vanishing of the connection (4), we begin by writing
(M'(r)|VM(r)) = (M|UT (r)VU(r)| M) (B1)
Since U(r) and U(r + dr) are infinitesimally different exchange rotations,
UT(r)VU(r) =A(r)E, +B(r)E, +C(r)E, (B2)

Thus

(M’(r)| VM(r)) =

B3
()M, | M)+ BUr)(M'E, | M) + ()M’ [E, M) B

The matrix element involving E; vanishes by (32). Those involving
Ex and Ey can be written in terms of E,_ ,E,_,E, ,E,_ defined in (21).
These operators shift quanta from the (aj,b;) oscillator pair to the (a2,b;)
oscillator pair and therefore change ($;,52) to ($1£1/2,5,F1/2), so that all
matrix elements such as those in (B3), with $1=52, vanish, thereby
proving (4).

a+’

(To demonstrate (B2) explicitly, we can use the result, valid for
any operator C(r), that

exp[—C(r)]V exp[C(r)] = VC + %[ VC,C] + 4[[VC,C].C] +... (B4)

For the particular operator (27), a calculation gives

ecn-E . e
0 +i ¢

UT(r)VU(r) = —i .
r rsin@

("E +(1—200s6)Ez) (B5)

r

which has the form (B2).)

Parallel transport can also be proved by a lengthy calculation based
on the representation of Bargmann (1962), in which creation operators
are replaced by complex variables and use is made of
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(M'(r)|VM(r)) o<
Jf dayday [f dbydby exp{~{jasl* +Jaaf* +[r]* +}pf* )} x 56
(a1 *)™ " (a *)™ (b #)° (b )T x

Viay*) " (@ ) (B ) (0 )T

where the primed variables are defined in terms of the unprimed variables
by (35), and the integrations are over the complex planes of the variables,

e.g.
da, = dReq,dIma, B7)

We do not give the details.

Appendix C. Pauli sign from general exchange rotation

We assume that U(r) is an exchange rotation satisfying (2) and (3).
It follows that

UT(r)U(-r)| M) = (-1)¥| M) (C1)

|M) can be expressed in terms of |M) through a fixed exchange rotation,

e.g. an exchange rotation Ry(r) by 7 about y. Indeed employing the
Schwinger representation in the form (35), with 6=r, ¢=0, we obtain

(af a})—(af a})(-ic,)=(af a;f)((l) _Ol)z(a}“ -af)  (C2)

From (28) and (36), we obtain
M) = (-1)*°R ()| M) (C3)
Thus (C1) can be written as
D(r)| M) = (-1)*7*| M) (C4)
where

D(r) = R} (m)U" (r)U(-r) (C5)
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As D(r) is a product of exchange rotations, it is itself an exchange
rotation, and thus may be expressed in the form exp{-ic(r).E}. The
eigenvector equation (C4) then implies (cf. 28 and 29) that

(™ ) o) o) =

§ S N S (C6)
(s o) x o)™ o)™ o1 57) ™

where, as in (35), the primed and unprimed oscillator pairs are related by
(all T az' T) = (alT aZT )exp{—iC(r) . 0'} (C7)

and similarly for b and b'. Since (C6) must hold for all M, we deduce that
a;' = (phase factor)xa;, b;'=(phase factor)xb; (C8)

Thus exp{-ic(r).o"} is diagonal, (that is ¢(r) is along the z direction), so
D(r) = exp{-i(r)E, } (C9)

Then (33) implies that the eigenvalues of the states |M) in (C4) are in fact

unity, and (5) follows. (It is not the case that the operator D(r) is equal to
unity: its action on unphysical states, where the particles would have
different spins, would introduce phases.)

This derivation of the Pauli sign generalizes to N>2 particles. As
argued in §6, it suffices to consider the exchange e of a single pair, say
particles 1 and 2. The permutation condition (51) implies

UT(R)U(eR)M) = (-1)¥V|eM) (C10)

|eM) is related to |[M) by, for example, the exchange rotation
R(ylz) (m) = exp{—i?tE(ylz)}, whose associated matrix (63) is

-io, 0
exp{—%inaglz)}=( o 1) (C11)

where I is the N-2-dimensional identity matrix. Its effect in the Schwinger
representation (cf 65) is to replace (af a;f) by (a;f —af) while
leaving the other a; unchanged, and similarly for bj. It follows that
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|eM) = (-1)**R{1? ()| M) (C12)
Thus (C10) can be written as
D(e,R)| M) = (-1)¥ (25| M) (C13)

where
D(e,R) =R (z)UT (R)U(eR) (C14)

By an argument identical to that for N=2 (equations C6-C9), it follows
that the matrix associated with D is diagonal, and thence,using the
generalization

E®IM)=0 (C15)

of (32), that K(e)=2S, which is what we wanted to show. Further, the
relation (66) for a general permutation now follows by repeated
application of (C14), in the form

U(eR) =U(R)Q(e)D(e,R) (C16)

with Q(e) = R(ylz).

Appendix D. The counterconstruction: spin-statistics without
parallel transport

Without the enlargement of the spin space forced by the parallel-

transport requirement (4), the operator U(r) in (2) can be represented as a
(25+1)X(25+1) matrix. Then the exchange condition (3) can be written as

U(-r) = U(r)(-)*P (D1)
where P is the permutation matrix, satisfying
Pla) =|M) (D2)

that exchanges the labels of the (25+1)2 pairs of spin quantum numbers
m1 and my. It is not hard to show that
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detP = (-1)535+D) (D3)

(one way is to order the pairs so that those with the same spin quantum
numbers are listed together, and those with different quantum numbers
are adjacent to their exchanged partner pairs; then the matrix P consists
of a (25+1)-dimensional unit diagonal block, followed by S(25+1) unit
off-diagonal 2x2 blocks, whose determinant is easy to calculate). Thus

detU(-r) = det U(r)(-1)K+)@5+1) (D4)

Now we incorporate the smoothness condition a of §2. It implies
that U(r) can be defined on a closed loop and remain smooth as the loop
is continuously contracted to a point only if det U(r) has zero winding
number round the loop. Considering the loop to be any great circle in a
sphere with constant r=Irl, we see that this is impossible (i.e. winding is
unavoidable) if the sign in (D4) is negative. Therefore

(K+S)2S+1) iseven (D5)

When this condition holds, U(r) can be constructed explicitly by
exploiting the implication of (C1) that (-1)X P is unitary with unit
determinant, and so can be written as

(-D¥P=expfiH}, [-D¥P] = exp{2iH}=1 (D6)

where H is hermitian and traceless. Then we define U(r) on the equator
6=r/2 (using polar coordinates for r) as

U(r.3m,¢)= exp{i%H} (D7)

This is a continuous family of unitary matrices with unit determinant,
satisfying (D1) and beginning (at ¢=0) and ending (at ¢=2r) at the
identity. Since SU(2S5+1) is simply connected, the closed loop U(r,7/2,¢)
can be continuously contracted to the identity, and we can define U(r) in
the northern hemisphere so that on circles of latitude it interpolates
between the loop (D7) on the equator and the identity at the north pole.
U(r) is then defined in the southern hemisphere by continuation using
(D1).
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For each §, we can examine the implications of the condition (D5)
for K even (boson statistics) and K odd (fermion statistics). There are four
cases.

(1) If $=0, 2, 4...., (D4) requires K even, that is bose statistics.
(1) If $=1, 3, §...., (D4) requires K odd, that is fermi statistics.

(1i1) If $=1/2, 5/2, 9/2,..., (D4) cannot be satisfied for any integer K, so the
counterconstruction is incompatible with any statistics.

(v) If §=3/2,7/2, 11/2,..., (D4) can be satisfied for any integer K, so the
counterconstruction is compatible with both bose and fermi statistics.

The results of this counterconstruction are not only bizarre but also
incoherent, in the sense that the construction cannot be carried out for
case (iii) and does not lead to a unique spin-statistics relation in case (iv)
(as well as giving the wrong relation for case (ii)).
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